
RESEARCH ARTICLE

Can floral nectars reduce transmission of

Leishmania?

Evan C. Palmer-YoungID
1*, Ryan S. SchwarzID

2, Yanping Chen1, Jay D. EvansID
1

1 USDA-ARS Bee Research Laboratory, Beltsville, Maryland, United States of America, 2 Department of

Biology, Fort Lewis College, Durango, Colorado, United States of America

* ecp52@cornell.edu, evan.palmer-young@usda.gov

Abstract

Background

Insect-vectored Leishmania are responsible for loss of more disability-adjusted life years

than any parasite besides malaria. Elucidation of the environmental factors that affect para-

site transmission by vectors is essential to develop sustainable methods of parasite control

that do not have off-target effects on beneficial insects or environmental health. Many phyto-

chemicals that inhibit growth of sand fly-vectored Leishmania—which have been exhaus-

tively studied in the search for phytochemical-based drugs—are abundant in nectars, which

provide sugar-based meals to infected sand flies.

Principle findings

In a quantitative meta-analysis, we compare inhibitory phytochemical concentrations for

Leishmania to concentrations present in floral nectar and pollen. We show that nectar con-

centrations of several flowering plant species exceed those that inhibit growth of Leishmania

cell cultures, suggesting an unexplored, landscape ecology-based approach to reduce

Leishmania transmission.

Significance

If nectar compounds are as effective against parasites in the sand fly gut as predicted from

experiments in vitro, strategic planting of antiparasitic phytochemical-rich floral resources or

phytochemically enriched baits could reduce Leishmania loads in vectors. Such interven-

tions could provide an environmentally friendly complement to existing means of disease

control.

Author summary

Leishmania parasites infect over a million people each year—including over 200,000 infec-

tions with deadly visceral leishmaniasis—resulting in a greater health burden than any

human parasite besides malaria. Leishmania infections of humans are transmitted by

blood-feeding sand flies, which also consume floral nectar. Nectar contains many
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chemicals that inhibit Leishmania growth and are candidate treatments for infection of

humans. However, these same compounds could also reduce infection in nectar-consum-

ing sand flies. By combining existing data on the chemistry of nectar and sensitivity of

Leishmania to plant compounds, we show that some floral nectars contain sufficient

chemical concentrations to inhibit growth of insect-stage Leishmania. Our results suggest

that consumption of these nectars could reduce parasite loads in sand flies and transmis-

sion of parasites to new human hosts. In contrast to insecticide-based methods of sand fly

control, incorporation of antiparasitic nectar sources into landscapes and domestic set-

tings could benefit public health without threatening beneficial insects. These findings

suggest an unexplored, landscape-based approach to reduce transmission of a major

neglected tropical disease worldwide.

Introduction

Plant secondary metabolites have a long history of use against human disease and provide the

basis for both traditional medicines and many modern drugs [1], including treatments for

neglected tropical diseases [2]. The sand fly-vectored Leishmania parasites are estimated to

cause disease in>2 million humans each year, with 10% of the world’s population at risk, and

have a greater health burden (as measured by loss of disability-adjusted life years) than any

human parasite besides malaria [3]. These infections include an estimated >0.2M cases of vis-

ceral leishmaniasis, which, if untreated, results in>90% patient mortality [3,4]. Due to their

clinical significance, Leishmania spp. have been studied intensively in a search for affordable

and effective treatments for human infections [5], including exhaustive testing of plant extracts

and their components against both mammal- and insect-associated parasite life stages [2,6].

These studies have suggested new treatments for trypanosomatid-associated infections of

humans [7] and related parasites of beneficial insects [8,9]. As in humans, antimicrobial phyto-

chemicals can enhance resistance to infection in plants themselves [10] and in other plant-con-

suming animals, including insects [11].

The diets of blood-feeding, disease-vectoring insects such as sand flies and mosquitoes

include sugar-containing plant tissues as well as blood [12]. Sugar sources differentially affect

not only vector survival, but also the development of parasitic Plasmodium falciparum malaria

in Anopheles mosquitoes [13] and Leishmania major in sand flies (Phlebotomus papatasi) [14],

with effects mediated by secondary metabolites [15,16]. Sand flies feed on plant sugars between

acquisition and transmission of Leishmania to humans and other mammals [17], as demon-

strated by caging flies with dye-infused branches, spectrophotometric detection of sugars or

plant cell walls in the gut, and molecular analysis of field-collected flies showing the presence

of plant DNA [18–20]. The importance of dietary sugars is evident from their effects on fly lon-

gevity. Flies survive less than a week under sugar source-poor desert conditions [21] and less

than 2 weeks when reared on comparatively sugar-poor branches [22], but more than 7 weeks

on 20% sucrose solution [22]. The abundance of sugar meal-inducible glucosidases expressed

by the sand fly and by its Leishmania parasites provide additional evidence of mutual adapta-

tion to an omnivorous lifestyle that exploits diverse plant sugars as food sources [23–25], and

that sugar sources could be manipulated to control vectors and their parasites [16,22].

