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Predicting RNA SHAPE scores with deep learning
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ABSTRACT
Secondary structure prediction approaches rely typically on models of equilibrium free energies that are
themselves based on in vitro physical chemistry. Recent transcriptome-wide experiments of in vivo RNA
structure based on SHAPE-MaP experiments provide important information that may make it possible to
extend current in vitro-based RNA folding models in order to improve the accuracy of computational
RNA folding simulations with respect to the experimentally measured in vivo RNA secondary structure.
Here we present a machine learning approach that utilizes RNA secondary structure prediction results
and nucleotide sequence in order to predict in vivo SHAPE scores. We show that this approach has
a higher Pearson correlation coefficient with experimental SHAPE scores than thermodynamic folding.
This could be an important step towards augmenting experimental results with computational predic-
tions and help with RNA secondary structure predictions that inherently take in-vivo folding properties
into account.
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Introduction

Importance of RNA Structure

Local RNA structures can have important biological func-
tions. For example, there are multiple reported cases of bac-
terial RNA-based riboswitches that change their conformation
in reaction to the interaction with a small molecule metabolite
potentially implementing a regulatory feedback mechanism
important for homoeostasis [1].

It has been reported that cellular mRNAs are less struc-
tured compared to in vitro conditions as what theoretical
secondary structure predictions would suggest [2–4]. The
prevalence of this effect it seems can be influenced by ATP-
depletion, suggesting that mRNA unfolding is subject to con-
trolled cellular processes. Possible reasons for this are that
RNA-binding proteins prevent non-specific RNA agglomera-
tion; also translation by ribosomes and their helicase activity
contribute to unfolding of mRNA coding regions. Because
RNA structure can act as a regulator but is itself being regu-
lated by a vast number of different factors such as RNA-
binding proteins and metabolites, it will remain challenging
to model in vivo RNA folding.

The promise and challenge of RNA SHAPE experiments

Selective 2ʹ-Hydroxyl Acetylation analysed by Primer
Extension (SHAPE) is an important experimental approach
for determining whether an RNA nucleotide participates in
RNA base pairing [5]. The key idea is that single-stranded
unpaired nucleotides exhibit a higher structural flexibility

compared to base-paired nucleotides. This difference in struc-
tural flexibility and accessibility contribute to a difference in
chemical reactivity of different nucleotides with respect to
a chemical reagent. In the classical SHAPE approach, the
adduct of the chemical reagent blocks elongation of reverse
transcriptase at the modified base [5]. Each transcript can
therefore harbour only one chemical adduct that contributes
to the measured outcome. In contrast, the SHAPE-MaP meth-
odology is adjusted to take full advantage of high throughput
RNA-Seq experiments. Instead of blocking and terminating
the reverse transcription, mutational profiling (MaP) is uti-
lized in order to induce non-complementary nucleotide muta-
tions corresponding to the chemically modified nucleotides
[6]. RNAs can therefore be reverse-transcribed into cDNA in
their entirety even if they contain multiple sites that lead to
the adduction of the chemical reagent.

Recently, the SHAPE-MaP approach has been applied to
E. coli mRNAs [7]. In that study, results corresponding to 3
different conditions (in vivo, in vitro, and in vivo with
blocked co-translation) were generated and analysed. The
authors found many examples of unstructured and structured
regions on mRNAs. There is a tendency for less RNA struc-
ture in vivo compared to an in vitro environment; blocking
translation with an antibiotic has the influence of additional
measured RNA structure in coding regions. The variety of
different RNA structures encountered in that study prompted
the authors to coin the term ‘RNA personalities’.

Because of the many possible influencing factors and the
apparent lack of simple reoccurring sequence-structure pat-
terns, building a theoretical or computational model for
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in vivo mRNA structure is challenging. The accuracy of RNA
secondary structure prediction approaches based on equili-
brium thermodynamics can be increased if they incorporate
experimental constraints [8].

