
I. Introduction

Brain tumors cause a substantial number of deaths glob-
ally. Generally, a brain tumor is made up of cells in the brain 
like all other organs. Brain tumors are groups of cells in the 
brain, which could be non-cancerous, pre-carcinoma, or 
malignant [1]. When cancerous or non-cancerous tumors 
grow, they can cause elevated pressure inside the skull [2]. 
Therefore, these tumors can be life-threatening and can 
cause brain damage. Generally, the diagnosis of brain tumors 
begins with magnetic resonance imaging (MRI). Other mo-
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dalities for analyzing brain tumors include X-rays, computed 
tomography (CT) scans, and positron emission tomography 
(PET) scans. However, MRI is more useful than other mo-
dalities because it provides detailed information about the 
tumor type, size and shape, position, anatomy, and vascular 
supply. Therefore, MRI is a suitable choice to study brain tu-
mors. Brain tumors can be categorized as primary (originates 
in the brain), and secondary (occurs in the brain when can-
cer cells spread from other organs, such as the lungs, kidney, 
or breast) [3]. Some of the common primary tumors that 
grow gradually are meningioma, glioma, and pituitary tu-
mors. Meningiomas occur in the meninges (membranes that 
enclose the brain and spinal cord), and are more common 
in women than men, gliomas develop from glial cells, and 
pituitary tumors grow on the area of the pituitary gland [4]. 
These types of tumors can be cancerous or non-cancerous. 
The World Health Organization classification splits me-
ningiomas into three different grades: benign meningioma 
(grade 1), atypical meningioma (grade 2), and malignant 
meningioma (grade 3) [5]. 
 Analyzing the progression of brain tumors based on tex-
ture, morphological, and statistical feature classification is a 
highly challenging task. These features are called radiomic 
features and can be extracted using the data-characterization 
algorithms from different types of radiological images, such 
as MRI, CT, X-rays, ultrasound, and PET. Radiomics [6] 
has emerged as a promising non-invasive method in recent 
years, and radiomic features enable quantitative measure-
ments of parameters such as shape or heterogeneity. Many 
radiologists use the traditional approach for classifying brain 
tumors in MRI scans, although it is quite difficult to make 
100% correct predictions based on tumor texture and shape. 
Artificial intelligence (AI)-based classification using deep 
learning (DL) and machine learning (ML) algorithms [7] is 
popular in the field of medical and biological image analysis, 
as a method that provides radiologists with a second opin-
ion. 
 The aim of this paper was to differentiate the tumor types 
(meningioma, glioma, and pituitary) by performing binary 
and multiclass classification using AI techniques. In this 
study, we developed a long short-term memory (LSTM) [8] 
neural network model and used ML classifiers, namely sup-
port vector machine (SVM), k-nearest neighbor (KNN), 
logistic regression (LR), random forest (RF), and linear dis-
criminant analysis (LDA), to perform multiclass and binary 
classification. In general, LSTM is used and well suited in 
classifying and making predictions based on convolutional 
neural network (CNN)-extracted features [7] or time-series 

data. However, the LSTM model was used in our research 
to classify handcrafted (texture, morphological, and statisti-
cal) features. Feature reduction is another important step to 
save computation time, perform AI-based classification, and 
achieve better accuracy. In the present work, we used feature 
duplication, Pearson correlation coefficients, and recursive 
feature elimination (RFE) to reduce the number of features 
from the dataset and select the most significant features. 
Each classification model’s performance was evaluated using 
accuracy, precision, recall, the F1-score, the kappa coeffi-
cient, and the receiver operating characteristic (ROC) curve. 
Moreover, a comparative analysis was performed between 
learning algorithms for multiclass and binary classification 
tasks, as well as a comparison between related research and 
our method.
 The rest of this paper is organized as follows. A detailed 
description of the dataset, tumor extraction method, feature 
extraction and selection, and DL and ML classification is 
presented in Section II. The performance of the learning al-
gorithms for binary and multiclass classification is reported 
in Section III. Finally, the results are discussed and the paper 
is concluded in Section IV.

