
Developmental Immunology, 1998, Vol. 6, pp. 95-104

Reprints available directly from the publisher
Photocopying permitted by license only

(C) 1998 OPA (Overseas Publishers Association)
N.V. Published by license under the

Harwood Academic Publishers imprint,
part of the Gordon and Breach Publishing Group

Printed in Malaysia

Neuropeptides Exert Direct Effects on Rat Thymic
Epithelial Cells in Culture

GAIL M. HEADa, R. MENTLEINb, BIRTE VON PATAYb, J.E.G. DOWNING and MARION D. KENDALLc*

aDepartment of Biology, Imperial College, London SW7 2BB; bAnatomisches Institute, Kiel, Germany; CThymus Laboratory, The
Babraham Institute, Cambridge, CB2 4AT

(In final form 30 May 1997)

To determine if major thymic neuropeptides and neurotransmitters can directly influence the
functional activity of cultured rat thymic epithelium, neuropeptides and neurotransmitters were
applied, and intercellular communication, proliferation, and thymulin secretion assessed. After
injections of a mixture of lucifer yellow dextran (too large to pass gap junctions) and cascade
blue (which does) into single cells, some neuropeptides decrease dye coupling: 0.1 mM GABA
(P < 0.0001), 100 nM NPY (P < 0.0001), 100 nM VIP (P < 0.001), 100 nM CGRP (P < 0.001),
100 nM SP (P < 0.01), and 0.1 mM histamine (P < 0.01), whereas 0.1 mM 5-HT, mM
acetylcholine, and /xM isoproterenol (/3-adrenergic agonist) had no effect. Proliferation
(incorporation of tritiated thymidine) was increased by CGRP (P 0.004) and histamine (P <
0.02), but decreased by isoproterenol (P 0.002), 5-HT (P 0.003), and acetylcholine (P <
0.05). The percentage of multinucleate cells was decreased after isoproterenol (2.5%), and
increased after 5-HT (21.3%), GABA (15%), and histamine (15.1%). Compared to controls,
thymulin in the supernatant was decreased after challenge with acetylcholine (52%),
isoproterenol (71%), 5-HT (73%), and histamine (84%). This study demonstrates direct effects
of neuropeptides and neurotransmitters on functional aspects of cultured thymic epithelial
cells.
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INTRODUCTION

Many cells commonly communicate with each other

through gap junctions. The electrical and metabolic

coupling between cells creates functional syncytia
and coordinates responses. In smooth or cardiac

muscle, electrical coupling through gap junctions

*Corresponding author.

synchronizes contraction. Gap junctions also allow
the passage of small water-soluble molecules of <15
kD (e.g., amino acids, second messengers, sugars, and
inorganic ions) (Loewenstein, 1979). The presence of
gap junctions inhibits proliferation and promotes
terminal differentiation (Trosko et al., 1993), although
the mechanisms vary in different cells. Secretory
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activities also can be modulated and initiated, usually
through transmission of calcium signals (Meda et al.,
1991; Pandol, 1994). Regulation of cellular activities

by gap junctions is complex because the regulation of
gap-junction permeability is not an "all or nothing"
phenomenon. Reduced junctional permeability allows
differential movement of modulators. Changing gap-
junction permeability also can regulate frequency
responses of signal transmission within the syncytia
(Santos-Sacchi, 1991; Ngezhayo and Kolb, 1993).
The genes encoding the constituent proteins of

these channels are highly conserved. Each protein
(connexin) has four transmembrane domains and
forms one subunit of the hexameric connexon (Kumar
and Gilula, 1992; Yeager and Nicholson, 1996). The
connexons are inserted into the membrane and form a

complete gap junction when they are aligned with

corresponding units on the adjacent cell. Intercellular
permeability can be regulated by the rapid assembly
and disassembly of gap junctions, or by modulation of
the gap-junction pore permeability. The ensemble of
intracellular signals, such as alterations to internal pH,
temperature, internal calcium, cyclic nucleotides, and
the activity of tyrosine and serine kinases, combines
to effect changes. In addition, the available connexin

pool can be regulated at the transcription level. Neural
and endocrine factors acting as secretory or pro-
liferative stimuli can alter gap-junction coupling
through many different regulatory pathways.

Connexins are present in the thymus and in
cultured thymic epithelium from several species
(Alves et al., 1994, 1995), however, the presence of
connexins does not demonstrate the existence of
functional gap junctions. Earlier studies with procion
yellow suggested the presence of a functional syncy-
tium (Kendall, 1985, 1986) and intercellular com-
munication by dye coupling was characterized for
cultured mouse and human thymic epithelium (Alves
et al., 1994, 1995). Using cultured rat thymic
epithelium, we have previously shown that the extent
of cell coupling is modulated by factors known to

affect the secretory activity of the cells (Head et al.,
1996a, 1996b; Head et al., 1997). In this study, we
extend the work to examine the effect of selected
neuropeptides using the same cell-model system.