Utility of neural networks

Many of the fundamental ideas of machine learning in general
and neural networks in particular were reported decades ago,
where it was shown that one can solve difficult pattern recog-
nition problems not by explicitly programming a solution but
by ‘showing’ positive and negative examples to a learning
algorithm. Much more recently, however, a number of impor-
tant innovations dramatically expanded the scope of neural
networks.

Convolutional neural networks, for example, were
a breakthrough in image processing. Convolutional neural
networks are based on the idea that the network self-learns
a number of local features that are generated for each position
of the input image. The resulting array of feature vectors is
input for subsequent neural network layers. potentially lead-
ing to more complex and abstract features that are ultimately
used to generate the final prediction output [9].

Furthermore, innovations in image processing dealt with
the problem of scale. Object recognition in images is an
inherently scale-invariant task, where translation, rotation
and ‘zoom’ of an object in an image should not substantially
alter the prediction result. One approach to implement this
are ‘inception’ type models, whose main idea is that if the
scale (i.e. the size) of an object in the input vector is not
initially known, one can still obtain an approximation of scale
invariance with different neural network layers that each
specialize in detecting an object of a specific size range [10].
Subsequent neural network layers can use the output of the
different feature vectors as input and easily detect if an object
was detected for a least one particular size.

The current paper utilizes these methodologies and applies
them in a novel way to the problem of predicting SHAPE
scores of RNA sequences.

Prediction of RNA SHAPE scores

RNA secondary structure depends on its RNA sequence as
well as the biochemical environment. Traditionally, RNA
secondary structure is predicted using thermodynamic models
and algorithms that identify the minimum free energy con-
formation. Recently, an approach based on deep neural

networks has been reported [11]. It is important to note that
neural network architectures need to be of sufficient sophis-
tication in order to capture the complexities of RNA second-
ary structure. Taken together it is apparent that predicting
RNA SHAPE experiment values from local sequence informa-
tion is an attractive target for machine learning approaches.
Recently, Mautner described an approach based on a tree-
based machine learning approach where predicted local RNA
structure is encoded as a graph [12]. In contrast, we are
presenting here a deep neural network approach were the
unique network architecture is designed to capture properties
of local sequence, secondary structure and SHAPE scores.

Methods

Data

The data used in this paper was obtained from the supple-
mentary information of [7]. They provide data sets of experi-
mental shape scores for 194 RNAs (each RNA possibly
harbouring multiple ORFs) for 3 different conditions
(in vivo, in vitro, in vivo with inhibited translation). Each of
these 3 data sets was divided into testing and training datasets
corresponding to 32 and 162 RNAs respectively (Table 1).
Note that each nucleotide position of the respective RNA
sequences is converted to a feature vector used as input for
the machine learning approach, leading to a test set of 51578
feature vectors and a training set of 390843 feature vectors.

For preprocessing, the original SHAPE data combined with
the corresponding RNA sequence was converted into an
R data structure, augmented with a structure prediction
from RNAplfold but not otherwise modified. The utilized
command line parameters for the thermodynamic prediction
were: RNAplfold -T 37 -p. Note that the machine learning
model has for its training SHAPE data a flag that indicates
missing data (‘NA’). In other words, cases of RNAs and their
SHAPE values can be processed for both training and testing
even if the SHAPE data has numerous missing values.

Neural network model

The neural network models used in the paper are based on the
Keras framework in R with a TensorFlow back-end [13,14].
We want the neural network to detect RNA secondary struc-
tures and motifs. One challenge is that one does not know
ahead of time how ‘large’ a secondary structure or sequence
motif is. This problem is known in image processing in the
form of challenges where the task is to detect objects in an

Table 1. Partition of IDs of 194 RNAs reported by Mustoe into test set and training set.

