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The transition from urinary 
glucose measurement to more 
sophisticated self-monitoring 

of blood glucose (SMBG) systems 
in the 1970s and 1980s dramatical-
ly changed the approach to and un-
derstanding of diabetes management 
(1). Innovations in the design and 
technology of portable blood glu-
cose meters have become integral to 
the success of intensive treatment of 
both type 1 and type 2 diabetes, and 
the outcome of this treatment has led 
to a tremendous decrease in the de-
velopment of long-term micro- and 
macrovascular complications (2–4). 
However, intensive insulin therapy 
has its limitations, including increased 
frequency of hypoglycemia and the 
need for frequent SMBG testing. 

In the past decade, continuous 
glucose monitoring (CGM) tech-
nology has evolved into a novel tool 
to support diabetes management. 
Unlike conventional glucose meters, 
which provide a snapshot of the blood 
glucose value at the time of testing, 
CGM provides semi-continuous 
information about glucose levels. It 
does this indirectly, by extrapolating 
blood glucose levels from intersti-
tial fluid glucose via an algorithm. 
Importantly, CGM allows users to 
make decisions regarding their day-
to-day diabetes management using 
real-time glucose trends. Along with 
this information, CGM systems 
provide customizable hypo- and 
hyperglycemia alarms and display 
trends of the rate of change of glucose 
levels. Most recently, CGM systems 

have been integrated with insulin 
pumps and are being used in artifi-
cial pancreas clinical trials. In this 
article, we discuss the clinical bene-
fits of CGM; its challenges, including 
accuracy and user experience; and its 
present and future role in the man-
agement of diabetes. 

Clinical Benefits of CGM
Numerous studies have explored 
whether sustained use of CGM offers 
clinical benefits in individuals with 
diabetes. Randomized, multicenter 
clinical trials have shown improved 
glycemic control in adults with type 
1 diabetes using CGM compared to 
those using SMBG and a reduction in 
the time spent in hypoglycemia with 
concomitant improvement in A1C 
for those using CGM technology 
(5–10). Even in patients with type 1 
diabetes whose diabetes was well con-
trolled at baseline with an A1C <7%, 
CGM reduced the time spent out of 
range (≤70 or >180 mg/dL) with sta-
ble A1C levels after 6 months (11). In 
patients with type 2 diabetes, CGM 
has also been shown to improve A1C 
and reduce the time spent outside 
of glycemic targets, with the largest 
reduction in patients with a baseline 
A1C >9% (12,13). 

Adherence to and frequency of 
CGM use over time has been a par-
ticularly important aspect of the 
associated reduction in A1C. More 
frequent CGM use in all age-groups 
has been associated with greater A1C 
reduction from baseline to 6 months 
(14). Both the Juvenile Diabetes 
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Research Foundation Continuous 
Glucose Monitoring Randomized 
Clinical Trial and the Sensor-
Augmented Pump Therapy for A1C 
Reduction (STAR) 1 trial showed 
that lower A1C levels were observed 
in patients who used CGM ≥60% 
of the time (5,15). The STAR 3 trial 
showed that increased frequency of 
sensor use was associated with greater 
A1C reduction, and sensor use >80% 
of the time resulted in a doubling of 
the effect (16). 

CGM Patient Selection and 
Clinician Education	
Important considerations need 
to be made when recommending 
CGM therapy. As reported in the 
American Association of Clinical 
Endocrinologists (AACE) 2010 
consensus statement on CGM, ap-
propriate candidates include indi-
viduals with type 1 diabetes who 
have hypoglycemia or hypoglycemia 
unawareness and who have an A1C 
above their target (17). In 2011, the 
Endocrine Society released its first 
CGM guidelines and recommended 
the use of CGM in adults with type 
1 diabetes who can demonstrate that 
they can use these devices on a nearly 
daily basis (6–7 days per week) (18). 
Similarly, in a white paper based on 
a 2015 CGM summit, the American 
Association of Diabetes Educators 
(AADE) stated that CGM may be ap-
propriate for any person with diabetes 
who is willing to wear a CGM device, 
regardless of age, diabetes type, or 
duration of diabetes (19). Recently, a 
2016 AACE CGM consensus confer-
ence suggested that the use of CGM 
may be especially beneficial for type 
1 diabetes patients who are >65 years 
of age with comorbidities or at risk 
for severe hypoglycemia, as well as for 
patients with diabetic chronic kidney 
disease (20). Additionally, it suggest-
ed that the benefits of CGM thera-
py also may apply to insulin-treated 
individuals with type 2 diabetes, as 
well as pregnant women with diabe-
tes, although more studies are needed 
in these populations (20).

