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Scaling crossover in thin-film drag 
dynamics of fluid drops in the Hele-
Shaw cell
Misato Yahashi, Natsuki Kimoto & Ko Okumura

We study both experimentally and theoretically the descending motion due to gravity of a fluid drop 
surrounded by another immiscible fluid in a confined space between two parallel plates, i.e., in the Hele-
Shaw cell. As a result, we show a new scaling regime of a nonlinear drag friction in viscous liquid that 
replaces the well-known Stokes’ drag friction through a clear collapse of experimental data thanks to 
the scaling law. In the novel regime, the dissipation in the liquid thin film formed between the drop and 
cell walls governs the dynamics. The crossover of this scaling regime to another scaling regime in which 
the dissipation inside the droplet is dominant is clearly demonstrated and a phase diagram separating 
these scaling regimes is presented.

Dynamics of liquid drops is familiar in daily life: we observe rain drops rolling on a new umbrella, honey dripping 
off from a spoon, and oil droplets floating on the surface of vegetable soup and so on. Such everyday phenom-
ena are in fact important not only in physical sciences1–7 but also in a variety of practical issues such as ink-jet 
printing8, microfluidics manipulations9,10, and emulsification, formation of spray and foams11–13. From such phe-
nomena familiar to everybody, researchers have successfully extracted a number of scaling laws representing 
the essential physics14, which include scaling laws associated with the lifetime of a bubble in viscous liquid15,16 
and contact dynamics of a drop to another drop17,18 or to a solid plate19,20. Here, we report on a crossover of two 
scaling regimes experimentally revealed for viscous friction acting on a fluid drop in a confined space. In par-
ticular, we study the descending motion (due to gravity) of an oil droplet surrounded by another immiscible oil 
in a Hele-Shaw cell. The friction law thus revealed is nonlinear and replaces the well-known Stokes’ law in the 
Hele-Shaw cell geometry.

A closely related topic of the rising bubble in a Hele-Shaw cell is theoretically discussed by Taylor and Saffman 
in a pioneering paper21 in 1958 (earlier than the Bretherton’s paper on bubbles in tubes22,23). The solution of 
Taylor and Saffman was further discussed by Tanveer24. There are many other theoretical works on fluid drops 
in the Hele-Shaw cell geometry, notably in the context of the topological transition associated with droplet 
breakup25–28. As for experimental studies, a number of researchers have investigated the rising motion of a bub-
ble in a Hele-Shaw cell29–31. However, unlike the present study, systematic and quantitative studies in a constant 
velocity regime have mostly concerned with the case in which there is a forced flow in the outer fluid phase and 
most of the studies have been performed with the cell strongly inclined nearly to a horizontal position (one of a 
few examples of the case with the cell set in the upright position but with external flow32 demonstrates relevance 
of the present work to important problems in petroleum industry, such as the suction of crude oil from the well).

One of the features of the present study compared with most of previous ones on the dynamics of fluid drops 
in a Hele-Shaw cell is that in the present case the existence of a thin liquid film surrounding a fluid drop plays a 
crucial role: In many previous works, the existence of such thin films is not considered. In this respect, the present 
problem is closely related to the dynamics governed by thin film dissipation such as the imbibition of textured 
surfaces33–38. In this sense, our problem is quasi two-dimensional, although the geometry of the Hele-Shaw cell is 
often associated with a purely two-dimensional problem.

Experiment
We fabricated a Hele-Shaw cell of thickness D16,18,39 and filled the cell with olive oil (150-00276, Wako; kinematic 
viscosity νex =​ 60 cS and density ρex =​ 910 kg/m3). This oil plays a role of an external surrounding liquid for a 
drop of poly(dimethylsiloxane) (PDMS) to be inserted at the top of the cell using a syringe (SS-01T, Termo). 
We observe the inserted drop going down in the cell, as illustrated in Fig. 1(a), because of the density difference 
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Δ​ρ =​ ρin −​ ρex >​ 0. The drop density ρin depends on its kinematic viscosity νin only slightly (see the details for 
Methods). The drop size is characterized by the cell thickness D and the width RT, i.e., the size in the direction 
transverse to that of gravity (see Fig. 1(b)), which is slightly smaller than the size in the longitudinal direction, RL. 
As shown in Fig. 1(c), a thin film of olive oil exists between a cell plate and the surface of the drop. We can think of 
two limiting cases for the distribution of liquid flow: (1) Internal Regime: The velocity gradient is predominantly 
created in the internal side of the droplet as in the left illustration. (2) External Regime: The gradient is predomi-
nantly exists in the external side of the droplet as in the right.