Data set IDs

Test set 7,11,21,22,24,27,28,38,41,44,45,51,54,59,61,62,73,75,76,94,
99,115,127,139,145,151,152,160,168,171,177,179

Training set 1,2,3,4,5,6,8,9,10,12,13,14,15,16,17,18,19,20,23,25,26,29,30,31,32,33,34,35,
36,37,39,40,42,43,46,47,48,49,50,52,53,55,56,57,58,60,63,64,65,66,67,68,69,
70,71,72,74,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,95,96,97,98,
100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,116,117,
118,119,120,121,122,123,124,125,126,128,129,130,131,132,133,134,135,
136,137,138,140,141,142,143,144,146,147,148,149,150,153,154,155,156,
157,158,159,161,162,163,164,165,166,167,169,170,172,173,174,175,176,
178,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194
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image where the object’s relative size in the image is not
known ahead of time. One solution is to utilize parallel
units of the machine learning algorithm that are specialized
for different specific sizes of the objects to be recognized. In
practice, this is often implemented via convolutional neural
network layers of different ‘kernel’ sizes (for example a kernel
size of 5 means that the neural network only uses a subset of 5
input features from a much larger input vector, and the net-
work is applied to the input data vector in a sliding-window
manner). Additionally, stacking convolutional neural network
layers with small kernel sizes reduces the number of para-
meters compared to a convolutional layer with a large kernel
size. This is the approach utilized in this work. A schematic of
the created model is shown in Fig. 1. One can see that the
modules shown in red, green and purple all contain convolu-
tional network layers of different kernel sizes. Also, these
modules use parallel routes of information flow with different
numbers of stacked convolutional layers. These alternative
routes are in subsequent layers combined in order to predict
a single number (the SHAPE score of a particular nucleotide).
The primary model was based off of the inception model used
in computer vision algorithms [10]. Inception models were
designed to solve the issue where the salient part of an image
varied dramatically in size, making it difficult to create
a model which is well equipped for all scales of images. The
inception networks solved this by having several different
kernel sizes in parallel allowing for the network to be opti-
mized for several different scale ranges.

To train a neural network, a large volume of data is frequently
needed. The independent variable of this model is the sequence
information of the RNA transcript around a specific nucleotide
and the dependent variable is the SHAPE score of the nucleotide.
The chosen loss function is the mean-squared-error (mse) cor-
responding to the average squared differences of predicted and
actual SHAPE values of the training data. Using this loss func-
tion as an objective function, the training procedure minimizes
the differences between predicted SHAPE scores and experi-
mentally determined SHAPE scores utilizing each position of
the sequences in the training set.

The model takes in six different inputs per nucleotide, an
upstream sequence, a downstream sequence, the nucleotide of
which you are trying to predict the SHAPE score of, an
upstream thermodynamic matrix, a downstream thermody-
namic matrix, and a thermodynamic vector corresponding to
the nucleotide. The thermodynamic matrix is generated by
summing for each nucleotide predicted nucleotide-base pair
probabilities generated by the program RNAplfold [15].
Previously we found that local folding predictions using
RNAplfold predictions (with a default window size of 70nt)
lead to a higher Pearson correlation coefficient with the
experimental SHAPE scores compared to global folding pre-
dictions as generated by RNAfold.

As shown in Fig. 1, the model architecture uses a variety of
neural network layers that can be partitioned into four differ-
ent ‘blocks’: one block for sequence input, one for thermo-
dynamic input, and two for the combined outputs of the

