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Abstract

Background: Accurately predicting low energy barrier folding pathways between conformational secondary
structures of an RNA molecule can provide valuable information for understanding its catalytic and regulatory
functions. Most existing heuristic algorithms guide the construction of folding pathways by free energies of
intermediate structures in the next move during the folding. However due to the size and ruggedness of RNA
energy landscape, energy-guided search can become trapped in local optima.

Results: In this paper, we propose an algorithm that guides the construction of folding pathways through the
formation and destruction of RNA stacks. Guiding the construction of folding pathways by coarse grained
movements of RNA stacks can help reduce the search space and make it easier to jump out of local optima.
RNAEAPath is able to find lower energy barrier folding pathways between secondary structures of conformational
switches and outperforms the existing heuristic algorithms in most test cases.

Conclusions: RNAEAPath provides an alternate approach for predicting low-barrier folding pathways between RNA
conformational secondary structures. The source code of RNAEAPath and the test data sets are available at http://
genome.ucf.edu/RNAEAPath.

Introduction
RNA molecules play critical roles in the cell. The second-
ary structures of RNA molecules have been extensively
studied because they provide insights into the functional-
ity of RNAs. Native (functional) RNA secondary struc-
tures are usually thermodynamically stable and many of
them are also the minimum free energy (MFE) structures.
Nevertheless, at times, RNA molecules may fold into
alternative secondary structures in order to participate in
certain biological processes. For example, the SV-11
RNA folds into a metastable conformational structure
and acts as a template for its own replication using Qb
replicase [1,2]. Further, RNA conformational switches
can transform between alternative secondary structures
dynamically in response to various environmental stimuli
(such as heat shock and cold shock) [3-6], and carry out
RNA-mediated biological activities, such as switching on

or off downstream gene translation activities [7-9], regu-
lating RNA splicing via multiple-state splicesomal con-
formations [10], and regulating the life cycles of virus
[11].
The conformational transformations between alterna-

tive structures involve the folding of an RNA molecule
into a series of sequential adjacent intermediate struc-
tures [12]. RNA folding pathways provide valuable infor-
mation for understanding the catalytic and regulatory
functions of RNAs (such as hok/sok of plasmid R1 [13]).
RNA folding pathways may also impact subsequence bio-
logical events (such as formation of tertiary structures).
Furthermore, prediction algorithms can help the design
of RNA switches by providing prescribed structural
alternatives.
In this paper, we present a new approach, RNAEAPath,

for computing near optimal direct or indirect folding
pathways between two secondary structures of an RNA
molecule. We guide the search for low energy barrier
folding pathways by integrating a variety of strategies for

* Correspondence: shzhang@eecs.ucf.edu
Department of Electrical Engineering and Computer Science, University of
Central Florida, Orlando, FL, 32816-2362, USA

Li and Zhang BMC Bioinformatics 2012, 13(Suppl 3):S5
http://www.biomedcentral.com/1471-2105/13/S3/S5

© 2012 Li and Zhang; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

http://genome.ucf.edu/RNAEAPath
http://genome.ucf.edu/RNAEAPath
mailto:shzhang@eecs.ucf.edu
http://creativecommons.org/licenses/by/2.0


simulating the formation and destruction of RNA stacks
in a flexible framework. Benchmark tests on conforma-
tional switches show that RNAEAPath produces lower
energy barrier folding pathways and outperforms the
existing heuristic approaches in most test cases.

Preliminary
Consider an RNA sequence as a string x = x1 ... xn of n let-
ters over alphabet ∑ = {A, U, G, C}. A pair of complemen-
tary nucleotides xi and xj, can form hydrogen bonds and
interact with each other, denoted by xi · xj. In this paper,
we only consider the canonical base pairings (A · U and
G · C) and the wobble base pairing (G · U). A secondary
structure S of the RNA sequence x is a set of disjoint
paired bases (i, j), where 1 ≤ i <j ≤ n. S may be represented
by a length n string of dots and brackets, where dots
represent unpaired bases and brackets represent paired
bases. An RNA structure can comprise of stacks which are
lists of consecutive base pairs ({(i, j), (i + 1, j - 1), . . . , (i +
w, j - w)} such that xi · xj, . . . , xi+w · xj-w), and unstacking
base pairs. A secondary structure is pseudoknotted if it
contains two base pairs (i, j) and (i’, j’) with i <i’ <j <j’. In
this paper, we only consider pseudoknot-free structures. A
base pair is compatible with a secondary structure if the
base pair can be added to the structure without leading to
a pseudoknotted structure or pairing a base with more
than one partner. A stack is compatible with S if each base
pair in the stack is either in S or is compatible with S.
The free energy of a secondary structure S is denoted

by E(S). The set of neighboring structures of S consists
of all structures that differ from S by an addition or
deletion of exactly one base pair. For two secondary
structures A and B, the distance between A and B is the
number of base pairs in A not in B plus the number of
base pairs in B not in A (i.e. |(A - B) ∪ (B - A)|). A fold-
ing pathway from A to B is a sequence of intermediate
structures A = S0, . . . , Sm = B such that for all 0 ≤ i
<m, intermediate structure Si+1 is a neighboring struc-
ture of Si. A folding pathway is direct if the intermediate
structures contain only base pairs in A and B (i.e. Si ⊆
A ∪ B for 1 ≤ i <m) and otherwise is indirect. The sad-
dle point of a pathway is an intermediate structure with
the highest energy, and the energy barrier of a pathway
is the energy difference between its saddle point and the
initial structure. Since the folding of RNA structures is
thermodynamically-driven and tends to avoid high-
energy intermediate structures, current computational
methods aim to find RNA folding pathways with the
lowest energy barriers.