The width and height of the cell are 10 cm and 40 cm, respectively, and are much larger than the drop size to 
remove any finite size effects in the direction of width and height. The cell is made of acrylic plates of thickness 
5 mm, to avoid thinning deformation of the cell due to the effect of capillary adhesion14.

We took snapshots of the descending drop at a regular time interval using a digital camera (Lumix DMC-G3, 
Panasonic) and a camera controller (PS1, Etsumi). The obtained data were analyzed with the software, Image 
J, to obtain the position as a function of time to determine the descending velocity of the drop. Some examples 
are shown in Fig. 1(d). This plot show the following facts. (1) The descending motion can be characterized by a 
well-defined constant velocity (to guarantee a long stationary regime, the cell height is made significantly larger 
(40 cm) than the drop size; because of a small density difference, the constant-velocity regime starts after a long 
transient regime). (2) The descending velocity is dependent on the kinematic viscosity of the internal liquid of the 
drop νin for the thinner cell (D =​ 0.7 mm) as predicted in the previous study40, which is not the case for the thicker 
cell (D =​ 1.5 mm); These examples clearly demonstrate the existence of a novel scaling regime different from the 
one discussed in the previous study40.

In the present study, the dependence of the descending velocity on the drop size is negligible. In the previ-
ous study40, it was found that the descending speed of drops is dependent on RT for RT/D <​ 10 if a glycerol drop 
goes down in PDMS oil. However, in the present combination (i.e., a PDMS drop going down in olive oil), we 

Figure 1.  (a) Experimental setup. Gravity is acting in the x-direction. (b) Front view of a PDMS drop of 
kinematic viscosity νin =​ 1000 cS going down in olive oil in a Hele-Shaw cell of thickness D =​ 2 mm. (c) 
Magnified side views of droplets with the velocity gradient in the internal end external regimes. (d) Position of 
the PDMS drop x as a function of elapsed time t.
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do not observe a significant dependence on RT in our data even for fairly small drops, whereas RT is in the range 
1.31 <​ RT/D <​ 15.8 in the present study (the size dependence in the previous study may be caused by the polarity 
of the glycerol aqueous solution: We expect that if the liquid is polar, the drop may subject to electrostatic (attrac-
tive) force from the acrylic cell plates and this effect tends to make the drop less mobile). The data analysis below 
neglects any possible small dependences of the velocity on the drop size.

Theory
At the level of scaling laws, the characteristic energy scales are given as follows. The gravitational energy gain for 
the descending drop per unit time is expressed as

α ρ= ∆ gR R DV, (1)T L

where α is a numerical coefficient. The viscous dissipation per unit time in the internal regime discussed above 
(Fig. 1(c) left) is written as

α η=TS k V D R R D( / ) ( / ) , (2)in in in T L
2

where α/kin is a numerical coefficient. Strictly speaking, because of the existence of the thin film of thickness h 
(Fig. 1(c)), the velocity gradient V/D in the above expression should be replaced with V/(D −​ 2h), which is not 
essential, however, because the relation D ≫​ h is well satisfied in the present study (see the next section). The vis-
cous dissipation per unit time in the external regime discussed above (Fig. 1(c) right) is given as

α η=TS k V h R R h( / ) ( / ) , (3)ex ex ex T L
2

where α/kex is a numerical coefficient.
In the internal regime the velocity is given by the balance between TSin and  ,

ρ η= ∆V k gD / , (4)in in in
2

whereas in the external regime the velocity is given by the balance between TSex and  ,

ρ η= ∆ .V k gDh/ (5)ex ex ex

The thickness of the thin film formed between the drop and cell plates may be given by the law of Landau, 
Levich and Derjaguin (LLD),