Figure 1. Diagram of the thermo inception model that was designed for this paper. The different sections of the model are colour coded. Each block represents
a layer of the network and each arrow shows the flow of information from one layer to the next. The dashed and dotted lines running in between sections represent
how the model was run on both the upstream (5ʹ most) data and the downstream (3ʹ-most) data, with one represented by the dashed and the other by the dotted
respectively. As described in the Methods section, the input data is processed via convolutional networks of different kernel sizes in order to be able to detect RNA
secondary structures and sequence motifs of different sizes (sections highlighted in red, yellow, and purple). The upstream and downstream data are combined in
a stacked set of dense neural networks. This model also utilizes several different types of neural network layers that act similar to traditional convolutional layers. The
separable convolution layer is a special subset of convolutional layers where the kernel is broken up into two separate convolutions. This reduces the overall number
of parameters. The locally connected layer acts as an intermediate between convolutional layers and dense layers. Corresponding nodes between layers are fully
connected with their neighbors, much like the sliding-window method used by the convolutional layers. There are several other helping layers, such as the repeating
layer which extrudes a vector or tensor of a lower dimension into a tensor of a dimension higher. The max pooling layer reduces the dimension of the tensor and
takes the largest value in a specified axis of the input tensor. The batch normalization layer augments the tensor to have a mean of zero and a standard deviation of
one.
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previous blocks. Each block applies several types of different
convolutional neural network layers to its input. As a final
operation of each block, a point-wise convolution between the
intermediate output generated by the block’s convolutional
layers and the unmodified point input is computed. The
sequence and structure input are processed in this fashion in
two separate blocks (referred to as ‘Model 1’ and ‘Model 2’
shown in red and yellow in Fig. 1, respectively). Next, another
block (‘Model 3’ shown in purple in Fig. 1) uses as input the
output from the two aforementioned blocks and computes an
output vector that combines both sequence and structure
information. Lastly, a chain of dense layers is used to combine
the high-dimensional data vector generated by Model 3 to
predict the SHAPE score of a nucleotide in the form of
a single number.

Hyper-parameter optimization

Not all parameters of a neural network can be optimized by
gradient descent, such as the number of layers or the number
of nodes in a layer. These layers are often referred to as hyper-
parameters, and it is difficult to find the optimal hyper-
parameters for a model. In this paper we created a grid search
of the hyper parameter space to find the optimal configura-
tion of parameters that optimizes the prediction performance
of the model with respect to the training set of RNA strands.
The hyper parameter optimizer was used to find the ideal
configuration of nine different hyper parameters: number of
training epochs, batch size of the training data, the loss

function used, the number of parallel branches of the incep-
tion blocks, the length of the branches of the inception blocks,
the number of units in the dense layers of the regressor block,
the number of layers in the regressor block, and the amount
of dropout between layers of the regressor block.

Several thousand models were generated, and each were
trained on their own GPU node on the NIH Biowulf cluster,
then evaluated on the same set of data and the model with the
highest Pearson correlation coefficient was chosen.

Results

We applied the machine learning model on the transcript
sequences provided by Mustoe [7]. Note that while training
the complex model is very memory intensive (we found that
up to 250GB RAM were required), the application of the
trained model is reasonably fast and in need of only modest
memory (< 7GB RAM required).

Fig. 2 depicts the Pearson correlation coefficients of pre-
dicted SHAPE scores as well as scores derived from the
secondary structure prediction program called RNAplfold
[15]. Also shown are the Pearson correlation coefficients
between base pairing probabilities derived from the predicted
secondary structures provided by Mustoe and their under-
lying corresponding SHAPE scores. One can see that the deep
learning model leads to a higher Pearson correlation coeffi-
cient compared to the thermodynamic prediction provided by
RNAplfold. In Fig. 3 absolute differences between predicted

Figure 2. Correlations with experimental SHAPE scores for the machine learning method (red, ‘ML’), thermodynamic folding (blue, ‘rnaplfold’) and predicted
structures informed by the experimental SHAPE scores (green, ‘Mustoe’). The middle portion [‘Mustoe’) depicts the correlation between the secondary structures
probabilities accompanying the [7],publication (corresponding to thermodynamic folding informed by experimental SHAPE scores]. One can see that the machine
learning method shown in red (which did not have access to the experimental SHAPE scores for the used test cases) is performing similar or better compared to the
predicted structures informed by SHAPE scores [shown in green). The 3 experimental conditions indicated as ‘cellfree’, ‘incell’ and ‘kasugamycin’ correspond to the
three dataset provided in [7],of i] cell-free lysates, ii) in-cell conditions and iii) conditions of deactivated protein translation due to the presence of the kasugamycin
antibiotics.
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and experimentally determined SHAPE scores are shown in
the form of violin plots.