II. Methods

1. Dataset Information
The MRI image dataset [9] was collected online and it is 
publicly available. Originally, the data samples were acquired 
from 233 patients at Nanfang Hospital and Tianjin Medical 
University General Hospital in China. The brain T1-weight-
ed contrast-enhanced MRI (CE-MRI) dataset was first used 
by Cheng et al. [10], who uploaded the dataset on the above 
website. The MRI slices used for this study are two-dimen-
sional (2D), and the resolution of each image slice is 512 × 
512 with a pixel size of 0.49 × 0.49 mm2. The thickness and 
gap of each slice are 6 mm and 1 mm, respectively. The data-
set contains a total of 3,064 T1-weighted MRI and annotated 
mask images with three different planes, namely axial (1,025 
slices), coronal (1,045 slices), and sagittal (994 slices). The 
brain tumor dataset includes three classes: glioma, menin-
gioma, and pituitary. Figure 1 shows example images of the 
brain tumors and annotated masks in three different views.

2. Research Methodology
To perform the analysis, classification, and prediction, we 
first input all the brain tumor samples with their respective 
mask images. Each brain tumor region-of-interest (ROI) 
was extracted by overlapping the image mask on the original 
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samples of gliomas, meningiomas, and pituitary tumors. 
Feature extraction was then performed from each ROI using 
PyRadiomics [11], which is an open-source Python pack-
age for feature extraction from medical images. Next, three-
step feature selection was performed by leveraging the filter 
methods (removing duplicate features and Pearson correla-
tion coefficients) and the wrapper method (RFE). Finally, 
AI-based multiclass and binary classification using LSTM, 
SVM, KNN, LR, RF, and LDA was performed to predict the 
classes (glioma, meningioma, and pituitary) of brain tumors. 
In this paper, we used DL and ML techniques to classify the 
handcrafted features extracted from the ROIs of brain tu-
mors of three different classes. Figure 2 shows the research 
pipeline for tumor extraction, features calculation and selec-
tion, model implementation, and classification, respectively. 

3. Tumor Extraction
Tumor extraction can be treated as a pattern recognition 
technique as it requires the classification of pixels. To detect 
tumor tissues on medical imaging, extraction is necessary. 
Extraction separates the brain tumor region from MRI scans 

into two regions. One of the regions contains tumor cells 
in the brain, while the other contains normal brain cells. 
This process is quite challenging, as the classification task 
completely depends on the extracted tumor. The extraction 
of brain tumors from MRI scans is an essential requirement 
for clinical diagnosis since manual extraction is fatiguing 
and time-consuming. Tumor extraction from T1-weighted 
2D MRI slices (axial, coronal, and sagittal) is quite difficult 
without using an annotation mask image. In this study, we 
extracted the ROI of brain tumors by overlapping the an-
notated binary mask on the original image. We obtained the 
mask images along with the dataset that was created by the 
radiologists. Figure 3 shows the extracted MRI patches that 
were used to compute the radiomic features [12] for the clas-
sification.

4. Feature Computation and Selection
Feature extraction is a prominent method in pattern rec-
ognition and image processing for the analysis of patterns 
in an image [13]. PyRadiomics (version 2.2.0), an open-
source Python package, was used to extract a large number 
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Figure 1.   T1-weighted two-dimen-
sional magnetic resonance 
imaging scans of brain 
tumors with three differ-
ent angles: axial (first row), 
coronal (second row), and 
sagittal (third row). (A) 
Glioma. (C) Meningioma. (E) 
Pituitary tumor. (B, D, and 
F) Mask images of brain 
tumors generated from (A), 
(C), and (E), respectively.