κ= −h k Ca , (6)LL
2/3 1

where the numerical coefficient is of the order of unity14 (kLL =​ 0.94, in the original papers41,42). Here the capillary 
length κ−1 is defined as κ γ ρ= ∆− g/( )1 , which is smaller than the cell thickness D (If otherwise, the length κ−1 
is replaced with D with the coefficient kLL =​ 1.33743). The capillary number Ca is defined as

η γ=Ca V / (7)ex ex

Removing h from Eqs (5) and (6), we obtain another expression for the velocity in the external regime,

η γ κ= −V k D/ ( / ) (8)ex ex 1
1 3

with k1 =​ kexkLL. Removing Vex from Eqs (5) and (6), we obtain an expression for the thickness of the thin film,

κ κ=− −h k D/ ( / ) (9)1
2

1 2

with = =k k k k kLL ex LL2
3/2 1/2

1.
The condition for the internal regime is given by < TS TSin ex, which leads to the equation, ηex/ηin >​ k3D/κ−1. 

In other words, the phase boundary between the internal and external regimes is given by

η η κ= −k D/ / (10)ex in 3
1

with =k k k/ in3 1
3 . This means that the phase boundary between the internal and external regime is a straight line 

with the slope k3 on the plot of ηex/ηin as a function of D/κ−1.

Experiment and Theory
The experimental data for the descending velocity of drops V are plotted as a function of Δ​ρgD2/ηin in Fig. 2(a). 
In view of Eq. (4), the data points in the internal regime would be on a straight line of slope 1. This is almost true: 
there is a series of data well on the dashed line of slope close to one. Naturally, there is a slight deviation from the 
theory: the slope of the straight dashed line obtained by a numerical fitting is in fact 1.24 ±​ 0.06, a value slightly 
larger than one, but the coefficient corresponding kin is 0.150 ±​ 0.015, the order of magnitude of which is consist-
ent with the scaling arguments.

Some detailed remarks for the above arguments are as follows. (1) Even in the previous study40 in which the 
internal scaling regime was confirmed for the first time, the scaling regime described by Eq. (4) was shown with 
some deviations, similarly to the present case (whereas another scaling regime first established in the previous 
paper40 is almost perfectly demonstrated). (2) We note here that the data represented by the red filled circle 
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and red filled inverse triangle are exceptional ones and their seemingly strange behavior will be explained in 
Discussion. (3) We have confirmed that even if we replace D with D −​ 2h in the analysis (by using the thickness h 
estimated from Equation (6)) when D is used as a length scale characterizing the viscous gradient (i.e., when D is 
used in the expression V/D in Eq. (2)), any visible differences are not introduced into the plots given in Fig. 2 (This 
correction could be motivated by considering the existence of thin films surrounding the drops as in Fig. 1(c) as 
mentioned above).

In Fig. 2(b), it is shown that some of the data we obtained clearly satisfy Eq. (8), which describes the external 
regime. In Fig. 2(b), we collected the data points that are off the dashed line of slope close to one in Fig. 2(a) and 
that are thus ruled out from the internal regime. The data thus selected and plotted in Fig. 2(b) are almost on the 
straight line of slope 3 in accordance with Eq. (8). The straight line is obtained by a numerical fitting with fixing 
the slope to 3.0; as a result of this fitting, the coefficient is given as k1 =​ 0.167 ±​ 0.003, the order of magnitude of 
which is consistent with the scaling arguments.

We confirm this scaling law in Eq. (8) also in Fig. 2(a). In the light of Eq. (8), the data in the external regime 
for a given D should take almost the same values, because ηex and γ are both constant and κ−1 is almost constant 
(note that Δ​ρ is almost constant) in the present study. In fact, in Fig. 2(a), the data points for a fixed D that are off 
the dashed line, which data are shown to be in the external regime in Fig. 2(b), take almost a constant value, that 
is, they are located almost on a horizontal line. This fact also confirms that the data in question are independent 
of ηin, that is, they are certainly not in the internal regime. Strictly speaking, the data labeled as a given D can have 
slightly different measured values of D (see Methods), which is the main reason the data for a “given” D that are off 
the dashed line in Fig. 2(a) slightly deviate from the straight horizontal line corresponding the D value.