Previous studies
A lot of research has been done on predicting low
energy barrier folding pathways. Morgan and Higgs pro-
posed a greedy algorithm that employs the Nussinov

model [14,15] for computing direct folding pathways
with minimum energy barrier. They also described a
heuristic that samples low energy structures from the
partition function and glues them together by direct
pathways [16]. The Nussinov model is simple and easy
to implement, in which base stacking and loop entropies
have no energetic contributions. Based on this model,
Thachuk et al. [17] developed an exact algorithm,
PathwayHunter, which exploits elegant properties of
bipartite graphs for finding the globally optimal direct
pathways. However, the Nussinov model is not as accu-
rate as the Turner energy model [18,19] for approximat-
ing RNA thermodynamics. An exact solution based on
the Turner energy model is also available. BARRIERS
[20,21], exactly computes the globally optimal folding
pathways between any two locally optimal secondary
structures. BARRIERS reads an energy sorted list of
RNA secondary structural conformations produced by
RNAsubopt [22] and is able to compute both direct and
indirect low energy barrier pathways.
Nevertheless, the above exact solutions are all expo-

nential in time, because the problem itself is NP-hard
[23]. Many heuristic algorithms have also been proposed
following the seminal work of Morgan and Higgs.
Flamm et al. [24] used breadth-first search in their
heuristics (in Vienna RNA Package [25]) and kept the
best k candidates at each step to bound the search. Voss
et al. [26] devised a straightforward strategy for greedily
searching direct pathways. Geis et al. [27] described a
greedy heuristic to explore the search space of direct
pathways and they also integrated look ahead techniques
to diminish the search space. Recently, Dotu et al. [28]
developed RNATabuPath, a fast heuristic that employs a
TABU semi-greedy search to construct near optimal
(both direct and indirect) folding trajectories. In addi-
tion, other heuristic approaches, by splitting the path-
ways into shorter pathways and solving each
individually, have also been proposed [29,30]. There are
also other formula presented for the prediction of RNA
folding kinetics (see Flamm and Hofacker’s review [31]
for a systematic discussion).
Many of the existing heuristic algorithms start from an

initial structure A, and, at each single step i, walk from
the intermediate structure Si to one of its neighbors Si+1
until finally the end structure B is reached. The definition
of neighborhood relationships as well as the fitness func-
tions can be different. The fitness function of Si is usually
defined on the free energy of Si, or the distance from Si
to B, or a function of both. In general, greedy algorithms
select the ‘best’ neighbor structure that has the best fit-
ness. In contrast, semi-greedy algorithms may select any
one from the top k structures for randomization. RNA-
TabuPath, which is more sophisticated and outperforms
other methods [28], keeps a tabu list for saving recently
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taken moves such that they can not be applied in certain
steps until being removed from the tabu list. In general,
during the construction of a folding pathway, these heur-
istic algorithms select the next intermediate structures
from a set of neighboring structures that have the top
lowest free energy or have the top shortest distance to B
(or the combination of both).

Motivations
However, using energy to guide the construction of fold-
ing pathways in the above-mentioned heuristic algo-
rithms has its downsides. The RNA energy landscapes
can be extremely large and rugged [11,32] and the rug-
gedness of RNA energy landscape may cause the
energy-guided search to become trapped in a local opti-
mum. Similar to using structural rearrangements for
modeling RNA folding kinetics [33], we want to con-
struct candidate folding pathways in a manner that
make it easier to jump out of local optima. It has been
revealed that stacking base pairs contribute significantly
to the stabilization of RNA secondary structures [34,35].
The dominant RNA folding pathways involve the forma-
tion and destruction of the stacks, and the cooperative
formation of a stack along with the partial melting of an
incompatible stack [36]. In this paper, we propose to
guide the construction of pathways by the formation
and destruction of stacks (not by free energy or by dis-
tance to the end structure). We still select the con-
structed folding pathways according to their energy
barriers. Although the construction of folding pathways
is not driven by thermodynamics, the selection of fold-
ing pathways is based on energy barriers. Guiding the
construction of folding pathways by coarse grained
movements of RNA stacks may help reduce the search
space and makes it easier to jump out of local optima.
In the rest of this paper, the Methods section describes
the representation of folding pathways and the detailed
strategies employed by RNAEAPath. The Results and
Discussion section presents benchmarking results of
RNAEAPath against existing methods followed by con-
cluding remarks in the Conclusions section.