Raw image with annotation Tumor extraction

2D MRI features computation Features selection Classification

Total 102 features

First order statistic
2D shape-based
GLCM
GLRLM
GLSZM
GLDM
NGRDM

LSTM
SVM
KNN
RF
LR
LDA

Multiclass & binary

Remove duplicate features
Remove correlated features
Remove weak features

20 significant features

Glioma tumor

Meningioma tumor

Pituitary tumor

Figure 2.  Flowchart of the research pipeline for brain tumor classification. 2D MRI: two-dimensional magnetic resonance imaging, 
GLCM: gray level co-occurrence matrix, GLRLM: gray level run length matrix, GLSZM: gray level size zone matrix, GLDM: 
gray level dependence matrix, NGTDM: neighboring gray-tone difference matrix, LSTM: long short-term memory, SVM: sup-
port vector machine, KNN: k-nearest neighbor, LR: logistic regression, RF: random forest, LDA: linear discriminant analysis.
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of radiomic features based on heterogeneity (i.e., image gray 
levels) and shape (i.e., the segmented region in an image). 
 In this paper, textural, morphological, and statistical fea-
tures were computed from the area of brain tumors on 2D 
MRI scans using seven different techniques: first-order 
statistics (FOS), 2D shape-based analysis, gray level co-
occurrence matrix (GLCM), gray level run length matrix 
(GLRLM), gray level size zone matrix (GLSZM), gray level 
dependence matrix (GLDM), and neighboring gray-tone 
difference matrix (NGTDM) [14]. In total, 102 2D features 
were initially extracted from the regions of each tumor. 
Out of these, 18 were FOS, 9 were 2D shape-based, 24 were 
GLCM, 16 were GLRLM, 16 were GLSZM, 14 were GLDM, 
and 5 were NGTDM. 
 Feature selection is an important step before DL and ML 
classification. Many feature selection methods have been 
proposed in the past decades. In general, methods for fea-
ture selection can be categorized into three groups: filter 
methods, wrapper methods, and embedded methods [15]. 
In filter methods, the relevance of the features is selected 
based on univariate statistics rather than cross-validation 
(CV) performance. Some common filter methods are infor-
mation gain, the chi-square test, the Fisher score, Pearson 
correlation coefficients, and the variance threshold [16]. In 
contrast, wrapper methods consider the effectiveness of the 
features based on the performance of the classifiers. Some 
common wrapper methods are RFE, sequential feature se-

lection algorithms, and genetic algorithms [17]. Embedded 
methods work similarly to wrapper methods, and two com-
mon methods are L1 (LASSO) regularization and decision 
trees.
 To perform the process of feature reduction, we used three 
different techniques: feature de-duplication, Pearson correla-
tion coefficients, and RFE.
 First, duplicate features were removed by searching for 
similar values in the columns of the dataset. Another reason 
for removing them is that they do not lead to any changes to 
the training algorithm; instead they add unnecessary delays 
to the training time. Second, Pearson correlation coefficients 
were used to remove highly correlated features (with a cor-
relation more than 85%) from the dataset. Finally, RFE was 
used to eliminate the features that were weakest and worst-
performing. Among all the extracted features, 101 were 
selected in the first step, 56 were selected in the second step, 
and 20 were selected in the third step, as shown in Figure 4. 
Table 1 shows the final selected radiomic features used for 
the classification, arranged according to the RFE ranking, 
along with their equations. 

5. Tumor Classification
Tumor classification was executed using the selected fea-
tures that were extracted from the ROIs of T1-weighted 
MRI scans. The main aim of our study is the development 
of LSTM [18] and ML models for the classification of the 
textural, morphological, and statistical features into three 
classes of brain tumor, namely glioma, meningioma, and pi-
tuitary. Therefore, to develop the DL- and ML-based model, 
six different algorithms (LSTM, SVM, KNN, LR, RF, and 
LDA) were used for classification.
 There are two types of LSTM architecture: unidirectional 
and bidirectional. In this study, we used a bidirectional 
LSTM (BiLSTM) model to perform classification using 
the selected features. The main difference between the two 
architectures is that in unidirectional LSTM, only past in-
formation is preserved because it can read the inputs only 
from the past. Instead, in BiLSTM, the inputs are learned in 
two ways: first, with input from the past to the future, and 
second, with input from the future to the past. Therefore, 
BiLSTM models [19] perform better than unidirectional 
LSTM as they preserve information from both past and fu-
ture and can understand the context better. In LSTM, the 
cell memory is controlled through three different gates that 
regulate the information flow: namely, input, forget, and out-
put. Supplementary Figure S1 shows a representation of the 
LSTM model. To perform LSTM classification, a customized 
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Figure 3.  Extraction of regions of interest for three different 
classes of brain tumors. (A–C) Gliomas. (D–F) Menin-
giomas. (G–I) Pituitary tumors.
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activation function was used instead of the rectified linear 
unit (ReLU). The idea of implementing a customized func-
tion was taken from Google Brain [20], and the function 
was named “Swish,” which tends to work better than ReLU. 
Supplementary Figure S2 shows the graph plots for ReLU 
and customized activation functions. The equations used to 
compute these functions can be expressed as:

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑅𝑅𝑅𝑅𝑅𝑅 𝑅𝑅𝑅 

𝑓𝑓𝑅𝑅𝑅𝑅 𝑅 � 𝑅 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 𝑓 𝑅
𝑅𝑅 𝑓𝑓𝑓𝑓𝑓𝑓 𝑅𝑅 𝑅𝑜 𝑅 

(1)

  

 (1)