The scaling law in Eq. (8) can be confirmed in Fig. 2(a) in a still another way. The open marks of the same 
shape, say diamond, but with different colors (that are the data for a given νin but with different D) are almost on 
a straight line of a slope close to one (This slope may seem to be slightly larger than one, which may be because 
of the uncertainty on the cell spacing D as already mentioned in the last sentence of the paragraph just above this 
one, or because the exponent 3 in Equation (8) may be in fact slightly larger than 3 in a more complete theory 
beyond the present arguments at the level of scaling laws). For a such series of data, the velocity V scales with D3 
according to Eq. (8), thus when plotted as a function of D2 as in Fig. 2(a), the quantity linearly scales with D, as 
reasonably well confirmed.

The phase diagram based on Eq. (10) is shown in Fig. 2(c), in which we plot all the data (except for the special 
data mentioned above), to demonstrate further consistency of the present arguments. As expected from Eq. (10), 

Figure 2.  (a) Plot of V vs. Δ​ρgD2/ηi. The data in the internal regime are on the dashed line, whereas the 
data in the external regime are on horizontal lines for each cell thickness D. The crossover between the two 
regimes would occur at the cross point of the dashed line and each horizontal line. (b) Plot of ηexV/γ vs D/κ−1, 
confirming the external regime. (c) Plot of ηex/ηin vs D/κ−1, showing the phase diagram for the two scaling 
regimes. Throughout (a–c), the data in the external and internal regimes are represented by open and filled 
symbols, respectively. The color and shape of the symbols are fixed for a given D and a given νin, respectively.
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we can indeed draw a straight line of slope 1 on Fig. 2(c), which divides the internal and external regimes; Above 
the straight line of slope 1 in Fig. 2(c) lie the data in the internal regime described by Eq. (4), i.e., the data on the 
straight dashed line in Fig. 2(a); Below the straight line in Fig. 2(c) lie the data in the external regime described by 
Eq. (8), i.e., the data on the straight line in Fig. 2(b). The coefficient k3 of Eq. (10), i.e., the line dividing two 
regimes shown in Fig. 2(c), is k3 =​ 0.017, the order of magnitude of which is consistent with the scaling arguments 
in a profound sense: The numerical coefficient, kin, k1, and k3, are predicted to satisfy the relation =k k k/ in3 1

3 , and 
this relation is satisfied at a quantitative level in the present analysis (0.017 vs . . .(0 167) /0 15 0 0313 ). This quan-
titative agreement is indeed quite satisfactory, if we consider slight deviations of the data from the predicted the-
ory. For example, the value 0.15 used in the estimation in the parentheses is not the value of kin itself (the precise 
definition of kin is the coefficient appearing in Eq. (4), Vin =​ kinΔ​ρgD2/ηin, but the value of kin, 0.15, used in the 
above is in fact the value of the coefficient ′kin appearing in the relation ρ η= ′ ∆ αV k gD( / )in in in

2  obtained when the 
data corresponding to the internal regime in Fig. 2(a) are numerically fitted by this relation with α determined to 
be not equal to one but close to 1.24, as mentioned in the first paragraph in Experiment and Theory). In addition, 
the exponent in (8) might also be slightly deviated from 3 as suggested in the paragraph just above this one.

The crossover from the internal to external regime can explicitly be seen in the data for D =​ 1.0 mm (red 
data) in Fig. 2(a). As ηin decreases from the left-most data for νin =​ 30000 cS (red open diamonds) to the data 
for νin =​ 5000 cS (red open inverse triangle), the velocity is independent of νin, which reveals that the three data 
on the horizontal line are in the external regime. However, the data for νin =​ 1000 cS and νin =​ 500 cS are on the 
straight dashed line with a slope close to one, which confirms that these two data are in the internal regime. Since 
the phase boundary expressed by Eq. (10) is obtained also by equating Vin and Vex in Eqs. (4) and (8), the cross-
over between the two regimes occurs in Fig. 2(a) near at the cross point between the horizontal line connecting 
the data on the external regime for a given D and the straight dashed line of a slope close to one representing the 
internal regime.