Methods
Representation of RNA folding pathways
Given an initial structure A and an end structure B, we
use a sequence of actions successively applied to A,
rather than a sequence of intermediate structures, to
represent a folding pathway from A to B. Representing a
pathway by an action chain can avoid cyclic additions
and deletions of base pairs and make it easy to simulate
the formation and deletion of RNA stacks. A similar
representation has also been employed in the previous
work of Thachuk et al. [17].

We use two types of actions, addi,j and deli,j in the
representation of RNA folding pathways. For an inter-
mediate secondary structure S of an RNA sequence x,
the action addi,j denotes the ‘add’ition of base pair (i, j)
to S (i.e. addi,j(S) = S ∪ {(i, j)}) and deli,j denotes the
‘del’etion of base pair (i, j) from S (i.e. deli,j(S) = S - {(i,
j)}). An action is direct if it concerns a base pair in A ∪
B and indirect otherwise. The simplest direct pathways
from A to B concern sequential deletions of all base
pairs in A - B followed by additions of all base pairs in
B - A.
Consider an example sequence x = GGGGAAAA

CCCCUUUU with initial and final structures shown in
Figure 1. This simple pathway is obtained by first delet-
ing all GC pairs from A until the RNA is single
stranded, and then adding all AU pairs until B is
obtained. Note that each intermediate structure Si differs
from both its successor and predecessor by exactly one
base pair. The actions in the example are all direct
actions and the energy barrier is 5.50 - (-6.60) = 12.10
kcal/mol.
An addition action addi,j(S) conflicts with S if either xi or

xj is already paired in S, and it clashes with S if there exists
a base pair {(x′

i, x′
j) ∈ S|i < i′ < j < j′ or i′ < i < j′ < j}.

A deletion action deli,j(S) conflicts with S if (xi, xj) ∉ S. An
addition or deletion action is valid and can be applied to S
properly if it neither conflicts with nor clashes with S.
A pathway from A to B can be represented by an action

chain, which is a sequence of valid actions a1, . . . , am
such that S0 = A, St = at(St-1) for 1 ≤ t ≤ m and Sm = B.
Note that an action chain for A to B implies a sequence
of valid actions that can be successively applied to A
without introducing conflicts or clashes and produce B.
We use the term “action chain” when the sequence is
certified to be valid, and the term “sequence of actions” if
its validity is not guaranteed.
This representation of a pathway p from A to B has

the following important properties. First, every folding
pathway can be represented by a unique action chain
and every action chain represents a unique folding path-
way (note that it is not necessarily true for a sequence
of actions). Second, rearranging the order of actions in
p results in a new sequence of actions which represents
a new folding pathway from A to B when it is valid. (It
is an action chain that can be successively applied to A
properly and obtain B.) Third, introducing a pair of
complementary actions (e.g. addi,j and deli,j) to p
results in a new sequence of actions which also repre-
sents a new folding pathway from A to B if it is valid.
In RNAEAPath, folding pathways are represented in

the form of action chains, instead of a sequence of inter-
mediate structures. This representation makes the life
cycle of a folding pathway transparent to the algorithm
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and also makes it easier for us to simulate the coopera-
tive formation and destruction of RNA stacks by re-
arranging the order of actions or introducing multiple
pairs of complementary actions.

Predicting low energy barrier folding pathways
Given an RNA sequence x, an initial structure A and a
final structure B, RNAEAPath computes a near optimal
low energy barrier folding pathway from A to B in an
evolutionary algorithm framework [37]. Figure 2 eluci-
dates the overall paradigm for RNAEAPath. In this algo-
rithm, the population of each generation is comprised of
folding pathways ordered by their fitness. The functions
My(p) are mutation strategies, each of which takes in a
pathway p and produces a set of offspring pathways.
These mutation strategies are central to the effectiveness
of RNAEAPath and will be discussed in the Mutation
strategies subsection. ℓ1, ℓ2, ℓ3, MAX and g are positive
integer control parameters.
The initial population of RNAEAPath, ℙ0, is filled

with a set of simple pathways. Then, the algorithm
goes through several iterations. ℙk-1 is the population
of the k - 1st iteration. In the kth iteration, the algo-
rithm produces Ok (an ordered list of pathways) and ℙk
(the population of the kth iteration) from ℙk-1. Ok stores
the best ℓ1 pathways in ℙk-1 and the best ℓ2 pathways
produced by each p Î ℙk-1. More specifically, each
pathway p Î ℙk-1 produces tk

y offsprings through every
mutation strategy My(1 ≤ y ≤ Y). The resulting

offsprings produced by p are stored in a temporary list
T, and the top ℓ2 pathways are added to Ok. Finally, the
best solution of the kth iteration, termed as OPTk, is
the best pathway in Ok. And, ℙk (the population of the
kth iteration) is composed of the best ℓ3 pathways of Ok

