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Background. To investigate the pharmacological mechanism of Zhizhu pill (ZZP) against gastroesophageal reflux disease (GERD),
network pharmacology in combination withmolecular docking was applied in this study.Methods. Active compounds of ZZP and
target genes related to GERD were identified through public databases. Subsequently, the obtained data were used as a basis for
further network pharmacological analysis to explore the potential key active compounds, core targets, and biological processes
involved in ZZP against GERD. Finally, the results predicted by network pharmacology were validated by molecular docking.
Results. Twenty active components of ZZP were identified to act on 59 targets related to GERD. Enrichment analysis revealed that
multiple biological processes including response to oxygen levels, response to oxidative stress, and response to reactive oxygen
species were involved in the GERD ZZP treatment with ZZP. ZZP had an impact on the prognosis of GERD mainly through the
HIF-1 signaling pathway, PI3K-Akt signaling pathway, and pathways in cancer. Further analysis identified the key components
and core targets of ZZP against GERD, of which nobiletin, didymin, luteolin, and naringenin were key components, and PPARG,
MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA were the core targets. Molecular docking verified the
stable bonds formed between the key components and the core targets. Conclusions. 1e results of this study predict that the
therapeutic effects of ZZP in GERD are mediated at least in part via PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3,
AKT1, and VEGFA. 1ese results may be useful in providing an experimental basis and new ideas for further research on ZZP
in GERD.

1. Introduction

Gastroesophageal reflux disease (GERD) is a gastrointestinal
motility disorder in which gastric contents reflux into the
esophagus or oral cavity leading to symptoms or compli-
cations, with heartburn and regurgitation as typical symp-
toms [1, 2]. In United States, the prevalence of GERD is
estimated to be 19.8% [3], and the annual cost of managing
GERD amounts to $15–20 billion [4], which imposes a heavy

medical and economic burden on society. Furthermore,
long-term GERD can lead to esophageal inflammation and
esophageal cellular changes, thus increasing the risk of
developing esophageal cancer [1]. 1e first-line medical
treatment for GERD are proton pump inhibitors (PPIs) [5].
However, due to the complex pathophysiological mecha-
nism of GERD, the use of PPIs does not achieve the expected
effect [6–8]. As a result, complementary and alternative
therapies are gradually gaining interest [9].

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2022, Article ID 2996865, 13 pages
https://doi.org/10.1155/2022/2996865

mailto:wfy811@163.com
mailto:txdly@sina.com
https://orcid.org/0000-0002-5623-0564
https://orcid.org/0000-0002-9920-1931
https://orcid.org/0000-0002-3789-0743
https://orcid.org/0000-0001-6269-1896
https://orcid.org/0000-0002-5659-5360
https://orcid.org/0000-0001-5738-5827
https://orcid.org/0000-0002-1631-9636
https://orcid.org/0000-0002-1715-8643
https://orcid.org/0000-0002-4058-7905
https://orcid.org/0000-0003-0391-3895
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2996865


Chinese herbalmedicine (CHM) has beenwidely used for
symptom management of GERD in China [10]. Zhizhu pill
(ZZP), an ancient classical formula consisting of two herbs
(zhishi (Aurantii Fructus Immaturus) and baizhu (Atractyl-
odes macrocephala Koidz)), is originated from Shang Han
Zabing Lun (200–210, AD) and has been widely used for the
treatment of functional gastrointestinal diseases. Evidence
confirmed that the ZZP was beneficial for GERD treatment
[11]. Nevertheless, there is no literature expounding the un-
derlying therapeutic mechanism of ZZP so far.

Due to the “multicomponent” and “multitarget” charac-
teristics of CHM formula, it is difficult for traditional ex-
perimental methods to reveal the comodular association
mechanism of CHM-component-gene and disease. Network
pharmacology is an innovative approach to elucidate the
synergy and potential mechanisms of component-target and
target-disease networks [12–14], and it provides a new per-
spectiveon the therapeuticmechanismsofCHMformula [14].
Recently, in silico techniques were used to decode disease
targets and the development of novel drugs, and valuable
discoveries have been made. 1erefore, to uncover the
mechanism of ZZP for GERD, network pharmacology in
combinationwithmolecular dockingwas applied in this study
[15]. Workflow of the present study is detailed in Figure 1.