Although sand flies may acquire sugar meals from plant sap, fruit, or aphid- or cicada-

derived honeydew [26], floral nectar appears to be a preferred food source, as evidenced by the

attractiveness of flowering bushes and branches (relative to those soiled with honeydew) in a

desert oasis [12]. The small (<1 μL) meal sizes of sand flies [23] would make the concentrated
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sugars found in nectar a profitable foraging resource, in spite of the small volumes available at

each flower, explaining the general attractiveness of flowering plant food sources to sand flies

and related dipterans [27]. The size of sugar meals is, however, impressive on a mass-specific

basis—increasing the mass of females by>30% over 48 h [28]—consistent with the strong

effects of meal chemistry on gut-dwelling Leishmania.

The role of nectar chemistry in insect disease ecology has recently been highlighted by work

on infections of pollinators. Floral nectar and pollen, their constituent secondary metabolites,

and the composition of flowering plant communities can ameliorate trypanosomatid growth

and infection in bumble bees [8,9,29–31]. Both nectar and pollen—which may mix with and

influence the chemistry of nectar at flowers [32]—contain diverse secondary metabolites that

shape plant-pollinator ecology and plant-microbe ecology [33–37]. Flavonoids are one class of

antimicrobial and antileishmanial compounds [38,39] that are ubiquitous in both nectar and

pollen, with concentrations in pollen often exceeding 1% of total dry matter [40,41]. This sug-

gests that consumption of secondary metabolite-rich nectars could mitigate Leishmania trans-

mission by reducing infection intensity in nectar-feeding sand fly vectors [12], pointing to a

new strategy for drug- and insecticide-free disease control. However, despite appreciation for

the clinical antileishmanial potential of plant metabolites [2], growing recognition of the role

of plant metabolites—including those in nectar and pollen—in insect infection, and the critical

role of plant sugars in sand fly diets, there has been surprisingly little investigation into the

potential for antileishmanial phytochemicals in the diets of sand flies to mitigate Leishmania
transmission [14,15].

To assess the potential for floral resource-associated phytochemicals to reduce vector-borne

infection, we compared phytochemical concentrations previously shown to inhibit Leishmania
to concentrations previously found in floral nectar and pollen. Our synthesis of prior work on

Leishmania phytochemical sensitivity with nectar and pollen secondary chemistry shows that

many floral nectars contain antileishmanial compounds at concentrations sufficient to inhibit

parasite growth. These findings suggest an unexplored, landscape ecology-based approach to

reduce transmission of widespread and virulent Leishmania infections. If phytochemical con-

centrations that inhibit Leishmania in vitro are equally effective in the sand fly gut, incorpo-

ration of antiparasitic nectar sources into landscapes and domestic settings could

simultaneously benefit pollinator and public health.

Methods

We compared the flavonoid concentrations found in a previous survey of methanolic extracts

from 26 floral nectars and 28 pollens [40,42] with previously published results from in vitro
screening of various Leishmania spp. (Table A in S1 Text). We focused on flavonoids because

these compounds were the most consistently present class of compounds across both nectar

and pollen [40] and—particularly in the case of quercetin—some of the most potent and selec-

tive compounds against Leishmania [39,43,44]. To prevent overestimation of inhibitory poten-

tial that could result from including flavonoids of lesser or unknown antiparasitic activity, we

further distinguished between total flavonoid concentrations and those with a kaempferol,

quercetin, apigenin, or luteolin aglycone, each of which has well-documented antileishmanial

effects [39,45,46] (Table A in S1 Text).