and will be used in the next iteration to produce ℙk+1.
This helps keep the diversity of the population large,
since ℙk contains at most ℓ2 offsprings produced by
each p Î ℙk-1, no matter how many high-qualified off-
springs are produced by each pathway. The algorithm
terminates when a stopping condition is met, and it
returns the best solution of the last iteration. Since Ok

retains the best ℓ1 pathways from ℙk-1 in each iteration,
the best one ever encountered by the algorithm is
retained in lists Ok and ℙk, and stored in OPTk. So,
OPTk has no worse fitness when compared to OPTk-1,
and RNAEAPath always returns the best action chain
it ever discovered.
In the remaining of this section, we discuss details

regarding fitness evaluation, initialization of the popula-
tion, stopping conditions and mutation strategies of
RNAEAPath.
Fitness of action chains
The order of folding pathways (valid action chains) is
primarily determined by their energy barriers. In case of
a tie, the order is determined by the average of energy
differences between the initial structure A and inter-
mediate structures. Note that lower energies are pre-
ferred in the previous two methods of ordering. If a tie

Figure 1 A simple folding pathway that converts an RNA sequence from structure A to B. A simple folding pathway that converts an RNA
sequence from structure A to B. The leftmost column shows a simple direct pathway from A to B, the center column shows the free energies
(in kcal/mol) of the intermediate structures, and the rightmost column presents the action chain a1, . . . , a8 for this pathway.
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still exists, then shorter action chains are preferred.
Action chains are ordered arbitrarily if their relative
order can not be determined based on these three
criteria.
The initial population of folding pathways
The initial population, ℙ0, contains 4 simple pathways
from A to B formed by first deleting all base pairs in A -
B and then adding those in B - A, similar to the pathway
shown in Figure 1. Although we can also arrange base
pair deletions and additions in an arbitrary order, we tai-
lor them in a manner that simulates successive degrada-
tion and formation of RNA stacks. This is because
random deletions and additions of base pairs tend to
form additional unpaired loop regions that introduce
entropic penalties (see Figure 3 for an illustration). We
can degrade or form each stack either from the outmost
base pair to the innermost base pair or vice verse.
Usually, it yields a lower energy barrier if we degrade a
stack from the outmost base pair to the innermost base
pair and form a stack from the innermost base pair to the
outmost base pair. However, for the sake of simplicity
and generosity, we construct 4 simple pathways in ℙ0,
which degrade all the stacks from the same direction and
form all the stacks from the same direction. These simple

pathways constitute a diversified and unbiased initial
population for the algorithm to start from.
The number of offsprings produced by each mutation
strategy
In each generation, the expected total number of off-
springs produced by each individual is a constant posi-
tive integer L. The number of offsprings that each
individual produces using mutation strategy
My, (1 ≤ y ≤ Y), in the kth generation, is denoted by �k

My
.

In the initial generation, �0
My

is equivalent to L/Y for all
the mutation strategies. In the kth generation, �k

My
is

determined adaptively according to the quality of the
offsprings produced using My in the k - 1st iteration. Let
bk−1
My

be number of offsprings that are both produced
through My and selected to construct ℙk-1, the popula-
tion of the k - 1st generation. Then, �k

My
in the kth gen-

eration is computed as follows.

�k
My

= max

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Lmin

(bk−1
y /�k−1

My
)

Y∑
y′=1

(bk−1
y′ /�k−1

My′
)

L

Figure 2 Overview of RNAEAPath. Overview of RNAEAPath. In this procedure, the input is an RNA sequence x with the start and end
structures A and B, and the output is the best folding pathway in k iterations (OPTk). For notations, k is the number of iterations, ℙ0 is the initial
population, and ℙk is the folding pathway population of the kth iteration. T contains all the offspring folding pathways produced by applying
mutation strategies M1, . . . , MY to each pathway p in the (k - 1)st population. Ok is an ordered list of offspring folding pathways of the kth

generation, from which, the population for the next iteration ( ℙk+1) is selected. Folding pathways in ℙk and Ok are sorted based on their fitness
and ℙk[1 . . . ℓ] are the top ℓ best folding pathways in ℙk.
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Mutation strategies that have produced more high
quality offsprings in the (k - 1)st iteration are allowed to
generate more offsprings in the kth generation. In con-
trast, mutation strategies that perform poorly in the k -
1st generation, are only allowed to generate a small
number (Lmin, with default value 3) of offsprings. Note
that, the sum of �k

My
for 1 ≤ y ≤ Y may be greater than ℓ.

Stopping conditions
The algorithm terminates when (1) the current best
solution achieves the lowest possible value |E(B) - E(A)|,
or (2) when no improvement has been found over g
consecutive iterations (a plateau), or (3) when MAX
number of iterations have passed and successive itera-
tions do not discover better results. Note that the algo-
rithm may simulate further than MAX iterations if
improvements are made in the very last iteration and it
stops immediately if no improvement is made between
successive iterations. More specifically, the algorithm
stops when any of the following conditions is satisfied:

1. the energy barrier of OPTk is equivalent to |E(B) -
E(A)|.
2. k >g and the fitness of OPTk is equivalent to that
of OPTk-g.
3. k ≥ MAX and the fitness of OPTk is equivalent to
that of OPTk-1.