The behavior of the data close to the crossover points are quite intriguing. The data for D =​ 2.0 mm and 3.0 mm 
at νin =​ 1000 cS (green filled square and purple filled square) are located at the position close to the phase bound-
ary in Fig. 2(c) (and the data have already been confirmed to be in the internal regime in Fig. 2(a): in this plot, 
these data points are reasonably well on the dashed line). We have confirmed that, when these two data are plotted 
in Fig. 2(b), they are nearly on the straight line of slope close to 3 in Fig. 2(b). The two points can be described 
by both Eqs (4) and (8), which is reasonable because they are nearly on the phase boundary. However, this is not 
always the case. The data for D =​ 0.7 mm and νin =​ 5000 cS (black filled inverse triangle) and for D =​ 1.5 mm and 
νin =​ 3000 cS (blue open triangle) are also positioned close to the phase boundary in Fig. 2(c). However, the for-
mer is rather in the internal regime and the latter rather in the external regime. This is in a sense logical because 
the blue open triangle is rather away from the crossover point for D =​ 1.5 mm in Fig. 2(a) but this is not the case 
for black filled inverse triangle. In general, how quickly the crossover occurs seems to be a subtle problem.

Discussion
The direct measurement of the thickness h supports the above analysis. We used a laser distance sensor 
(ZS-HLDS2 +​ ZS-HLDC11 +​ Smart Monitor Zero Pro., Omron), as illustrated in Fig. 3(a). The measurement is 
extremely delicate and difficult, because we have six reflective planes I to VI with significantly different strengths 
of reflection where the target two reflections II and III are the smallest and the second smallest among them (see 
Fig. 3(b)). The six surfaces are the front and back surfaces of the front cell plate (interface I and II), the front and 
back interfaces between olive oil and the PDMS drop (interface III and IV), and the front and back surfaces of the 
back cell plate (interface V and VI). To determine h, we need to detect reflection from interface II and III, where 
the reflection from II is small compared with that of III (see Fig. 3(b)) and significantly small compared with that 
of I, because the refractive index of olive oil is nolive =​ 1.47, that of acrylic plate is nacr =​ 1.491, that of PDMS oil 
is nPDMS =​ 1.403 and that of air is nair =​ 1. Furthermore, the object (the descending drop) is moving. In spite of 
these experimental difficulties, we obtained a reasonably good correlation between the measured thickness and 
the experimentally obtained value as shown in Fig. 3(c), by virtue of various efforts (for example, in the screen 
shot Fig. 3(b), the two target peaks are intensionally positioned off-center because the precision of measurement 
becomes the maximum when the reflection angle is the largest). Here, the slope of the line obtained by a numer-
ical fitting is 0.749 ±​ 0.027 (the slope here is not the exponent but the coefficient for the linear relationship), the 
order of magnitude of which is consistent with the scaling argument.

Exceptional data mentioned above reveal an intriguing phenomenon. In Fig. 2(a), the data for D =​ 1 mm 
and for νin =​ 10000 cS are represented by two different marks, the red filled circle and the red open circle, with 
the former described by the internal regime and the latter by the external regime. The data for D =​ 1 mm and for 
νin =​ 5000 cS are also categorized into two filled and open symbols. The experimental difference in acquiring these 
two different types (filled and open symbols) of data obtained for identical drop viscosity and cell spacing is that, 
when the drop goes down on the same path multiple times in the same cell, the first drop is in the external regime 
(open marks) whereas the drop going down after the first one is always in the internal regime (filled marks). This 
apparently mysterious effect is quite reproducible and is understood by considering a possibility of mixing of 
olive oil and PDMS at the surface of the drops. For the first drop, such a mixing effect is negligible and the drop 
is governed by the dynamics of the external regime. However, after the first one, because of the mixing effect, the 
viscosity of the thin film surrounding the drop increases (because νin ≫​ νex) so that making a velocity gradient 
in the external thin film is no longer favored in terms of energy and instead the velocity gradient inside the drop 
is favored to realize the dynamics in the internal regime. Because of this reason, the red filled circles and the red 
filled inverse triangles are not shown in the phase diagram given in Fig. 2(c). This seemingly mysterious behav-
ior tends to be suppressed if the viscosity is too small (because the “external” viscosity does not get sufficiently 
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viscous), or too large (because the mixing is not sufficiently effective). This is why we observed this phenomenon 
only for the two values of viscosity.