We analyzed micromolar concentrations to enable pooling across compounds with differ-

ent parent flavonoids and glycosides. Flavonoid glycosides—including those of quercetin and

kaempferol—can be less potent against Leishmania than are their parent aglycones [39], which

can more easily cross cell membranes [47]. However, we included flavonoid glycosides because

these compounds are hydrolyzed by intestinal glucosidases—a variety of which are found in
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sand flies [28]—to their corresponding aglycones [48,49]. These glucosidases have been shown

to form antileishmanial aglycones from glycosylated coumarins in intestinal extracts [16]. We

focus our discussion on nectar because sand flies, like other Diptera, do not have chewing

mouthparts that would enable direct consumption of pollen and other solid foods [20]. How-

ever, incidental presence of pollen in nectar can dramatically increase the nectar’s concentra-

tions of amino acids [50], with ecologically relevant effects on nectar-feeding insects [32].

Pollen could similarly affect nectar’s phytochemical profile and antimicrobial effects. For

example, presumably pollen-derived cinnamic acid-spermidine conjugates were found in nec-

tar of two species in our previous survey—Digitalis purpurea and Helianthus annuus [40]. In

H. annuus, nectar concentrations averaged 1.7% of pollen concentrations, despite exclusion of

large insects that contribute to such "contamination" [50] for 24 h prior to sampling. We there-

fore also discuss pollen concentrations that exceed the Leishmania IC50 estimates by

>100-fold, on the grounds that the much (235-fold [40]) higher flavonoid concentrations

found in pollen could meaningfully alter the antiparasitic activity of nectar, even when pollen

accounts for <1% of nectar volume.

Results

We compiled 18 Leishmania IC50 estimates for 4 flavonoids—quercetin (n = 8), kaempferol

(n = 4), apigenin, and luteolin (n = 3 each) that have been relatively well studied for effects on

Leishmania spp. cell cultures (Table A in S1 Text). Most (11 of 18) of the assays used the pro-

mastigote (i.e., insect-associated) life stage; the remainder used either intracellular (n = 4) or

axenic (n = 3) amastigotes (Table A in S1 Text). These Leishmania IC50 estimates were then

compared to the flavonoid concentrations found in a previous survey of secondary metabolites

of nectar and pollen [40].

Flavonoids were found in the nectar of 21 of 26 species (81%) and in pollen of 26 of 28

species (93%), accounting for 30% of the total phytochemical content in nectar and 41% in

pollen [40]. Total flavonoid concentrations exceeded 100 μM in 8 of 26 nectars (31%, median

concentration 30.9 μM, IQR 4.24–127 μM; median 61.4 μM after exclusion of the five species

without nectar flavonoids) and exceeded 104 μM in 18 of 28 pollens (64%, median 1.36 � 104

μM, IQR 4.31 � 103 to 2.30 � 104 μM) (Fig 1). Glycosides of quercetin (found in 9 of 26 nectars

and 14 of 28 pollens) and kaempferol (5 of 26 nectars and 19 of 28 pollens) were most com-

mon [40].

Compounds with a parent aglycone of quercetin, kaempferol, apigenin, or luteolin

accounted for 62% of flavonoid compounds and 54% of molar concentrations in nectar, and

72% of compounds and 75% of molar concentrations in pollen. In nectar, median concentra-

tion of this subset of compounds across all species (20.3 μM, IQR 9.37–58.9 μM) was remark-

ably close to the 23.1 μM median IC50 for Leishmania (based on 18 references (Table A in S1

Text)). Concentrations exceeded 100 μM (i.e., more than the highest Leishmania IC50 for any

of the parent compounds) in nectar from 4 of 26 species (Dicentra eximia, Brassica napus,
Helianthus annuus, and Thymus vulgaris). In pollen, median concentrations exceeded 104 μM

(i.e., >100-fold the greatest Leishmania IC50) in pollen from 12 of 28 species, including two

species (Lythrum salicaria (1.21 � 105) and Solidago canadensis (1.19 � 105)) with concentrations

>105 μM—over three orders of magnitude above the greatest Leishmania IC50 (Fig 1).

Antileishmanial compounds in nectar were not limited to flavonoids. Seven nectars con-

tained chlorogenic acid, with a median concentration (51.2 μM) similar to the IC50 for L.

donovani promastigotes (54 μM [51]) and 100-fold greater than the IC50 for L. amazonensis
promastigotes (0.5 μM [52]). The species with the highest median concentration of chloro-

genic acid (Dicentra eximia, 184 μM) also had the highest concentration of the selected
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flavonoids (Fig 1). Nectar concentrations of two additional species (Penstemon digitalis,
134 μM) and Rhododendron prinophyllum (56.7 μM) also exceeded the L. donovani promasti-

gote IC50 (Fig 2). Chlorogenic acid was also found in seven pollens at up to 3760 μM (Persea
americana), with a median concentration (1227 μM) over 20-fold greater than that found in

nectar and over three orders of magnitude above the L. amazonensis promastigote IC50 [52]

(Fig 2).