Mutation strategies
In RNAEAPath, the mutation strategies employed to
evolve folding pathways can be categorized into three
types: (1) rearranging the order of actions, (2) introdu-
cing indirect pathways and (3) formation of a single
stack or cooperative conversion of a pair of incompati-
ble stacks. In this section, let M1, . . . , MY denote the
mutation strategies and let p = a1, . . . , am denote the
input pathway A = S0, . . . , Sm = B. For each mutation
strategy My(p), we describe the process for generating

one new pathway q using each mutation strategy when
given p.
Type 1: reordering of actions
As described in the subsection of representation of RNA
folding pathways, shuffling the order of actions of the
input pathway p can result in a new pathway from A to
B. In RNAEAPath, two mutation strategies of this type
are employed. M1 changes the position of an arbitrary
action, and M2 swaps the positions of two arbitrary
actions.
M1: Let Mt1,t2

1 (p) denote the sequence of actions
obtained by first removing an action at1 (1 ≤ t1 ≤ m) from
p and then inserting it after at2, for all t2 Î {0,..., t1 - 1,
t1 + 1, . . . , m}. Note that the resulting sequence of
actions may not necessarily be a valid action chain. For
instance, in Figure 1, M1,4

1 (p) = a2, a3, a4, a1, a5, . . . , a8
and M3,2

1 (p) = p are valid action chains, while
M8,1

1 (p) = a1, a8, a2, . . . , a7 is not.
The procedure for computing Mt1,t2

1 (p) is described in
the following.

1. Choose t1 uniformly at random from the interval
[1, m].
2. Compute the interval [l, u], (t1 <l <u <m), where l
is the minimum and u is the maximum such that
for all t2 Î [l, u] and t2 ≠ t1, M

t1,t2
1 (p) is a valid action

chain.
3. Choose t2 from the interval [l, u].

3.1. If at1 is an addition operation, for all l ≤ t <t’
≤ u and t ≠ t’ ≠ t1, the probability of choosing t
is greater than that of t’.
3.2. Otherwise (a deletion operation), for all l ≤ t
≤ t’ ≤ u and t ≠ t’ ≠ t1, the probability of choos-
ing t is less than that of t’

We do not choose t2 (t2 ≠ t1) uniformly at random in
[l, u], instead, we tend to place addition operations in

Figure 3 Two different folding pathways that form an identical stack. Two different folding pathways that form an identical stack. Left: The
stack is formed successively. Right: The stack is constructed by random formation of base pairs. The right pathway yields a higher energy barrier
because the randomly introduced base pairs form unpaired loop regions that result in additional entropic penalties.
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the front part of p, and deletion operations in the later
part of p. This is because adding base pairs early and
deleting them late during the folding may help stabilize
the intermediate secondary structures. (Please see Addi-
tional file 1 for the detailed description of the discrete
probability.)

M2: LetM
t1,t2
2 (p) denote the sequence of actions obtained

by swapping at1 with at2. If the resulting sequence of
actions is a valid action chain, let it be q; otherwise, restart
the process. For example, in Figure 1,M1,8

2 (p) is not a valid
action chain, while M2,4

2 (p) = a1, a4, a3, a2, a5, . . . , a8 is. t1
and t2 are chosen uniformly at random from {(t1, t2): 1 ≤
t1 <t2 ≤ m}.
Mutation strategies of type 1 provide methods for

shuffling the order of actions of an input pathway and
generating slightly different new pathways. However,
these strategies are not capable of introducing additional
(indirect) base pairs, and the offsprings of a direct path-
way produced through type 1 strategies are also direct.
In the following, we will describe mutation strategies
that are able to construct indirect pathways from a
direct pathway.
Type 2: introducing indirect pathways by adding a pair of
complementary actions
Morgan and Higgs [16] pointed out that the optimal
folding paths are generally indirect pathways. This idea
was further described by Dotu et al. [28]. The tempor-
ary formation of base pairs, especially those base pairs
that do not belong to A ∪ B, may lower the energies of
intermediate structures and thus render better folding
pathways. Similarly, temporary deletion and reformation
of a base pair also can create an indirect pathway.

M3: Let Mt1,t2,+(i,j)
3 (p) denote the sequence of actions

obtained by introducing an addition action addi,j after at1

and its complementary action deli,j after at2. Let
Mt1,t2−(i,j)

3 (p) denote the sequence of actions obtained by
introducing a deletion action deli,j after at1 and its com-
plementary action addi,j after at2. For example, in Figure 1,
M1,7,+(1,16)

3 (p) = a1,add1,16, a2, ..., a7, del1,16, a8. The pro-
cedures for computing Mt1,t2,+(i,j)

3 (p) and Mt1,t2,−(i,j)
3 (p) are

similar to each other. In the following, we only describe
the procedure for computingMt1,t2,+(i,j)

3 (p).