2. Methods

2.1. Screening of Active Compounds and Targets. 1e Tradi-
tionalChineseMedicineSystemsPharmacology (TCMSP) [16]
was applied to identify the compounds and targets of Aurantii
Fructus Immaturus, and Atractylodes macrocephala Koidz.
Oral bioavailability ≥30% and drug-like ≥0.18 were identified
as criteria for screening drug compounds [17]. UniProt [18]
was used to normalize gene symbols for acquiring targets.

2.2. Identification of Target Genes Related to GERD.
DrugBank (https://www.drugbank.ca/), TTD (https://bidd.
nus.edu.sg/group/cjttd/), PharmGKB (https://www.pharmg
kb.org/), and GeneCards (https://www.genecards.org/) were
applied to identify target genes related toGERD.A correlation
score ≥10 was established as a screening criterion for Gene-
Cards target genes [19].

2.3. Drug-Compound-Target Network Analysis. 1e com-
mon targets of drugs and diseases were obtained through a
Venn diagram, and the overlapping results were considered
as potential targets for ZZP treatment of GERD. To further
explore the correlation between drugs and diseases, the
drug-compound-target network was constructed with
Cytoscape 3.7.2 software [20].

2.4. GO and KEGG Enrichment Analysis. To further explore
the biological process of ZZP against GERD, GO and KEGG
enrichment analysis were carried out with clusterProfiler
package [21] in R 4.0.5 software. P< 0.05 was regarded as the
criterion for statistical differences.

2.5. PPI Analysis and Core Targets Identification. PPI
analysis was performed through STRING (https://string-db.
org/) with interaction score as 0.400 [22]. 1e Cytoscape
plugin cytoHubba [23] was applied to identify core targets by
calculating degree centrality, closeness centrality, between-
ness centrality, network centrality, eigenvector centrality,
and local average connectivity.

2.6. Verification through Molecular Docking. Based on the
core targets of ZZP against GERD that have been identified by
cytoHubba, molecular docking was performed with Discovery
Studio 2019 to validate the compound-target correlation. 1e
structures of key compounds and coremacromolecular protein
target receptors related to GERD were downloaded from
PubChem (https://pubchem.ncbi.nlm.nih.gov/) [24] and RCSB
PDB (https://www.rcsb.org/) [25], respectively. LibDock
docking conditions were as follows: docking preference was set
to high quality, conformational method was set to FAST, and
other parameters were set to default values. In the context of the
parameters based on the above settings, the optimal binding
site for each protein automatically identified by Discovery
Studio 2019 was docked to the corresponding molecule. A
higher LibDock score suggested a more plausible prediction of
target binding activity.

3. Results

3.1. Active Compounds and Targets. 1rough TCMSP, 65
compounds of Aurantii Fructus Immaturus and 55 com-
pounds of Atractylodes macrocephala Koidz were identified,
respectively. According to the oral bioavailability ≥30% and
drug-like ≥0.18, 21 active compounds of ZZP were identified
finally, of which 17 belonged to Aurantii Fructus Immaturus
and 4 toAtractylodes macrocephalaKoidz. Furthermore, 117
targets corresponding to these 21 active compounds were
identified. Details of the 21 active compounds and 117
targets are presented in Supplement A.

3.2. Targets Associated with GERD. By searching databases,
1613 target genes related to GERD were obtained, of which
1283 were downloaded from the GeneCards, 200 from
PharmGKB, 118 from DrugBank, and 12 from TTD. After
removing the duplicates, 1476 target genes related to GERD
were finally obtained. 1476 target genes are detailed in
Supplement B.

3.3. Network Construction. 1e Venn diagram (Figure 2)
identifies 59 overlapping targets for drugs and diseases. A
drug-compound-target gene network was constructed based
on the identified overlapping targets. As shown in Figure 3,
this network included 20 components, 59 targets, 82 nodes,
and 167 edges.