In its 2015 CGM summit white 
paper, AADE outlined the benefits 
of CGM therapy in identifying gly-
cemic excursions, characterizing the 
effects of physical activity and high–
glycemic index meals on glucose 
levels, and mitigating hypoglycemia 
frequency and severity via alerts and 
alarms for impending hypoglyce-
mia (19). Most importantly, AADE 
emphasized the need to adequately 
select and train patients who wish 
to use CGM technology. Training 
is essential to understanding appro-
priate calibration of the device and 
factors that can inf luence sensor 
accuracy, the lag time between CGM 
values and SMBG values, and the 
meaning of glucose trend information 
(i.e., rising or falling glucose levels). 
Setting up individualized alarms and 
alerts is of paramount importance 
to prevent alarm fatigue; similarly, 
it is important to train patients to 
monitor for skin problems, allergic 
reactions, sensitivity caused by tape 
(e.g., itching, redness, or hives), or 
poor CGM sensor adhesion that may 
affect long-term use of CGM (19).

The successful adoption of CGM 
technology also greatly depends on 
clinician education. As described in 
the 2016 AACE consensus, CGM 
training programs should be available 
to all health care providers involved in 
the diabetes management of patients 
using CGM therapy. Training should 
address not only knowledge of the 
available systems to effectively deliver 
CGM patient education, but also 
information regarding how to inter-
pret the CGM data reviewed during 
clinical visits (20). Presently, several 
downloadable reports are available, 
requiring brand-specific software. 
The availability of a downloadable 
report that is standardized for all 
CGM device brands would greatly 
facilitate data interpretation for both 
patients and clinicians (20).

Accuracy of CGM Systems
Subcutaneous CGM sensors measure 
glucose concentration in the body’s 
interstitial fluid and use advanced al-

gorithms to extrapolate blood glucose 
levels from these readings. Because 
CGM does not provide a direct mea-
surement of blood glucose, intermit-
tent calibration with capillary glucose 
measurements is needed. Although 
this calibration helps, it is notewor-
thy that a physiological time lag of 
glucose transport from the intravas-
cular to the subcutaneous interstitial 
space is a major determinant of sensor 
accuracy (21). Studies have demon-
strated that this time lag is ~7–8 min-
utes in the overnight fasted state in 
adults with type 1 diabetes (21) and 
~5–6 minutes in healthy individuals 
without diabetes (22). Most recently, 
the time lag of interstitial fluid sen-
sors was estimated to be as little as 
5–6 minutes in adults with type 1 or 
type 2 diabetes (23). Understanding 
the physiological mechanisms under-
lying CGM technology, such as the 
time lag of glucose transport, allows 
better refinement of the predictive al-
gorithms used in the alarm and trend 
features, as well as in closed-loop 
systems. 