1. Choose t1 uniformly at random from the interval
[1, m], and obtain the associated intermediate struc-
ture St1.
2. Find a set of base pairs that neither conflict with
nor clash with St1 and choose a base pair (i, j) uni-
formly at random from the set.
3. Compute the interval [l, u], (t1 <l <u <m), where l
is the minimum and u is the maximum such that
for all values t2 Î [l, u] the resulting sequence of
actions of Mt1,t2,+(i,j)

3 (p) is a valid action chain.

4. Choose t2 from the interval [l, u] with the prob-
ability of choosing t greater than that of t’ for all
t >t’. (This is because (i, j) is not likely to be deleted
soon after its formation.)

Mutation strategy M3is capable of producing an indir-
ect pathway from a direct pathway. In addition, a proper
combination of multiple applications of M3 may result in
a pathway which simulates the successive formation and
deletion of a temporary stack during the folding. Take
the pathway p in Figure 1 as an example, we can con-
struct a pathway q that forms a temporary stack consist-
ing of all the GU base pairs via a multiple application of
M3, q = M5,7,+(3,14)

3 (M3,7,+(2,15)
3 (M1,7,+(1,16)

3 (p))).
Type 3: formation of a single stack or simultaneous
formation and deletion of a pair of incompatible stacks
In this section, we will introduce mutation strategies for
producing pathways that involve with formation and
deletion of stacks. To perform this type of strategies, we
first need to find all possible stacks in an RNA sequence
x. We use the algorithm of Bafna et al. [38] to find the
set of all possible stacks with more than 3 consecutive
base pairs, and denote it by STA(x). There are two stra-
tegies in Type 3: formation of a single stack (M4) and
simultaneous formation and destruction of a pair of
incompatible stacks (M5).

M4: Let Mt,h
4 (p) denote the sequence of actions

obtained by forcing the formation of a stack stackh Î
STA after action at, where stackh is compatible with St.
The following describes the procedure for computing
Mt,h

4 (p).

1. Choose t uniformly at random from the interval
[1, m], and obtain the associated intermediate struc-
ture St.
2. Find a set of stacks that neither conflict with nor
clash with St, and pick up a stack stackh uniformly at
random from the set.
3. Ensure that each base pair (i, j) in {stackh - St} is
sequentially (from the innermost base pair to the
outmost base pair) formed after at.

3.1. If an action addi,j appears in {at+1, . . . , am},
move it up and place it after at using strategy M1.
3.2. Otherwise, introduce a pair of complemen-
tary actions addi,j and deli,j to p after at using
strategy M3.

We can introduce additional stacks that are compati-
ble with St using M4 by forcing a sequence of addition
actions successively forming base pairs in {stackh - St},
after at.

M5: Let Mt,h
5 (p) denote the sequence of actions obtained

by forcing the formation of a stack stackh Î STA which
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is incompatible with St, after action at. Shown on the
right side of Figure 4 is a folding pathway which simul-
taneously destructs and forms a pair of incompatible
stacks. Shown on the left side is a simple folding path-
way which has exactly the same start and end structures,
while it folds into a single stranded structure during the
folding. Usually, the pathway on the right has lower
energy barrier than the one on the left because it never
folds into a single stranded structure. The folding path-
way on the right side of Figure 4 can be introduced
using strategy M5. And, the procedure for computing
Mt,h

5 (p) is as follows:

1. Choose an arbitrary deletion action at = deli,j from
p, and obtain the associated intermediate structure St.
2. Find a set of stacks which either conflicts with or
clashes with St, and choose a stack stackh uniformly
at random from the set.
3. For each base pair (i’, j’) in {stackh - St} that is
compatible with St, place addi’,j’ to p after at using
strategy M4.
4. For each base pair (i’, j’) in {stackh - St} that is
incompatible with St,

4.1. Find all the base pairs (i*, j*) in St that are
incompatible with (i’, j’), and ensure that each

Figure 4 Two different folding pathways with the identical initial and final secondary structures. Two different folding pathways with the
identical initial and final secondary structures. Left: Folding pathway 1 destroys a stack completely before an incompatible stack is formed. Right:
Folding pathway 2 destructs a stack and forms an incompatible stack simultaneously.
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base pair (i*, j*) is deleted before the action
addi’,j’.
4.2. If a action deli∗,j∗ appears in {at+1, . . . , am},
move it up before addi’,j’using strategy M1.
4.3. Otherwise, introduce a pair of complemen-
tary actions deli∗,j∗ and addi∗,j∗using strategy M3.

Using M5, we can introduce the simultaneous forma-
tion of a stack stackh, which is incompatible with St, and
destruction of existent stacks (or base pairs) that ham-
per the formation of stackh. Since cooperative formation
and destruction of stacks may contribute additional
stacking energies for stabilizing the intermediate struc-
tures, better folding pathways with lower energy barriers
may be rendered.