3.4. Enrichment Analysis of GO and KEGG. According to
the results of enrichment analysis, the biological processes
were mainly enriched in response to oxygen levels, response
to oxidative stress, response to reactive oxygen species,
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response to nutrient levels, cellular response to chemical
stress, aging, muscle cell proliferation, response to drug,
reproductive structure development, and response to toxic
substance. With KEGG analysis, pathways related to cancer,
endocrine resistance, lipid and atherosclerosis, AGE-RAGE
signaling pathway in diabetic complications, human cyto-
megalovirus infection, HIF-1 signaling pathway, and PI3K-
Akt signaling pathway were most significantly enriched.
More details of the enrichment results are presented in
Figure 4 and Table 1.

3.5. PPI Network and Core Subnetwork. With the PPI net-
work constructed by STRING, 58 nodes and 1250

interactions were observed. 1e first screening by cyto-
Hubba yielded a network of 25 nodes and 542 interactions,
and the second screening yielded a dense region network
with 10 nodes and 90 interactions. PPARG, MMP9, JUN,
TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1, and VEGFA
were identified as core targets. Details are presented in
Figure 5.

4. Results of Validation

Molecular docking was performed based on the ten core
targets and the four corresponding key active compounds.
According to the results of molecular docking, all LibDock
scores over “80” (Table 2), suggesting that all key active
ingredients were well docked to the corresponding targets.
3D and 2D molecular docking models are presented in
Figures 6 and 7, respectively.

5. Discussion

GERD is among the most frequent reasons for outpatient
gastroenterology consultation [36]. 1e first-line drugs
currently recommended for GERD treatment are PPIs;
however, the efficacy has not met expectations [6]. ZZP has
been widely used to treat GERD in China with definite
benefits, but the pharmacological mechanism has not been
elucidated. To uncover the pharmacological mechanism of
ZZP against GERD, network pharmacology in combination
with molecular docking was, therefore, applied in this study.
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Figure 2: Venn diagram of targets from ZZP and GERD.
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Figure 1: Workflow of the study.
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1rough public databases, 20 active compounds of ZZP
were found to act on 59 target genes related to GERD, which
further validated the “multicomponent” and “multitarget”
characteristics of ZZP. Based on these findings, it was
reasonable to adopt a network pharmacology approach to
elucidate the component-target and target-disease network
synergies and intrinsic mechanism of ZZP for GERD
treatment. To the best of our knowledge, this was the first
study to use a network pharmacology approach to reveal the
molecular mechanism of ZZP for GERD treatment.

With network pharmacology, multiple biological pro-
cesses including response to oxygen levels, response to re-
active oxygen species, and response to oxidative stress were
found to be involved in the treatment of GERD with ZZP.
1ese findings suggested that ZZP might play a role in the
treatment of GERD mainly by regulating oxidative stress. A
new view of the pathogenesis of GERDwas recently reported,
describing it as an inflammatory disease characterized by
increased production of cytokines, chemokines, and reactive
oxygen species (ROS), as well as disruption of the endoge-
nous antioxidant defense system [22]. 1e formation of ROS
and inflammation play an important role in GERD patho-
genesis, and often go hand in hand [37]. In the esophageal
mucosa of GERD patients, increased chemiluminescence,
peroxide, and superoxide dismutase have been observed [38].
Moreover, abnormal changes in oxidative stress markers
were observed in the esophageal mucosa of patients with
esophagitis, heterogeneous hyperplasia, or adenocarcinoma
[39], which further confirms that oxidative stress mediates

pathological changes in the esophageal mucosa. It is not
difficult to reveal the reasons for the above phenomenon
because ROS has an inhibitory effect on the endogenous
antioxidant system and esophageal reflux often stimulates the
excessive production of ROS [37]. In addition to inhibiting
gastric acid secretion, PPIs also target the inflammatory
response and oxidative stress in the esophageal mucosa [38].
According to KEGG analysis, ZZP have an impact on the
prognosis of GERD through the PI3K-Akt signaling pathway
and HIF-1 signaling pathway; both of these pathways are
closely related to inflammation and oxidative stress [26, 27].
In summary, the above evidence consistently reveals that
oxidative stress may be a new target for the prospective
treatment of GERD, and ZZP can play a therapeutic role
through this target.