Another important factor in 
determining sensor accuracy is the 
calibration made with blood glucose 
measurements. Therefore, the accu-
racy of the SMBG system used for 
calibration plays an important role in 
determining CGM sensor accuracy 
such that the more accurate the glu-
cose meter used to calibrate a CGM 
device is, the more accurate the initial 
calibration data will be. Historically, 
the International Organization for 
Standardization (ISO) 15197 stan-
dard has been used to evaluate the 
accuracy of SMBG systems. The 
most recent version (2013) requires 
at least 95% of individual meter 
results to fall within ± 15 mg/dL for 
blood glucose concentrations <100 
mg/dL and within ± 15% for blood 
glucose concentrations ≥100 mg/dL 
(24). In 2014, the U.S. Food and 
Drug Administration (FDA) pub-
lished a draft guidance document for 
the premarket evaluation of SMBG 
devices that stipulates that 95% of 
all SMBG results should be within 
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± 15% of the reference measurement 
across the entire measuring range of 
the device and that 99% of results are 
within ± 20% (25). Although many 
glucose meters meet the ISO 15197 
standard and the new FDA criteria, 
some do not (26–29). Some studies 
have demonstrated that only 14–67% 
of SMBG devices meet the 2013 ISO 
standard (30). This poses challenges 
to CGM calibration and therefore to 
the accuracy of the CGM system as 
a whole.

CGM accuracy metrics have 
been categorized into two sub-
types: numerical and clinical (31). 
Numerical accuracy traditionally 
has been defined by analyzing single 
glucose pairs comparing the value 
obtained from a monitoring device 
to a standard reference value. These 
analyses include mean absolute rela-
tive difference (MARD), correlation 
coefficients, and the ISO criteria and 
have been used to evaluate the accu-
racy of SMBG systems (31). Some 
metrics, such as MARD values, 
which compare the device values to 
matched reference glucose measure-
ments, are thought to allow a better 
comparative assessment of multiple 
systems’ accuracy rather than the 
binary method as defined by ISO 
15197. The smaller the MARD value, 
expressed as a percentage, the more 
accurate the device is when com-
pared to the reference glucose value. 
However, when applied to CGM 
systems, the above metrics may not 
fully reflect the additional clinical 
utility provided by the collection of 
continuous data regarding glucose 
fluctuations and rate of change in 
glucose level.

CGM data are much more com-
plex because of their continuous 
nature, with each CGM glucose 
value related in time and direction to 
the preceding value. Therefore, the 
numerical metrics described above do 
not fully measure the clinical accu-
racy of CGM devices. Traditionally, 
the clinical accuracy of SMBG 
devices has been defined by error grid 
analysis (EGA), which not only takes 

into account the absolute and relative 
differences between the device read-
ing and a reference value, but also 
addresses the clinical significance of 
this difference. EGA plots the values 
obtained by the monitoring device 
against the reference values into five 
zones, each of which has clinical sig-
nificance based on varying degrees 
of accuracy and inaccuracy of glu-
cose estimations, which would lead 
to either correct or incorrect treat-
ment decisions (32). Similarly, CGM 
accuracy has been evaluated with the 
continuous glucose–error grid analy-
sis (CG-EGA), which adds rate and 
direction of change to single-point 
glucose accuracy (33,34). CG-EGA 
analyzes pairs of reference and sen-
sor readings as a bi-dimensional time 
series that takes into account phys-
iological time lags (34). Although 
many different methods of measuring 
CGM accuracy have been described, 
the FDA currently uses MARD 
values, hypoglycemia and hypergly-
cemia detection and missed detection 
rates, true and false alert rates, and 
the accuracy of sensor glucose rate of 
change data compared to a reference 
rate of change to determine approval 
of new devices. 

CGM accuracy has significantly 
improved over time, from very poor 
performance of the initial CGM 
systems, which had MARD values 
>20%, to the newest-generation 
devices, which have MARD values 
<10%. Since FDA approval of the 
first CGM device in 2001, newer 
generations have demonstrated sig-
nificantly improved accuracy of 
glucose sensors at all glucose ranges. 
A comparison study of three CGM 
systems (FreeStyle Navigator, Abbott 
Diabetes Care, Alameda, Calif.; G4 
Platinum, Dexcom, San Diego, Calif.; 
and Enlite, Medtronic MiniMed, 
Northridge, Calif.) reported MARD 
values of 12.3 and 10.8%, respec-
tively, for the Navigator and G4 
Platinum, compared to a MARD 
value of 17.9% for the Enlite (35). 
Another comparison of two CGM 
systems under both clinical research 