Example: RNA Structure around translation start sites

As an example of the utility of the approach we plotted the
experimental and predicted SHAPE scores around translation
start sites of mRNAs (Fig. 4). Also plotted are scores derived
from a thermodynamic folding prediction (see Methods). One
can see that the SHAPE score predictedwith themethod described
in this paper captures the tendency of nucleotides at and immedi-
ately upstream of the translation start sites to be relatively unstruc-
tured. Indeed, a statistical test results in statistically significant
differences in the position corresponding to the start codon com-
pared to its surrounding positions for the cases of the experimental
SHAPE score and SHAPE scores predicted by the machine learn-
ing approach (Fig. 4A,B left and middle). In contrast, the differ-
ences in the amount of predicted secondary structures for start
codons versus their surrounding nucleotides failed to reach statis-
tical significance using the thermodynamic folding approach (Fig.
4A,B right). This suggests that the deep learning method provides
added value compared to thermodynamic folding predictions that
do not take particular sequence motifs into account.

Discussion

There is a rich history of attempting to predict RNA secondary
structure from its sequence. Typical approaches rely on an equili-
brium thermodynamic model that represent RNA base pairing,

entropic and stacking effects. A search algorithm would then
determine RNA secondary structures corresponding to the mini-
mum free energy of the utilized model. It should be emphasized
that such models are inherently representing RNA folding ener-
getics akin to ‘in-vitro’ settings, where potential interactions with
other factors, such as proteins are not taken into account.

Building an explicit in-vivo model for RNA folding may be
a daunting task, because it might involve explicitly modelling
a large number of possible RNA-protein and RNA-RNA interac-
tion events. Building instead a quasi-probabilistic description
based on machine learning, trained with known experimental
results may instead be tractable. Modelling RNA SHAPE scores
have the advantage of providing a rather direct observation of
a one-dimensional relationship between sequence and score.
Another advantage is that there is due to recent transcriptome-
wide experiments sufficient data available to build non-trivial
machine learning models [7]. This approach is also attractive
because it is, to our knowledge, the first machine learning model
that is geared towards SHAPE scores. The model could be used in
future machine learning experiments as a constituent of a larger
model. Because the model seems to have detected at least some of
the novel aspects of in vivoRNA folding, it could be used to inform
a larger model about the insights of RNA folding it has learned.

We noticed that the prediction accuracy of the machine
learning algorithm is similar for the testing and training data
sets. A possible explanation for this observation is that RNA
structure (and therefore SHAPE scores) has non-local aspects
that go beyond the utilized 121 nucleotide window, for example
due to long-range secondary structure base pairing or due to

Figure 3. Violin plots of absolute difference between predicted and experimental SHAPE scores (red) compared to control where the correspondence between input
feature vector and output has been randomly shuffled (blue).
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RNA-protein binding events. A second possibility might be that
SHAPE scores may contain inherent noise due to peculiarities of
the utilized chemical reagent, 3D structure effects or effects due
to the noise introduced in the complex SHAPE score normal-
ization procedure. For example, we noticed previously in a study
that correlated SHAPE experiment data with known RNA 3D
structures, that SHAPE scores corresponding to stacking of
adjacent single-stranded nucleotides can have similarities with
SHAPE scores corresponding to base paired regions [16]. Since
stacking effects are not captured by regular secondary structure
data used for training and testing in the current study, they may
appear as ‘noise’ to the machine learning algorithm.

Interestingly, the approach is more successful for the cell-free
and kasugamycin data sets as opposed to the in-cell dataset. One
interpretation is that in the case of the in-cell system, active
translation leads to continuous disruption and melting of local
RNA secondary structures in mRNA coding regions. The algo-
rithmdoes not have an internal representation ofwhether a coding
region or a non-coding region is analysed. Augmenting the
machine learning model with additional biological knowledge of
this kind should improve the prediction accuracy further and will
be part of future work.
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