Results and discussion
Benchmark tests
We benchmarked RNAEAPath against existing methods
(BARRIEERS [20,21], PathwayHunter [17], Find-path
[24], and RNATabuPath [28]) by predicting low energy
barrier folding pathways between two designated RNA
secondary structures of 18 conformational switches. All
the conformational switches were taken from the work of
Dotu et. al [28]. Five of them are riboswitches, including
rb1, rb2, rb3, rb4, and rb5. The metastable structures of
these riboswitches have been experimentally determined
by inline probing [9,39]. The thirteen remaining cases

concern conformational switches, including hok, SL
(Spliced leader RNA), s15, s-box leader, thiM leader,
ms2, HDV, dsrA, ribD leader, amv, alpha operon and
HIV-1 leader. Sequences of these conformational
switches can also be obtained from paRNAss web site
[40], and some of the metastable secondary structures
were computationally determined using RNAbor [41].
We summarize the results computed by PathwayHun-

ter, the results computed by BARRIERS, the results com-
puted by Findpath (with the look ahead parameter k =
10), the best results over 1000 runs found by RNATabu-
Path, and the best results over 1 run and 5 runs found by
RNAEAPath in Table 1 respectively. And we use ‘-’ to
mark test cases that methods fail to apply to in the table.
For all methods, free energies of the intermediate struc-
tures of the folding pathways (including PathwayHunter)
are evaluated based on the Turner model using RNAeval
(with -d1 option) from the Vienna RNA Package [25].
The default configuration parameters of RNAEAPath are
as follows. MAX is 10, g is 5, L is 100, ℓ1 is 10, ℓ2 is 5 and
ℓ3 is 100. Due to the stochastic nature of the evolutionary
algorithm, we report the best energy barrier of RNAEA-
Path found over both 1 run and 5 runs.
BARRIERS is the only exact solution that produces

indirect pathways based on the Turner model. BAR-
RIERS has already been compared with existing heuristic
algorithms on the same test cases in the work of Dotu
et al. [28]. We put the results of BARRIERS in the table

Table 1 Benchmarks of BARRIERS, PathwayHunter, Findpath, RNATabuPath, and RNAEAPath for predicting folding
pathways between conformational switches on the 18 test cases

Instance BARRIERS PathwayHunter FindPath RNATabuPath RNAEAPath

(n = 1000) (n = 1) (n = 5)

rb1 - - 24.04 24.04 23.2 22

rb2 - 10 8.2 7.25 6.5 6.5

rb3 - - 22.4 17.9 17.5 16.7

rb4 - - 16.9 16.9 16.9 16.9

rb5 - - 24.54 24.54 21.44 21.44

hok - - 28.5 29.66 20.7 20.1

SL 11.80 - 13 12.9 13.0 12.9

attenuator 8.3 - 8.7 8.6 8.7 8.5

s15 6.60 - 7.1 6.6 7.1 7.1

sbox leader - 7.9 5.2 5.2 5.2 5.2

thiM leader - - 16.13 14.84 12.3 12.3

ms2 - 11.6 6.6 6.6 6.6 6.6

HDV - 23.53 17.4 17.0 16.8 16.8

dsrA 8.0 - 8.3 8.2 8.0 8.0

ribD leader - - 10.71 9.5 9.5 9.5

amv - 12.2 5.8 5.8 5.74 5.74

alpha operon - 11.8 6.5 6.5 6.1 6.1

HIV-1 leader - 14.3 9.3 11.3 8.9 8.9

Benchmarks of BARRIERS, PathwayHunter, Findpath, RNATabuPath, and RNAEAPath for predicting folding pathways between conformational switches. Energy
barriers (measured in kcal/mol) of the best folding pathways over n runs are shown. Boldface numbers are the best energy barriers found by the heuristic
algorithms.
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just for the sake of comparison. It has been pointed out
that BARRIERS gives provably globally optimal pathways
in 4 out of 18 cases (i.e. SL, attenuator, s15 and dsrA).
BARRIERS can not be directly applied to 5 cases
because either the initial or the end structure is not
locally optimal (i.e. rb2, sbox leader, ms2, amv and
alpha operon), and can not converge in the remaining
cases. Possibly due to the fact that both the number of
RNA secondary conformations to consider and the com-
putational resources required increase exponentially
with the growing length of the RNA sequence and the
growing range of energy barrier. PathwayHunter is an
exact algorithm capable of producing the optimal direct
folding pathways based on the Nussinov model.
PathwayHunter can not be directly applied to 10 cases,
because it requires the pair of input structures being
able to form a ‘pairwise-optimal’ bipartite conflicting
graph (see the work of Thachuk et al. [17] for details).
It is not surprising that the performance of the exact
algorithm, PathwayHunter, evaluated by free energy (in
kcal/mol), is worse than the heuristic algorithms. This is
because PathwayHunter is optimized based on the Nus-
sinov model and only produces direct pathways, while
the optimal direct pathways predicted based on the Nus-
sinov model may not be the optimal pathways (consid-
ering both direct and indirect pathways) based on the