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑓𝑓 (𝑥𝑥) = 𝑥𝑥 𝑥 𝑥𝑥(𝛽𝛽 𝑥 𝑥𝑥) 

𝑥𝑥 = 1
1 + 𝐶𝐶��� 

(2)

  

 (2)

where x is the input to the network, b  is the beta value for 
changing the variation of the curve, and s is a sigmoid func-
tion.
 ML models are essential for the classification of hand-
crafted features, and the model’s hyperparameters control 
the fluctuation of the accuracy. Not every ML algorithm was 
used for both binary and multiclass classification [21]; LR 
was used for binary classification, LDA was used for mul-
ticlass classification, and the other three algorithms (SVM, 
KNN, RF) [22] were used for both binary and multiclass 
classification. The main purpose of implementing six algo-
rithms for feature classification was to analyze and compare 
the output results between the classifiers.
 To classify the classes of brain tumors using AI tech-
niques (LSTM and ML), we divided the dataset into two 

folds—training (90%) and testing (10%)—for sequence 
classification, as shown in Table 2. Furthermore, to carry 
out sequence data classification using LSTM, the training 
dataset was further divided, such that 80% and 20% of data 
were assigned for training and validation, respectively. Hy-
perparameter tuning is important for both LSTM and ML 
modules, and the information and specifications regarding 
all the algorithms used for the development are shown in 
Supplementary Table S1. For ML classification, the training 
dataset was not divided into two splits like LSTM instead, we 
used five-fold cross-validation to check the generalization 
capability of the classifiers.
 To evaluate the performance of the classification models, 
we used six different performance metrics [23]: accuracy, 
recall, precision, the F1-score, and the kappa coefficient. The 
equations used to compute these metrics are as follows:

𝐴𝐴𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 (3)

  

 (3)

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑅 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇 (4)

  

 (4)

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃 𝑇 𝑇𝑇𝑃𝑃 (5)

  

 (5)

𝐹𝐹𝐹����� = 2 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (6)

  

 (6)

𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾 𝐾 𝑁𝑁∑ 𝑚𝑚��� −�
��� ∑ (𝐺𝐺�𝐾𝐾�)�

���
𝑁𝑁� − ∑ (𝐺𝐺�𝐾𝐾�)�

���
 (7)

 

  

 (7)

102 features

101 features

56 features

20 features

Recursive feature
elimination

Pearson correlation
coefficient < 85% = select

Feature duplication

Feature computation
(FOS, 2D shape-based,

GLCM, GLRLM, GLSZM,
GLDM, and NGTDM)

Tumor dataset

Figure 4.   Process of feature engineering and selection. FOS: first-order statistics, 2D: two-dimensional, GLCM: gray level co-occur-
rence matrix, GLRLM: gray level run length matrix, GLSZM: gray level size zone matrix, GLDM: gray level dependence matrix, 
NGTDM: neighboring gray-tone difference matrix.
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where TP, TN, FP, and FN indicate true positives, true nega-
tives, false positives, and false negatives, respectively. In Eq. 
(5), i is the number of classes, N is the sum of classified val-

ues compared to true values, mi,i is the number of true class 
(i) values, which is also classified as i (i.e., diagonal values of 
confusion matrix), Ci is the sum of predicted values (i), and 

Table 1. List of the significant features and their mathematical description

Skewness Features

10 Percentile
90 Percentile

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���
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𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 
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���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Energy

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Kurtosis

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Minimum

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Skewness

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Uniformity

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Elongation

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Major axis length

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Pixel surface (area)

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Auto correlation

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Cluster shade

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Informal measure of correlation (IMC)

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Inverse variance

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Joint average

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Joint energy

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Maximal correlation coefficient (MCC)

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
��

���

��

���
 

𝑐𝑐𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑘𝑘 𝑘𝑘�𝑒𝑒𝑠𝑠𝑠𝑠 = � �(𝑖𝑖 + 𝑚𝑚 − 𝜇𝜇� − 𝜇𝜇�)�𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �1 − 𝑠𝑠��(��������) 