Based on the findings of network pharmacology, further
analysis was conducted to identify the key active compounds
and core targets. Nobiletin, didymin, luteolin, and nar-
ingenin were identified as the key active compounds of ZZP
against GERD. It has been found that didymin is beneficial
to prevent the generation of ROS as well as lipid perox-
idation products and the release of inflammatory cytokines
and chemokines, thereby protecting the digestive tract
[28, 29]. 1erefore, didymin is regarded as a promising
natural therapeutic agent with antioxidant effects. For
luteolin, it has been found to reduce ROS and LOOH levels,
which in turn play a role in regulating oxidative stress [30].
Moreover, it can also improve inflammation by decreasing
the levels of TNF, IL-1β, and IL-6 and increasing the levels of
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IL-4 and IL-10 [30]. For naringenin, its antioxidant effects
are mainly attributed to the promotion of free radical re-
duction and enhancement of antioxidant activity [31]. Re-
cent evidence suggests that naringenin supplementation also
helps to suppress cytokine expression, which in turn pre-
vents intestinal barrier defects [32]. 1us, the key compo-
nents predicted in this study have antioxidant and
inflammatory modulating effects, and these findings are
supported by early evidence.

PPARG, MMP9, JUN, TP53, PTGS2, EGFR, MAPK3,
CASP3, AKT1, and VEGFA were predicted as the core
targets of ZZP against GERD. For PPARG, it belongs to
oxidative stress genes and is involved in the regulation of
ROS production and inflammatory responses [33]. MMP9
is involved in the breakdown of extracellular matrix
during normal physiological processes and is closely as-
sociated with tissue damage/repair [34]. It is well known
that GERD is defined as symptoms or tissue damage
caused by abnormal reflux of stomach contents into the
esophagus [35]. Significant FUN expression was observed

in esophageal cells stimulated by DNAmicroarray in a low
pH environment, indicating that JUN may play an im-
portant role in the development of GERD [40]. It may
therefore be a potential target for the treatment of GERD.
Tp53 is a tumor suppressor gene that, once mutated,
would promote GERD to esophageal adenocarcinoma
[41]. PTGS2, a protein-coding gene involved in regulating
inflammation, has become a therapeutic target for many
inflammatory diseases [42, 43] and is therefore expected to
be a new therapeutic target for GERD. EGFR plays an
important role in epithelial repair, and patients with
GERD have been found to have lower EGFR expression
levels than patients with Barrett’s esophagus or esophageal
adenocarcinoma, indicating that EGFR expression is di-
rectly associated with disease progression [44]. MAPK3 is
involved in the regulation of inflammation, and inhibitors
of MAPK3 have been found to have a beneficial effect on
inflammatory diseases [45]. For CASP3, it is involved in
the production of reactive oxygen species and therefore
has a crucial role in the regulation of oxidative stress [46].
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Activation of Akt1 is associated with inflammation, oxi-
dative stress, and accumulation of oxidized lipids, and these
events form a positive feedback loop that exacerbates the
consequences of oxidative stress [47]. VEGFA can stimulate
endothelial cell proliferation, chemotaxis, and vascular per-
meability, and some studies suggest that the expression of
VEGFA is closely related to inflammation and can be used as
an early marker of inflammatory diseases [48]. In summary,
targets predicted in this study are all involved in the regulation
of oxidative stress and inflammation, and these results cor-
roborate the feasibility of ZZP in the treatment of GERD at
the molecular level.

With molecular docking analysis, all LibDock score of
key components to core targets were over “80,” indicating
that ZZP can effectively bind to specific proteins in GERD

targets. 1ese binding results further validate that the
predicted results of network pharmacology are credible.

Limitations must be acknowledged. First, the upregulation
and downregulation of predicted targets cannot be clarified by
a network pharmacology approach and is therefore not
conducive to an accurate understanding of the mechanism of
components acting on targets. Second, only compounds of
ZZP in TCMSP were analyzed, which might have caused the
absence of some components and therefore limited the ac-
curacy of the results. 1ird, limited by the deficiencies of
systems biology, multidirectional pharmacology, computa-
tional biology, and network analysis, this study provided only
preliminary predictions, and the results have not been verified
in clinical and basic experiments. 1us, further pharmaco-
logical experimental validation is still necessary.