Nectar of one species (Thymus vulgaris) contained the caffeic acid-dihydroxyphenyl lactic

acid ester rosmarinic acid. Median concentration (165 μM, IQR 87.7–206 μM) was 10-fold

greater than the IC50 for L. donovani promastigotes (16.3 μM [51])—against which rosmarinic

acid and apigenin were the most selective of the compounds evaluated—over 30-fold greater

than the 4.8 μM IC50 for L. amazonensis amastigotes [52], and over 200-fold greater than the

0.7 μM reported for L. amazonensis promastigotes [52] (Fig 3). Nectar of T. vulgaris is also

notable for its high thymol content (26.1 μg mL-1 [53]), which exceeds six of the eight IC50 val-

ues reported for Leishmania promastigotes (Table A in S1 Text, [54,55]).

Discussion

Our synthesis of a previous survey on the quantitative phytochemical composition of nectar

and pollen with the extensive body of research on phytochemical-mediated inhibition of

Leishmania in vitro reveals the potential for floral resources to ameliorate vector-mediated

transmission of Leishmania. The most common compounds in nectar and pollen—flavonoids

and their glycosides—have shown strong inhibitory effects against Leishmania [39,44,56]. Our

findings indicate that a subset of the floral nectars analyzed to date—including the common

garden herb Thymus vulgaris (thyme) and the widespread crop species Helianthus annuus
(cultivated sunflower) contain bioactive flavonoids at concentrations that inhibit growth of

diverse Leishmania in vitro. Incidentally, both plant species have also been shown to mitigate

transmission and infectivity of bumble bee trypanosomatids, including in field mesocosms

and landscape surveys [30,31]. Further investigation of the effects of specific nectar and other

sugar sources on sand fly infection is needed. However, deliberate encouragement of these and

Fig 1. Published Leishmania IC50 estimates for selected flavonoids (A) relative to concentrations of the corresponding compounds in nectar and

pollen (B). Shapes in panel (A) correspond to the Leishmania stage tested. Boxplots in panel (B) show medians and interquartile ranges for

concentrations of quercetin, kaempferol, apigenin and luteolin derivatives (red boxes) and total flavonoids (blue boxes). Points show median

concentrations (pooled across individual samples) by species. Text annotations denote species with>100 μM of the selected flavonoids in nectar

(Brassica napus, Dicentra eximia, Helianthus annuus, and Thymus vulgaris). Literature references for Leishmania IC50 estimates are given in Table A in

S1 Text.

https://doi.org/10.1371/journal.pntd.0010373.g001
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Fig 2. Concentrations of chlorogenic acid in nectar and pollen in comparison with inhibitory concentrations for Leishmania.

Points represent median concentrations from species with detectable chlorogenic acid (sampled in [40]). Horizontal lines show

published IC50 values [51,52]. Sampled plant species (labeled by genus) were Dicentra eximia, Penstemon digitalis, Rhododendron
prinophyllum, Malus domestica, Vaccinium corymbosum, Cucurbita pepo, Persea americana, and Geraniummaculatum. For

Vaccinium, "cult" refers to cultivars and "wild" refers to wild plants.

https://doi.org/10.1371/journal.pntd.0010373.g002

Fig 3. Concentrations of rosmarinic acid in Thymus vulgaris nectar in comparison with inhibitory concentrations

for Leishmania. Points represent individual nectar samples (from [40]). Horizontal lines show published IC50 values

[51,52].

https://doi.org/10.1371/journal.pntd.0010373.g003

PLOS NEGLECTED TROPICAL DISEASES Nectar phytochemicals and Leishmania transmission

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0010373 May 12, 2022 6 / 13

https://doi.org/10.1371/journal.pntd.0010373.g002
https://doi.org/10.1371/journal.pntd.0010373.g003
https://doi.org/10.1371/journal.pntd.0010373


other plants with trypanosomatid-inhibiting chemistry could reduce infection in disease-vec-

toring, hematophagous insects as well.