𝑖𝑖𝑚𝑚𝑠𝑠𝑠𝑠𝑘𝑘𝑘𝑘𝑠𝑠 𝑠𝑠𝑒𝑒𝑘𝑘𝑖𝑖𝑒𝑒𝑚𝑚𝑐𝑐𝑠𝑠 = � 𝑃𝑃���(𝑘𝑘)
𝑘𝑘�

����

���
 

𝜇𝜇� = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖
��

���

��

���
 

𝑚𝑚𝑘𝑘𝑖𝑖𝑚𝑚𝑘𝑘 𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚))�
��

���

��

���
 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑘𝑘𝑠𝑠𝑐𝑐𝑘𝑘𝑚𝑚𝑠𝑠 𝑒𝑒𝑒𝑒𝑘𝑘𝑒𝑒𝑠𝑠𝑘𝑘𝑘𝑘 𝑠𝑠𝑖𝑖𝑒𝑒𝑠𝑠𝑚𝑚𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑠𝑠 𝑘𝑘𝑠𝑠 𝑠𝑠 

𝑠𝑠(𝑚𝑚𝑝 𝑚𝑚) = � 𝑝𝑝(𝑖𝑖𝑝 𝑘𝑘)𝑝𝑝(𝑚𝑚𝑝 𝑘𝑘)
𝑃𝑃�(𝑖𝑖)𝑃𝑃�(𝑘𝑘)

��

���
 

𝐻𝐻𝐿𝐿� = � �(𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)(𝑖𝑖 − 𝜇𝜇)�
��

���

��

���
 

𝐻𝐻𝐻𝐻𝐿𝐿𝐻𝐻𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚|𝜃𝜃)

𝑖𝑖�𝑚𝑚�
��
���

��
���

𝑁𝑁�(𝜃𝜃)  

𝐿𝐿𝐴𝐴𝐿𝐿𝐻𝐻𝐿𝐿𝐻𝐻 =
∑ ∑ 𝑃𝑃(𝑖𝑖𝑝 𝑚𝑚)𝑚𝑚�

𝑖𝑖�
��
���

��
���

𝑁𝑁�
 

 

Gray level variance (GLV)

 

10�� & 90�� (𝐿𝐿�) = 𝑃𝑃
100 (𝑋𝑋 + 1) 

𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑒𝑒� = �(𝑋𝑋(𝑖𝑖) + 𝑐𝑐)�
��

���
 

𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑘𝑖𝑖𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

( 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)�)���
���

 

𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑘𝑘𝑚𝑚 = 𝑚𝑚𝑖𝑖𝑚𝑚 (𝑋𝑋) 

𝑘𝑘𝑘𝑘𝑠𝑠𝑠𝑠𝑚𝑚𝑠𝑠𝑘𝑘𝑘𝑘 = 𝜇𝜇�
𝜎𝜎� =

1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
���

�� 1
𝑁𝑁�

∑ (𝑋𝑋(𝑖𝑖) − 𝑋𝑋�)���
��� �

� 

𝑘𝑘𝑚𝑚𝑖𝑖𝑠𝑠𝑘𝑘𝑘𝑘𝑚𝑚𝑖𝑖𝑘𝑘� = � 𝑝𝑝(𝑖𝑖)�
��

���
 

𝑠𝑠𝑒𝑒𝑘𝑘𝑚𝑚𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = �𝜆𝜆�����
𝜆𝜆�����

 

𝑚𝑚𝑒𝑒𝑚𝑚𝑘𝑘𝑘𝑘 𝑒𝑒𝑚𝑚𝑖𝑖𝑘𝑘 = 𝑚�𝜆𝜆����� 

𝐴𝐴����� = � 𝐴𝐴�

��

���
 

𝑒𝑒𝑘𝑘𝑘𝑘𝑘𝑘 𝑐𝑐𝑘𝑘𝑘𝑘𝑘𝑘𝑠𝑠𝑒𝑒𝑒𝑒𝑘𝑘𝑖𝑖𝑘𝑘𝑚𝑚 = � � 𝑝𝑝(𝑖𝑖𝑝 𝑚𝑚)𝑖𝑖𝑚𝑚
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Gi is the sum of the true values (i). Accuracy is the closeness 
of the measurements to a specific value, recall is the mea-
surement of the total amount of relevant occurrences that 
were truly predicted, and precision is the closeness of the 
measurements of relevant occurrences among the predicted 
instances. The F1-score, which is a better measure than ac-
curacy, is computed from the recall and precision of the test. 
The kappa coefficient is a measure of agreement that is used 
to assess the quality of the classification.