The cultured rat thymic cells form a stable cell type
that is >98% epithelial after three to four subcultures
(Kurz et al., 1996). The cultured cells share several
similarities (expression of cortical and medullary
markers, secretion of thymulin, and positive reaction
to antibodies against calcitonin gene-related protein,
CGRP) with the epithelium of the subcapsular cortex
and a subpopulation of medullary epithelium. The
subcapsular epithelium (type cells; Wijngaert et al.,
1984) completely surrounds the cortex and separates
it from the connective tissues outside the thymus. The
connective tissues contain small nonmyelinated
nerves (Kendall et al., submitted) that form a lattice
over the whole surface of the thymus. These fibers
contain noradrenaline (NA), CGRP, neuropeptide Y
(NPY), vasoactive intestinal peptide (VIP), and
substance P (SP) (Felten et al., 1985; Felten and
Felten, 1989; Weihe et al., 1989; A1-Shawaf, et al.,
1991; Kendall and A1-Shawaf, 1991; Kendall et al.,
1994; Kurz et al., 1995). Some of the nerves are also

acetylcholinesterase positive (A1-Shawaf et al., 1991).
Very few of the nerves accompany blood vessels, but
some are close to mast cells (Weihe et al., 1989;
Mtller and Weihe, 1991) that are found in the
connective tissue of the septa and capsule. The closest
targets for the action of these neuropeptides and
neurotransmitters would be the type 1 epithelial cells,
or mast cells. Thus, neural action on epithelial cells
could contribute to the control of the microenviron-
ment in which early prothymocytes reside.

RESULTS

Dye Coupling (Figures 1 to 3)

The average CI of cells incubated in control medium
was 0.85 + 0.12 (n 118) and more than 40% of cells
were dye-coupled. Cells of all morphologies showed
dye coupling. Transfer of dextran-conjugated dye
occurred between some cells of syncitia with three or
more constituent cells, as previously reported (Head
et al., 1997). The CI was highly significantly reduced
(P < 0.0001) both by y-aminobutyric acid (GABA)
(CI 0.12 + 0.08, n 52) and NPY (CI 0.13 + 0.09,
n 45). A significant decrease (P < 0.001) was
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produced by VIP (CI 0.26 + 0.11, n 47), and
CGRP (CI 0.26 + 0.13, n 31), whereas SP (CI

0.37 + 0.14, n 38) and histamine (CI 0.34 + 0.16,
n 32) had a lesser, but still significant effect (P <
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FIGURE 2 Mean (+SEM) coupling index (top), proliferation (middle), and multinuclear index (bottom) for control (CON), isoproterenol
(ISO), 5-HT, acetylcholine (ACH), GABA, NPY, CGRP, VIP, SP, and histamine (HIST). P < 0.05" ** P < 0.01" *** P < 0.005;
*** P < 0.0005.
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0.01). Acetylcholine (n 46), 5-hydroxytryptamine
(5-HT) (n 31), and isoproterenol (n 37) did not

significantly alter the average CI.

Multinucleate Cells (Figure 2)

Multinucleate cells occurred in the control cultures
(9.1%) with an MI (additional nuclei per cell) of 0.13_

0.03 (n 573; maximum number of nuclei in one

cell is 4). Both the occurrence (2.5%) and the MI
(0.03 + 0.03, P < 0.00002, n 281) were reduced after
incubation with isoproterenol. All other compounds
either did not effect or caused an increase in the
percentage of multinucleate cells. The increase in MI
was only significant for 5-HT (MI 0.25 + 0.05, P <
0.004, n 174; occurrence 21.3%), GABA (MI
0.21 + 0.05, P < 0.03, n 240; occurrence 15%), and
histamine (M! 0.17 + 0.03, P < 0.03, n 457;
occurrence 15.1%).
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FIGURE 3 Normalized frequency histogram of CI for cells incubated with defined medium alone (control, top left), GABA (top right),
isoproterenol (bottom left), and CGRP (bottom right).
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Proliferation (Figure 2)

Compared to controls, proliferation was highly
significantly reduced by isoproterenol (74 _+ 2%; P
0.002) and 5-HT (74 _+ 3%; P 0.003), and

significantly reduced by acetylcholine (86 + 4%; P <
0.05). Proliferation was highly significantly increased

by CGRP (121 + 4%; P 0.004) and significantly
increased by histamine (115 + 2%; P < 0.02). Other

compounds tested had no effect.
Since thymidine incorporation assesses nuclear not

cellular proliferation, some consideration of the

change in numbers of nuclei per cell is necessary. The
decrease in numbers of nuclei observed with iso-

proterenol means that the decrease in cellular pro-
liferation is less severe than that deduced from the
observed decrease in nuclear proliferation. In the case

of histamine, the converse is true; for 5-HT, an

increased MI and decreased thymidine incorporation

imply that cellular proliferation is even lower than the
observed nuclear proliferation.