Our data suggest that around 20% of nectars contain flavonoids at strongly antiparasitic

concentrations, although this number likely varies by region and season. Our analysis was

focused on bee-pollinated species in the Northeast United States, where sand flies are absent,

and therefore contained few of the specific plant species naturally used by sand flies in Leish-
mania-endemic regions. However, sand flies have been observed to prefer cultivated gardens

(to which such plants could be introduced) over endemic vegetation [20], and have been asso-

ciated with plants in the same taxonomic families as those represented by the species analyzed

here. For example, Brassica napus (Brassicaceae) nectar was among the highest in flavonoids;

flowers of another member of this family (Sinapis alba) elicited feeding by Phlebotomus papa-
tasi [57]. Nectar of Impatiens capensis (Balsaminaceae) had flavonoid concentrations

(20.9 μM, all from strongly antileishmanial compounds) close to the median of the nectars

examined (20.3 μM) and the median Leishmania IC50 (23.1 μM); branches of the congener I.
balsamina were fed upon by Lutzomyia youngi in Colombian coffee plantations [58]. On the

other hand, nectar flavonoid concentrations were considerably lower (1.6 μM total) in Trifo-
lium pratense, the only Fabaceae species tested; plants of this family have been strongly associ-

ated with sand flies in field sampling [59] and DNA metabarcoding studies [60,61]. Flavonoid

concentrations were also low (<1 μM) in Cucurbita pepo (Cucurbitaceae) and undetectable in

Catalpa speciosa (Bignoniaceae), two other plant families associated with sand flies [20]. Based

on these results, the amounts of antileishmanial flavonoids ingested by flies could vary sub-

stantially in different landscapes.

Besides floral nectar, other known sugar sources may also possess flavonoid-mediated antil-

eishmanial activity. Flavonoid concentrations of sand fly-attracting fruits [26] appear similar

to those found in nectar. Combined quercetin and luteolin contents ranged from unquantifi-

able in honeydew melon to 22.8 μM in nectarine, 33.1 and 39.7 μM in red and white guava,

and 53.6, 84.1, and 91.1 μM in white, black, and red grapes respectively [62]. Honeydew from

sapsucking insects such as aphids [12] likely also contains types and quantities of flavonoids

similar to those found in floral nectar, based on the similar flavonoid profiles of honey from

these two sources [63]. Further experiments are needed to assess the chemistry of local, fly-

attracting, sugar-providing plant species and their effects on insect host and parasite mortality,

as demonstrated for lectin-rich plant sugar sources in Israel [14,15,22]. Given that sand fly

feeding on branches [19], flowers [12], and fruits [26] tends to be highly selective on a few

local species, the scope of such research is likely achievable.

We predict that our analysis—which accounts only for direct effects of a few compounds

on parasites as estimated from in vitro studies—provides a conservative estimate of the effects

of plant compounds on disease transmission. First, we focused on a limited subset of nectar

components whose effects on Leishmania have been thoroughly studied, ignoring the effects of

co-occurring chemicals that could also affect parasites (e.g., other flavonoids, lectins, and alka-

loids), whether present in the ingested sugar source or formed during sand fly digestion (e.g.,

deglycosylation of coumarins or cyanogenic glycosides to compounds that reduce parasitic

infection [16,64]). Second, these direct effects could be amplified by host-mediated reductions

in levels of parasites due to phytochemical ingestion. For example, nectar-derived flavonoids

stimulated immune gene expression in honey bees [65]; similar flavonoid-induced immune

stimulation could enhance parasite clearance in flies. In addition, besides their effects on pro-

tozoa specifically, flavonoids are generally antimicrobial [38], and could inhibit growth of mid-

gut bacteria that facilitate Leishmania infection [66]. It would be of interest to contrast the

effects of similar flavonoid concentrations taken directly from plant tissues—which are deliv-

ered to the sand fly midgut—versus those from surface sugars (e.g., nectar and honeydew),
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which are first stored in the crop [57]. The gradual release of nectar and honeydew from the

crop to into the anterior midgut [57] could limit the exposure of midgut-dwelling parasites to

phytochemicals from these sources.

The effect of sugar-containing meals from plant sources was a long-overlooked component

of sand fly ecology that proved crucial in Leishmania transmission [17]. However, feeding of

sand flies on several plant taxa causes marked parasite mortality—up to 88% in the case of cas-

tor bean (Ricinus communis) [14], the lectins of which agglutinate a variety of insect trypanoso-

matids [67]—paralleling the strong effects of plant sugar sources on malaria infection in

mosquitoes [13]. Although flowering plant nectar sources might at first glance appear to be a

liability for Leishmania transmission due to the food they provide to sand flies, sugar starvation

in fact results in greater vector infection intensity and natural selection for flies with lesser par-

asite resistance [68,69]. This finding is consistent with the preponderance of Leishmania hot-

spots in arid regions, where plant sugar sources are scarce [68,69]. High parasite loads also

alter sand fly feeding on mammals in ways that promote transmission to new hosts [70]. These

lines of evidence suggest that despite their role as vector food sources, phytochemical-rich flo-

ral nectar sources could have a net transmission-reducing effect.