conditions and everyday home use 
demonstrated MARD values of 13.6 
and 16.6% for clinical research use 
for the Dexcom G4 Platinum system 
and the Medtronic Enlite system, 
respectively, and 12.2 and 19.9% 
for home use of the devices, respec-
tively (36). As with SMBG systems, 
MARD values in the hypoglycemic 
range <70 mg/dL were higher (17.6% 
for the G4 Platinum and 24.6% 
for Enlite) (36). However, the G4 
Platinum (software 505) CGM sys-
tem reported improved accuracy in 
the hypoglycemic range compared 
to previous-generation devices, with 
an overall MARD of 9% at all glu-
cose ranges (23,37). Currently, the 
Dexcom G5, which uses new soft-
ware and was recently approved by 
the FDA, is the most accurate per-
sonal CGM on the market (Table 1). 
Research targeting CGM calibration 
algorithms is ongoing, with the goal 
of further improving accuracy, espe-
cially in the hypo- and hyperglycemic 
ranges, and this research continues to 
show promising results (38).

Although CGM devices are cur-
rently approved by the FDA for 
adjunct use only and require SMBG 
for insulin dosing decisions, the new 
data suggest that the considerable 
improvements in CGM accuracy in 
the latest generation of sensors could 
allow implementation of CGM sys-
tems as a stand-alone tool for glucose 
monitoring. An in-silico study of 
CGM, insulin pump, and SMBG 
data found that using CGM rather 
than SMBG for insulin dosing deci-
sions was feasible at MARD values 
≤10% and that further accuracy 
improvement did not substantially 
improve glycemic outcomes (39). 

Clinical Experience and Barriers 
to CGM Use
Despite a growing body of evidence 
of the clinical benefits of CGM and 
the continually improving accuracy of 
CGM devices, this technology is not 
yet widely used. The nationwide T1D 
Exchange clinic registry, which in-
cludes 76 endocrinology practices and 
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>26,000 enrolled subjects with type 
1 diabetes, recently reported 11% 
CGM use overall, compared to 62% 
use of insulin pump therapy across all 
age-groups (40). In addition, docu-
mented CGM use tends to decrease 
over time, although less so in adult 
patients (10). There may be multiple 
reasons why this technology is not 
embraced in clinical use to the same 
degree as other technologies such as 
insulin pump therapy. Some obstacles 
identified include cost and reimburse-
ment issues, clinicians’ unwillingness 
to learn or implement new technol-
ogy, and user factors such as alarm 
fatigue and perceptions of inaccuracy 
or interference with daily life. 

Several studies of quality-of-life 
factors indicate that individual expe-
riences with CGM can be quite 
variable (41,42). In a large survey of 
877 CGM users with the Dexcom 
Seven Plus System, most (>80%) 
reported an improved sense of con-
trol over diabetes and confidence 
in the management and avoidance 
of hypoglycemia (41). In the same 
survey, satisfaction with device accu-
racy was an independent predictor 
of greater perceived control over 
diabetes, perceived hypoglycemic 
safety, and interpersonal support. 
Conversely, equipment malfunction 
and interference with daily life were 
major reasons reported by patients for 
sensor discontinuation (42,43). In a 
qualitative analysis of 100 patient 
narratives (50 adults with type 1 dia-
betes and 50 caregivers of children 
with type 1 diabetes), several barriers 
to CGM use were identified, despite 
overall positive experiences noting 
improved glycemic control, diet and 
exercise management, quality of 
life, and physical and psychological 
well-being. Among the barriers were 
concerns about accuracy and reliabil-
ity, financial issues, and the attitudes 
of health care professionals (44). 
Because many of the studies report-
ing adherence data were performed 
with earlier-generation devices, we 
may expect that adherence rates and 

user experiences will improve over 
time.