III. Results

The classification performance was evaluated using the dif-
ferent performance metrics discussed in the previous sec-
tion. In total, 3,064 MRI scans were used to carry out the 
analysis. The scans were obtained from 233 patients who had 
primary brain tumors (glioma, meningioma, and pituitary). 
The MRI scans were divided into training and testing data 
sets at a 9:1 ratio. The brain tumors from 2D MRI scans were 
extracted with the help of the ground truth/mask images us-
ing MATLAB R2020b (MathWorks, Natick, MA, USA), and 
AI classification was performed using Anaconda (a Jupyter 
notebook).
 The learning algorithms that were used for binary and 
multiclass classification showed effective results for classify-
ing three different classes of brain tumors. Table 3 shows 
the overall results for LSTM and the ML classification, and 
a comparative analysis between the six different algorithms 
used for classifying the textural, morphological, and statisti-
cal features. The output results of the classification that are 
shown in Table 4 are based on the test set. Both LSTM and 

Table 3. The overall performance of multiclass and binary classification based on six different algorithms (unit: %)

Classification Groups Metrics LSTM SVM KNN LR RF LDA

Multiclass Glioma vs. Meningioma 
vs. Pituitary

Accuracy 80.1 82.7 83.1 - 84.0 81.7

Recall 78.3 80.3 81.3 - 81.9 78.7

Precision 78.3 81.0 81.7 - 81.8 79.7

F1-score 78.3 80.7 81.7 - 81.7 79.3

Kappa coefficient 68.8 72.7 73.5 - 74.9 71.1
Binary Glioma vs.  

Meningioma
Accuracy 97.7 94.9 95.8 95.8 97.2 -

Recall 97.2 94.0 95.1 95.1 96.5 -

Precision 97.5 94.3 95.4 95.4 97.2 -

F1-score 97.0 94.0 95.5 95.5 97.0 -

Kappa coefficient 94.7 88.4 90.5 90.5 93.6 -

Glioma vs. Pituitary Accuracy 93.9 91.5 90.6 92.5 94.3 -

Recall 92.3 90.0 89.4 91.2 92.9 -

Precision 93.9 91.0 89.5 91.8 94.2 -

F1-score 93.5 90.5 89.5 91.5 93.5 -

Kappa coefficient 86.1 80.8 78.9 83.0 87.2 -

Meningioma vs.  
Pituitary

Accuracy 85.9 83.8 82.4 85.2 85.9 -

Recall 86.0 84.3 82.4 85.2 85.9 -

Precision 86.2 84.4 82.6 85.2 85.9 -

F1-score 85.5 84.0 82.5 85.0 86.0 -

Kappa coefficient 71.8 67.6 64.8 70.4 71.8 -

LSTM: long short-term memory, SVM: support vector machine, KNN: k-nearest neighbor, LR: logistic regression, RF: random for-
est, LDA: linear discriminant analysis.

Table 2. Dataset splitting for LSTM and ML classification

Tumor class Training Testing
Total 

slices

Total 

patients

Glioma 1,283 143 1,426 91
Meningioma 637 71 708 82
Pituitary 837 93 930 60
Total slices & patients 2,757 307 3,064 233

LSTM: long short-term memory, ML: machine learning.
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ML models were trained and tested with the same dataset. 
Figure 5 shows the ROC curve and corresponding area un-
der the curve (AUC) that depicts the comparison results for 
each classifier.
 Due to the similar feature values of pituitary and meningi-
oma tumors, the classifiers could not distinguish them accu-
rately. As a result, the performance of the multiclass (glioma 
vs. meningioma vs. pituitary) and binary (meningioma vs. 
pituitary) classifications was not satisfactory. However, the 
first and second binary classifications (glioma vs. menin-
gioma and glioma vs. pituitary) performed well compared 
to other groups. Supplementary Figures S3 and S4 depict 
the scatter pair plot of a few data samples used for multiclass 
and binary classification, respectively. The distribution of 
data samples was plotted to analyze visually the relationship 
between the variables. 