Feeding of sand flies on floral nectar may also result in incidental pollen exposure that, due

to pollen’s high flavonoid concentrations, has strong effects on Leishmania in the fly gut. Such

incidental exposure was suggested by the high prevalence of Pinaceae DNA associated with

sand flies at sites apparently lacking such plants [20]. This association was postulated to reflect

exposure of flies to windblown pollen, which could also account for at least some of the DNA

from Cannabis sativa—another wind-pollinated species not visibly present [20]. Introduction

of pollen to nectaries by bees can increase nectar amino acid concentrations by an order of

magnitude, and potentially introduce antiparasitic compounds from con- and heterospecific

pollens as well [50]. Given that flavonoid concentrations in pollen are 200-fold higher than

those in nectar [40], incidental ingestion of even small amounts of pollen could substantively

inhibit proliferation of parasites and the transmission potential of their vectors. In H. annuus,
pollen-associated spermidines occurred at concentrations >1% of those in pollen even when

pollinators were excluded [40]. In our meta-analysis, eight of the 28 pollens previously sur-

veyed contained flavonoids at concentrations that exceeded 100-fold the maximum inhibitory

concentration reported for Leishmania (Fig 2). This suggests that as little as 1% incidental

addition of pollen to nectaries might be sufficient for Leishmania inhibition, even for nectars

that lack antileishmanial flavonoids initially.

Whether antiparasitic compounds are present in secreted nectars or due to incidental intro-

duction of pollen, nectars rich in phytochemicals are promising candidates for ecological miti-

gation of Leishmania transmission. Parasites of this genus appear both sensitive to flavonoids

and, given the parasite’s establishment in the midgut and forward migration in the alimentary

canal [17], directly exposed to ingested compounds before appreciable metabolism of these

compounds—by hosts or microbiota in the abdominal midgut—can occur. The limited intesti-

nal absorption of ingested flavonoids [49], hydrolysis of glycosides found in plants to their

more potent aglycones in the intestine [28,49], and likelihood of direct contact between para-

sites in the anterior midgut and ingested phytochemicals all indicate the potential for flavo-

noid-rich nectars to reduce Leishmania infection in sand flies. However, empirical testing of

these compounds in sand fly diets is necessary to confirm their efficacy in the insect vector and

model the effects of sugar sources on parasite infection, vector longevity, and disease transmis-

sion, as was recently done for malaria [13]. In addition, the broader ecological effects of floral

compounds—whose effects are unlikely to be limited to sand flies alone—must be considered

before implementation of interventions, particularly those that involve introduction of non-

endemic plant species.
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Conclusions

The global toll of Leishmania infection and the difficulties of eradicating its sand fly vectors

and non-human reservoirs demand the development of new, environmentally compatible

strategies to reduce parasite transmission [71]. Our synthesis of existing data shows that sugar-

seeking sand flies are attracted to floral resources, and that floral nectars contain antileishma-

nial phytochemicals at concentrations that inhibit replication of parasite cell cultures. The

extent to which floral resources influence Leishmania epidemiology will depend on the contri-

bution of nectar to sand fly diets and the extent to which in vitro inhibitory effects are realized

in the guts of infected flies. If the effects of nectar on insect infection are commensurate with

predictions based on nectar phytochemistry, reduction of transmission via supply of antipara-

sitic nectar sources in local landscapes—or phytochemical-based, transmission-blocking baits

[16]–could positively influence public health. Such interventions could reduce reliance on

drug treatments that may be costly, inaccessible, or potentially hazardous [3] while simulta-

neously supporting populations of beneficial insects and their resistance to insect-specific try-

panosomatid infections [29,30]. The fields of insect ecology and medicinal chemistry for

insect-vectored parasites have thus far developed more in parallel than in concert. Integrating

knowledge of medicinal plant chemistry and plant-mediated tritrophic interactions that affect

parasites in disease-vectoring insects holds promise for environmentally friendly control of

trypanosomatid threats to global health.
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