Although CGM alarms are a cru-
cial factor leading to the reduction of 
hypoglycemia, excessive device alarms 
can also be erroneous, too frequent, 
or unnecessary, and therefore lead to 
alarm fatigue (6,45). Many patients 
report alarm fatigue as a major barrier 
to CGM use and adherence (42,43). 
Earlier studies of first-generation 
CGM technology found that up to 
30% of all alarms, and up to 50% of 
alarms for hypoglycemia, may have 
been false (46,47). Although newer 
CGM systems have improved accu-
racy, alarm fatigue and perceptions of 
inaccuracy of the alarms may make 
users less likely to respond to hyper- 
or hypoglycemia. On the other hand, 
confidence in the device accuracy 
can result in increased use of CGM 
(42,48). Hopefully, as the technology 
advances and accuracy continues to 
improve, user acceptance and con-
fidence in the utility of CGM will 
increase as well.

Device Connectivity 
Continuing progress in interconnec-
tivity between blood glucose moni-
toring devices, including CGM and 
SMBG devices, and insulin pumps 
offers much promise for the near fu-
ture. Sensor-augmented insulin pump 
therapy has been shown to result in 
greater A1C reductions than multi-
ple daily insulin injections without 
an increase in the frequency or se-
verity of hypoglycemic events (16). 
Integration of CGM technology with 
insulin pumps, such as the Medtronic 
MiniMed 530G with Enlite, has al-
lowed implementation of a thresh-
old-suspend feature, which allows 
suspension of insulin delivery for up 
to 2 hours in the setting of hypogly-
cemia and has been shown to reduce 
nocturnal hypoglycemic events (49). 

Improved communication bet-
ween devices can further enhance 
the patient experience. For example, 
direct communication via Bluetooth 
technology between the CGM trans-
mitter in the Dexcom G5 system and 
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a mobile phone application without 
the need for a separate receiver has 
allowed the integration of multiple 
devices. These integrated devices can 
also communicate with web-based 
diabetes management software. The 
Dexcom SHARE mobile application 
allows CGM data to be shared in real 
time with additional users such as 
family or friends, who can also receive 
alerts for hypo- and hyperglycemia, 
potentially increasing interpersonal 
support for patients with diabe-
tes. Medtronic’s MiniMed Connect 
similarly allows the uploading of glu-
cose data to a phone application and 
the ability to share this information 
with others via a web-based portal. 
Such patient-centered applications 
have allowed for home download-
ing and analysis of glucose data, as 
well as sharing that information with 
health care providers. Highlighting 
the need for this type of technology, 
other do-it-yourself applications such 
as the Nightscout Project (50) have 
been designed by patients and their 
family members to take advantage 
of FDA-approved CGM devices and 
upload glucose data to a web-based 
server to allow remote monitoring by 
concerned family members. 

Conclusion 
CGM has continued to evolve and 
advance as a novel tool for diabetes 
management. Despite its document-
ed clinical benefits, this technology 
is not yet widely used. Although its 
accuracy has significantly improved 
in the past decade, CGM is currently 
approved in the United States only 
for adjunct use, and barriers to its 
use include such factors as alarm fa-
tigue and patient perceptions of poor 
accuracy or interference with daily 
life. New data suggest that the con-
siderable improvement in CGM sen-
sor accuracy could potentially allow 
its implementation as a stand-alone 
tool to help guide insulin dosing deci-
sions. The T1D Exchange is currently 
conducting a randomized clinical trial 
funded by the Leona M. and Harry 
B. Helmsley Charitable Trust to com-

pare CGM with and without routine 
SMBG in adults with type 1 diabetes, 
with the goal of obtaining more data 
about the efficacy and safety of CGM 
for this purpose. The results of this 
study, as well as data documenting 
enhanced CGM accuracy, may have 
a great impact on the future use of 
CGM as an independent method of 
glucose monitoring for individuals 
with diabetes.
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