IV. Discussion

The brain tumor was extracted using the mask image of the 
tumor by overlapping the original image. We did not focus 
on automatic segmentation because this paper aimed to 
extract multiple types of features and develop DL and ML 
algorithms for classification. To carry out the ML classifica-
tion, five-fold CV was applied for validating and analyzing 
the performance of the model. Meanwhile, for LSTM classi-
fication, 20% of the data was separated from the training set 
for validation. Generally, five-fold CV is used in applied ML 
to estimate the skill of the models. In DL, we normally avoid 
CV because of the cost and time associated with training dif-
ferent models. Although the training approach is different in 
DL and ML classification, the model testing was carried out 
using the same test data (Table 2). 
 As seen in Table 3, binary classification achieved overall 
better results than multiclass classification. In classification 
using multiclass features, the error of one class can affect the 
results of other classes because the classification is not per-
formed separately and independently. Instead, classification 
using binary features is performed separately and indepen-
dently, and the impact of misclassification is not like that in 
multiclass classification. Out of four different classifications 
(multiclass and binary), the second classification (glioma vs. 
meningioma) showed promising and effective results. LSTM 
also outperformed all the ML classifiers by giving an overall 
accuracy, recall, precision, F1-score, and kappa coefficient 
of 97.7%, 97.2%, 97.5%, 97.0%, and 94.7%, respectively, for 
classifying glioma versus meningioma. Among all the ML 
classifiers, LR and LDA were used for binary and multiclass 
classification, respectively.
 Moreover, we also analyzed the results and computation 
costs of each classifier, before and after feature selection. As 
discussed earlier in the Methods section, feature selection is 
very important for AI classification, and we perform feature 
selection not only to increase the accuracy of the models but 
also to reduce the computation time. We identified a slight 
improvement in classification performance (i.e., computa-
tion time) using the final selected features. Supplementary 
Figure S5 shows the correlation heatmap before and after 
feature selection, and Table 4 shows a comparison of the 
computational costs of each classifier based on all the fea-
tures and selected features.
 Similar research carried out a single multiclass classifica-
tion using the T1-weighted CE-MRI dataset. Among these, 
none performed binary classification, which is also impor-
tant for tumor diagnosis. However, in the present study, both 

Table 4. Comparison of the computation costs of learning algo-
rithms based on training and testing (unit: second)

Groups
Learning  

algorithms

Feature selection

Before After

Glioma vs.  
Meningioma vs. 
Pituitary

LSTM 9,120 2,107 

SVM 29 6 

KNN 13 3 

LDA 3 2 

RF 7 4 
Glioma vs.  

Meningioma
LSTM 7,800 1,467 

SVM 11 2 

KNN 6 2 

LR 8 1 

RF 5 3 
Glioma vs. Pituitary LSTM 6,600 1,387 

SVM 14 3 

KNN 7 2 

LR 10 1 

RF 5 2 
Meningioma vs.  

Pituitary
LSTM 5,400 990 

SVM 7 2 

KNN 4 1 

LR 8 1 

RF 5 2 

LSTM: long short-term memory, SVM: support vector machine, 
KNN: k-nearest neighbor, LDA: linear discriminant analysis, 
RF: random forest, LR: logistic regression.
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binary and multiclass classification was performed using 
DL and ML techniques. Moreover, the best results obtained 
using the DL and ML techniques were compared with the 
results of similar studies, which are summarized and com-
pared in Table 5. 
 • Cheng et al. [10] developed content-based image re-
trieval techniques for retrieving brain tumors from contrast-
enhanced MRI scans. A novel feature extraction method 
was also proposed to improve the performance of tumor re-
trieval. The researchers applied adaptive spatial pooling and 
Fisher vector representation to local features from the raw 
images and subregions of the raw images, respectively. 
 • Sultan et al. [21], proposed DL-based CNN to classify 
different brain tumor types using two publicly available da-
tasets. Dataset 1 classified tumors into meningioma, glioma, 
and pituitary tumors, and Dataset 2 differentiated between 
three glioma grades (grade II, grade III, and grade IV). Sig-
nificant performance was achieved, with the best overall 
accuracy of 96.13% and 98.7% for Datasets 1 and 2, respec-