Table 1: Results of GO and KEGG enrichment analysis.

Domain ID Description P value
BP GO: 0031667 Response to nutrient levels 3.35E−19
BP GO: 0062197 Cellular response to chemical stress 9.33E−19
BP GO: 0007568 Aging 2.74E−18
BP GO: 0006979 Response to oxidative stress 3.91E−18
BP GO: 0033002 Muscle cell proliferation 2.50E−17
BP GO: 0042493 Response to drug 1.31E−16
BP GO: 0000302 Response to reactive oxygen species 4.22E−16
BP GO: 0048608 Reproductive structure development 8.94E−16
BP GO: 0009636 Response to toxic substance 2.80E−14
BP GO: 0070482 Response to oxygen levels 5.06E−14
CC GO: 0045121 Membrane raft 4.79E−08
CC GO: 0098857 Membrane microdomain 4.93E−08
CC GO: 0098589 Membrane region 7.07E−08
CC GO: 0005635 Nuclear envelope 1.45E−07
CC GO: 0031983 Vesicle lumen 5.65E−07
CC GO: 0005769 Early endosome 1.79E−06
CC GO: 0005667 Transcription regulator complex 3.78E−06
CC GO: 0000307 Cyclin-dependent protein kinase holoenzyme complex 8.44E−06
CC GO: 0090575 RNA polymerase II transcription regulator complex 8.90E−06
CC GO: 0009925 Basal plasma membrane 1.68E−05
MF GO: 0019902 Phosphatase binding 1.00E−12
MF GO: 0019903 Protein phosphatase binding 4.10E−11
MF GO: 0031625 Ubiquitin protein ligase binding 4.17E−07
MF GO: 0042277 Peptide binding 5.66E−07
MF GO: 0004879 Nuclear receptor activity 6.69E−07
MF GO: 0098531 Ligand-activated transcription factor activity 6.69E−07
MF GO: 0044389 Ubiquitin-like protein ligase binding 7.01E−07
MF GO: 0140297 DNA-binding transcription factor binding 1.52E−06
MF GO: 0061629 RNA polymerase II-specific DNA-binding transcription factor binding 2.11E−06
MF GO: 0001223 Transcription coactivator binding 2.15E−06
KEGG hsa01522 Endocrine resistance 1.79E−21
KEGG hsa05219 Bladder cancer 5.14E−21
KEGG hsa05215 Prostate cancer 6.44E−20
KEGG hsa05212 Pancreatic cancer 8.38E−17
KEGG hsa05417 Lipid and atherosclerosis 1.90E−16
KEGG hsa04933 AGE-RAGE signaling pathway in diabetic complications 4.77E−15
KEGG hsa05163 Human cytomegalovirus infection 8.07E−15
KEGG hsa04066 HIF-1 signaling pathway 4.28E−13
KEGG hsa05207 Chemical carcinogenesis—receptor activation 8.16E−13
KEGG hsa04151 PI3K-Akt signaling pathway 1.78E−12
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Table 2: Results of molecular docking.

Query Core genes PDB ID Ingredients LibDock score
1 PPARG 1k74 [26] Nobiletin 84.918
2 MMP9 1gkc [27] Nobiletin 113.515
3 JUN 1a02 [28] Nobiletin 81.876
4 TP53 6wqx [29] Nobiletin 80.841
5 PTGS2 5f19 [30] Didymin 171.327
6 EGFR 1ivo [31] Luteolin 88.705
7 MAPK3 2zoq [32] Naringenin 82.912
8 CASP3 1cp3 [33] Naringenin 90.267
9 AKT1 3mv5 [34] Luteolin 102.336
10 VEGFA 1tzh [35] Luteolin 101.616
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6. Conclusion

1e results of this study predict that the therapeutic effects of
ZZP in GERD are mediated at least in part via PPARG,
MMP9, JUN, TP53, PTGS2, EGFR, MAPK3, CASP3, AKT1,
and VEGFA. 1ese results may be useful in providing the
foundation for subsequent experimental investigation and
may offer ideas for the multidimensional and multilevel
research of CHM formulae.
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