The present study suggests that Stokes’ drag friction F =​ 6πηexVR for a solid sphere of radius R surrounded by 
a viscous liquid of viscosity ηex is replaced in the external regime of the Hele-Shaw cell geometry by

η η κ .− −
 F VR R h Ca VR R/ / (11)ex ex T L ex T L

2/3 1

This expression possesses a nonlinear dependence on the velocity V due to the extra V dependence contained 
in the capillary number Ca. This is strikingly different from the two other expressions for the drag force: 

ηF VR R D/in in T L  and ηF VR D/bubble ex T
2 , which are both linear in velocity; The former corresponds to the 

internal regime in the present study, whereas the latter corresponds to the case in which the dominant dissipation 
is the one associated with the velocity gradient V/D in the surrounding external liquid40. The viscous friction 
forces including the nonlinear friction in Eq. (11) are relevant to the dynamics of emulsion, foam, antifoam and 
soft gels13,44,45, in particular, nonlinear rheology of such systems46–48.

We intentionally used several times the phrase, “ the order of magnitude of which is consistent with the scaling 
argument,” which may be vague compared with an expression like, “ being of order one further supports the scal-
ing argument.” The reason we used the seemingly vague expression is that whether a coefficient for a scaling law 
is of the order of one or not is in fact a subtle issue. Depending on the problem or on the definition of the coeffi-
cient, the orders of magnitude can be fairly larger or smaller than one. An example of such a case can be given by 
exploiting the relation, =k k k/ in3 1

3 , given above: The three coefficients, k1, k3, and kin are all coefficients for some 
scaling laws so that, for example, k1 and kin can be 5 and 1, respectively, but this example implies k3 is much larger 
than one (k3 =​ 53).

In the present study, the consistency of the whole scaling arguments is checked in several ways, which clearly 
deepens our physical understanding. For example, a new scaling regime is demonstrated through a clear data col-
lapse (Fig. 2(b)), and the crossover of this regime to another is shown (Fig. 2(a)), which is completed by the phase 
diagram (Fig. 2(c)) and a separate measurements on thin-film thickness (Fig. 3(c)). In addition, data arrange-
ments in the crossover diagram (Fig. 2(a)) are interpreted from various viewpoints, confirming the consistency 
of the arguments.

Conclusion
In summary, we show in Fig. 2(b) the existence of a novel scaling regime for the descending velocity of a drop 
surrounded by thin external fluid in the Hele-Shaw cell, in which regime the viscous dissipation in the thin film 
is essential. This regime corresponds to a nonlinear form of viscous drag friction. In this regime, the thickness of 
the film is determined by the law of LLD, as directly confirmed in Fig. 3(c). The crossover between this regime and 
another regime in which the viscous dissipation in the internal side of the drop governs the dynamics is shown in 
Fig. 2(a). The phase boundary between the two regimes are given in Fig. 2(c).

Figure 3.  (a) Setup for the thickness measurement. (b) Example of the screen shot of the three peaks (the left to 
the right) originating from interface IV, III and II (see the text for the details). The distance between IV and III is 
obtained by multiplying nPDMS to the distance, whereas that between III and II is obtained via nolive instead.  
(c) Plot of the experimentally obtained value of the thin film thickness hexp vs. the theoretical estimation hth.  
The theoretical value hth is obtained by Eq. (9) with the coefficient =k k kLL2

1/2
1 with k1 =​ 0.15 and kLL =​ 0.94.
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There are some other scaling regimes for the viscous drag friction in the Hele-Shaw cell geometry with the 
existence of thin films surrounding a fluid drop. For example, the dissipation associated with the velocity gradient 
V/D in the internal drop liquid has been revealed to be important for a rising bubble in the Hele-Shaw cell40. The 
dissipation associated with the dynamic meniscus (in the context of LLD theory14,41,42) formed in the external 
thin-film has been found to be important in a non Hele-Shaw cell geometry49. In addition, the present external 
regime will give another scaling law if the capillary length κ−1 is, unlike in the present study, larger than the cell 
thickness D.