Turner model. All the remaining three methods are
heuristics capable of producing both direct and indirect
pathways based on the Turner model. Findpath pro-
duces folding pathways very quickly, however it per-
forms worse than both RNATabuPath and RNAEAPath
in most cases. RNATabuPath performs better than Find-
path, but produces less optimal pathways than RNAEA-
Path. The energy barriers predicted by RNAEAPath over
5 runs are exactly the same as RNATabuPath in 5 cases,
worse in 1 case, and better in all the remaining 12 cases.
Other heuristic algorithms (including a greedy algo-

rithm of Voss et al. [26], a semi-greedy modification of
the greedy algorithm, a greedy algorithm of Morgan,
and Higgs [16] for predicting direct pathways and a var-
iant of the Morgan-Higgs greedy algorithm capable of
producing indirect pathways), that have been shown to
perform considerably worse than RNATabuPath [28],
are not listed.
By analyzing the best folding pathways produced by

RNAEAPath, we found that most high-quality pathways
involve the melting of stacks in the initial structure, the
(possibly simultaneous) construction of stacks in the final
structure, and the formation of auxiliary temporary
stacks for obtaining folding pathways with lower energy
barriers. We may take the lowest energy barrier folding
pathway of rb2 found by RNAEAPath, shown in Figure 5

Figure 5 The best folding pathway predicted for rb2. The near optimal indirect pathway between the two conformational secondary
structures of the adenine riboswitch from V. vulnificus (rb2) predicted RNAEAPath.
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as an example. The stack colored in red is an auxiliary
temporary stack introducing intermediate structures with
lower free energies (which is constructed using M4).
Some of the stacks in the initial structure (in blue) are
gradually melting, while at the same time, an incompati-
ble stack (in green) is being formed (which is constructed
using M5). The stack colored in red is an auxiliary tem-
porary stack introducing intermediate structures with
lower free energies. This example convinces us that the
advantages of RNAEAPath mainly come from employing
mutation strategies that guide the construction of folding
pathways by the formation and destruction of stacks and
introducing additional stacking interactions that are
important for stabilizing the intermediate structures.

Detailed low energy barrier folding pathways for all the
test cases are available on RNAEAPath web site.

Control parameters and performance
In order to evaluate the performance of RNAEAPath
with different parameter configurations, we played with
several other control parameters, including ℓ1, the num-
ber of top offsprings preserved in the next generation,
varying from 1 to 16, ℓ3, the size of population in each
generation, varying from 80 to 120 and L, the total
number of offsprings each individual is expected to pro-
duce, varying from 80 to 120. The detailed results are
shown in Additional file 1. In general, RNAEAPath pro-
duces pathways of roughly the same quality for most

Figure 6 Performance of RNAEAPath in each generation. Energy barriers (in kcal/mol) of the best folding pathways of 18 conformational
switches by the end of each generation during a typical run of RNAEAPath using the default parameters.
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test cases with different control parameters, among
which the default parameter setting is the best.
We explored the relationship between the performance

of RNAEAPath and the number of generations completed
by plotting energy barriers of the best folding pathways
produced by RNAEAPath with the default parameters in
each generation, as shown in Figure 6. In general, the
energy barriers decrease dramatically in the first one or
two generations, and then the decrements slow down and
finally plateau within 10 generations. For instance, in the
case of rb3, the predicted energy barriers of folding path-
ways in the initial population is 27.3 kcal/mol. It decreases
by 7.2 kcal/mol (24.9%) through the first two generations
and decreases by 2.5 kcal/mol (9.2%) through the next
three generations. Through all the remaining generations,
no further improvement is made.
We also evaluated the execution time for each run of

RNAEAPath. All the tests were performed on a 32 bit PC
with 2.4 GHz Quad-processor and 3.2 GB memory, run-
ning Fedora 11. With the default control parameters,
RNAEAPath terminates in 1 minute in the best case (rb4),
445 minutes in the worst case (hok), and 43 minutes on
average. The detailed running times are shown in Addi-
tional file 1. We did not perform direct comparisons
between the running time of RNATabuPath and that of
RNAEAPath, since RNATabuPath is only accessible via
web server.

Conclusions
In conclusion, we have presented a new algorithm,
RNAEAPath, for predicting low energy barrier folding
pathways between conformational structures. RNAEAPath
guides the construction of folding pathways through the
destruction and formation of RNA stacks using various
types of mutation strategies, and integrates them in a well-
established computational framework of evolutionary algo-
rithm. These mutation strategies can help reduce the
search space and make it easier to jump out of local
optima. By analyzing the results, we confirmed that most
of the best folding pathways involve the formation of aux-
iliary stacks, or involve the cooperative formation and dis-
ruption of incompatible stacks. The benchmarking results
show that RNAEAPath outperforms the existing heuristics
on most test cases. We believe that this is because the
construction of folding pathways in RNAEAPath captures
important biological findings.

Additional material

Additional file 1: Supplementary data for predicting folding
pathways between RNA conformational structures guided by RNA
stacks. Supplementary data for predicting folding pathways between
RNA conformational structures guided by RNA stacks in a PDF file.
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