tively. 
 • Alqudah et al. [24] used a CNN model to classify 3,064 
T1-weighted MRI scans for grading brain tumors into three 
classes (glioma, meningioma, and pituitary). Their proposed 
CNN model performed well and achieved an accuracy of 
98.9%, 99.0%, and 97.6% for the cropped, uncropped, and 
segmented lesions, respectively. 
 • Pashaei et al. [25] developed a CNN model with a kernel 
extreme learning machine classifier to classify brain tumors 
into meningioma, glioma, and pituitary tumors. They also 
compared their results according to the use of different clas-
sifiers such SVM, multilayer perceptron, stacking, extreme 
gradient boosting, radial basis function, KNN, and a deep 
neural network. Their proposed architecture achieved an 
overall accuracy of 93.68%. 
 • Diaz-Pernas et al. [26] presented a model using a deep 
CNN that included a multiscale approach for brain tumor 
segmentation and classification. For classification, their 
proposed neural model can analyze MRI images containing 
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Figure 5.  Receive operating characteristic (ROC) curve for analyzing the performance of the models and comparing the results of each 
classifier. (A) ROC curve of multiclass classification (glioma vs. meningioma vs. pituitary). (B) ROC curve of glioma vs. me-
ningioma classification. (C) ROC curve of glioma vs. pituitary classification. (D) ROC curve of meningioma vs. pituitary clas-
sification. LSTM: long short-term memory, SVM: support vector machine, KNN: k-nearest neighbor, LR: logistic regression, 
RF: random forest, AUC: area under the curve.
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meningioma, glioma, and pituitary tumors. Their method 
performed well and obtained a remarkable tumor classifica-
tion accuracy of 97.3%. 
 • Swati et al. [27] used a pre-trained deep CNN model and 
proposed a block-wise fine-tuning strategy based on trans-
fer learning. A T1-weighted CE-MRI benchmark dataset 
was used to evaluate the proposed method. Their proposed 
architecture achieved an overall accuracy of 94.82% under 
five-fold CV. 
 • Ismael and Abdel-Qader [28] presented a framework for 
the classification of brain tumors in MRI images that com-
bined statistical features and neural network algorithms. 
Feature selection was performed using a combination of 
the 2D discrete wavelet transform and 2D Gabor filter tech-
niques. To perform classification, a back-propagation neural 
network classifier was selected to test the impact of classifi-
cation. They also used a similar dataset consisting of 3,064 
slices of T1-weighted MRI images with three types of brain 
tumors (meningioma, glioma, and pituitary). They achieved 
an overall accuracy of 91.9%. 
 • Badza and Barjaktarovic [29] presented a new CNN ar-
chitecture for the classification of three brain tumor types. 
Their developed network was tested on T1-weighted CE-
MRI. The model performance was evaluated using four dif-

ferent approaches: combinations of two 10-fold CV methods 
and two databases. The network’s generalization capability 
was tested with one of the 10-fold methods (subject-wise 
CV), and the improvement was tested by using an augment-
ed image database. They achieved an overall accuracy of 
96.56% for the record-wise CV for the augmented data set. 
 • Cheng et al. [30] proposed a content-based image retriev-
al system for MRI images using the Fisher kernel framework. 
Their proposed method obtained a tumor classification ac-
curacy of 94.7%. 
 In conclusion, this study presented results that may facili-
tate early diagnoses of brain tumors by effectively classifying 
three types of tumors. For a binary classification of glioma 
versus meningioma, the best results were obtained, with an 
average accuracy of 97.7% using an LSTM model.
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Table 5. Comparison between other state-of-the-art approaches and our method

Approach Features Classification type Classifier Accuracy (%)

Cheng et al. [10] Intensity histogram Multiclass SVM 87.5

GLCM Multiclass SVM 89.7

Bag-of-words Multiclass SVM 91.3
Sultan et al. [21] CNN-based Multiclass 2D CNN 96.1
Alqudah et al. [24] CNN-based Multiclass 2D CNN 99.0
Pashaei et al. [25] CNN-based Multiclass 2D CNN 93.7
Diaz-Pernas et al. [26] CNN-based Multiclass Multiscale CNN 97.3
Swati et al. [27] CNN-based Multiclass Pretrained 2D CNN 94.8
Ismael and Abdel-Qader [28] Statistical (DWT and Gabor filter) Multiclass BPNN 91.8

Badza and Barjaktarovic [29] CNN-based Multiclass 2D CNN 96.6
Cheng et al. [30] Bag-of-words and Fisher vector Multiclass Fisher kernel 94.7

Proposed FOS, GLCM, GLRLM, GLSZM, 
GLDM, NGTDM, 2D Shape

Meningioma vs. glioma  
vs. pituitary (multiclass)

RF 84.0

Meningioma vs. glioma 
(binary)

LSTM 97.7

GLCM: gray level co-occurrence matrix, SVM: support vector machine, CNN: convolutional neural network, 2D: two-dimensional, 
DWT: discrete wavelet transform, BPNN: back-propagation neural network, FOS: first-order statistics, GLRLM: gray level run 
length matrix, GLSZM: gray level size zone matrix, GLDM: gray level dependence matrix, NGTDM: neighboring gray-tone differ-
ence matrix, RF: random forest, LSTM: long short-term memory.
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