Confirmation of such other regimes for viscous drag friction in the Hele-Shaw cell geometry, as well as cross-
overs among various scaling regimes would be explored in future studies. The simple friction laws for confined 
fluid drops and the crossover between them revealed in the present study (and in future studies) are relevant to 
fundamental issues including rheology of foam and emulsion, as well as applications such as in microfluidics.

Methods
The density of PDMS oil ρin slightly depends on viscosity: (1) 970 kg/m3 for the kinematic viscosities νin =​ 500, 
1000, and 3000 cS (SN-4, SN-5, and SN-6, As One). (2) 975 kg/m3 for νin =​ 5000 and 10000 cS (SN-7 and SN-8, As 
One). (3) 976 kg/m3 for νin =​ 30000 cS (KF-96H, ShinEtsu).

The cell thickness D is controlled by spaces, and is directly measured using the laser distance sensor 
(ZS-HLDS5, Omron) for most of the cells. In all the figures of the present study, for simplicity, the cell thickness D 
is represented by an approximate value, which is slightly different from measured values. For some of the data the 
measurement of D was not performed and in such a case an approximate value of D is used, instead of measured 
values, to plot the data points, which does not cause serious difficulties in analyzing and interpreting the data. 
This is because the difference between the D value used for labeling and the measured value of the cell thickness 
is rather small.

The interfacial tension between PDMS and olive oil was measured by using pendant drop tensiometry. It is 
recently discussed that measured values for pendant drops are dependent on Bond number and Worthington 
number, with both scaling with ρ γ= ∆B gR /0

2  (R0: the drop radius at the apex of the pendant drop) when the 
drop size is of the same order of magnitude as the needle diameter, and that the measured value approach the 
correct value as B approaches one50 (one could expect that the experimental precision will be optimized when the 
drop is most “swelled,” that is, when the droplet is on the verge of detaching off from the needle tip due to gravity, 
that is, when B =​ 1). We measured the value of tension as a function of B by using the software, OpenDrop, devel-
oped by Michael Neeson, Joe Berry and Rico Tabor. We extrapolated the data thus obtained to the value at B =​ 1 
to have a pragmatic value, γ =​ 0.78 mN/m, because it was experimentally difficult to approach B =​ 1. This is pos-
sibly because the tension is significantly small, which might lead to an extra error in the measurement.

Even though the measurement of the interfacial tension contains an extra error and our analysis numerically 
depends on the measured value, this does not bring any uncertainties in the present arguments at the level of 
scaling laws. We explain this by an example. Introducing the experimentally measured value of surface tension γm, 
we define a numerical coefficient β as γ =​ β2γm and the corresponding capillary length κ βκ=− −

m
1 1. With these 

“measured” quantities, Eq. (8) can be expressed as η γ κ= −V k D/ ( / )ex ex m m m1,
3 1 3 with β=k k /m1,

3
1
3 . By noting that 

the values of the interfacial tension and capillary number used in Fig. 2(c) that experimentally confirms the rela-
tion Eq. (8) are in fact not γ and κ−1 but γm and κ −m

1, respectively, the coefficient we determined from Fig. 2(c) is 
in fact not k1 but k1,m. However, since Eq. (10) can be expressed as η η κ= −k D/ /ex in m m3,

1 with k3,m =​ k3/β, the phase 
boundary line η η κ= −k D/ /ex in m m3,

1 on the η η κ −D( / , / )ex in m
1  space and the line ηex/η in =​ k3D/κ−1 on the 

(ηex/ηin, D/κ−1) space have the same physical meaning. From these reasons, a special care is needed when one 
compares the numerical coefficient obtained experimentally in the present study with more sophisticated exper-
iments or calculations.
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