Thymulin Determination (Figure 4)

Changes in supernatant thymulin levels were not seen

after stimulation with GABA, NPY, CGRP, SP, or

VIP. Compared to the previous control period, there
were decreases in thymulin levels when cells were

challenged with 5-HT (73 + 3%, P 0.008),
isoproterenol (73 + 9%, P 0.03), and acetylcholine
(52 + 7%, P 0.02). Histamine also decreased
thymulin levels in all cases, (84 + 6%) although the
change was not significant.

DISCUSSION

Some research groups have sought to establish the
action of selected neuropeptides on lymphocyte
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FIGURE 4 Percentage change and recovery (+SEM) of thymulin levels after incubation with isoproterenol (top left), histamine (top right),
5-HT (bottom left), and acetylcholine (bottom right). C control; A drug application; and R recovery.
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development by interactions with thymocytes (Vizi et

al., 1995). Receptors for a wide variety of hormones
and factors have been found on the cells of the
microenvironment as well as on thymocytes, but little
attention has been paid to direct actions of neuropep-
tides on thymic epithelial cells. The neuropeptides
and neurotransmitters selected for study all occur in
the subcapsular regions of the thymus (Felten et al.,
1985; Felten and Felten, 1989; Weihe et al., 1989; A1-
Shawaf, et al., 1991; Kendall and A1-Shawaf, 1991;
Kendall et al., 1994; Kurz et al., 1995) and if released
from these fibers would occur in relatively high
concentrations around the subcapsular epithelial
cells.
An appropriate experimental paradigm to test the

hypothesis of direct neuropeptide or neurotransmitter

action on thymic epithelium is provided by the
cultured epithelial cells used here. These cells resem-

ble type 1 (subcapsular/perivascular) and type 6
(subset of medullary cells) epithelium observed in

vivo. Both of these types are unique in the thymus by
having a highly secretory physiology with a measur-

able endocrine output. They have similar micro-

tubular inclusions in man (Wijngaert et al., 1984), and
in all species studied, react with the same CTES
(clusters of thymic epithelial staining) group II
antibodies (Kampinga et al., 1989). It has been

suggested that the stem cells for thymic epithelium
reside within these subsets (Lampert and Ritter;
1988).

Direct actions of neuropeptides and neurotransmit-

ters on these cultured cells identify possible in vivo

effects. However, our culture system cannot predict
the effects of neuropeptides and neurotransmitters on

other components of the thymic microenvironment or

on their interactions with the epithelia.
The physiology of cultured thymic epithelial cells

is complex, showing interconnected regulation of

coupling, proliferation, and secretion (Head et al.,
1997). Using a mixture of dyes, one of which does not

pass through gap junctions, we have shown that
factors known to positively influence the secretion of
thymulin from thymic epithelial cells in vivo and in

vitro decrease dye coupling in the DMEM/F12

medium used here. This change is probably mediated

by increases in intracellular calcium (Buckingham et

al., 1992). However, stimulation by neuropeptides
does not show this correlation since those neuropep-
tides that decrease dye coupling had no effect on

secretion. This suggests that neuropeptide-induced
uncoupling does not involve calcium. Those neu-

ropeptides that reduce thymulin levels had minimal or

no effect on dye coupling (similar to the effects of
thymulin itself; Head et al., 1997).

In other cells studied, increased gap-junction cou-

pling generally decreases cellular proliferation
(Trosko et al., 1993), although there are exceptions
(e.g., C310T1/2 cells, where TGF/3 causes an increase

in both cell coupling and proliferation (Gibson et al.,
1994). High levels of connexin 43 are found in rapidly
proliferating lymphoid and hematopoietic centers

(Rosendaal et al., 1994; Krenacs and Rosendaal,
1995). In our previous study of factors influencing
secretion (Head et al., 1997), decreasing dye coupling
inversely increased proliferation. In this study, this

relationship is only true for CGRP and to a lesser
extent, histamine. Thus, the action of the neuropep-
tides studied here is not primarily involved with

thymulin secretion.

In the cultured thymic epithelial cells, there was a

large decrease in CI and increased proliferation after
GABA. In other systems such as the somatic muscula-
ture of Ascaris lumbricoides (Demello and Maldo-
nado, 1985), GABA also causes gap-junction uncou-

pling. This effect on dye coupling could be enacted

through lowered intracellular pH by GABA action at

GABAA receptors (Takahashi and Copenhagen,
1996), as lowered pH decreases gap-junction perme-
ability (Ueda et al., 1994).
Each component of the ensemble of intracellular

signals (pH, calcium, cyclic nucleotides, kinases, etc.)
has an effect on gap-junction communication. The
interactions of these second messenger systems and
the diversity of receptors from which they can be
controlled make it difficult to predict the effects of a

ligand on gap-junction function and turnover. For
example, cAMP can regulate gap junction perme-
ability, localization, or expression. In addition, it can

interact with other second messenger cascades to

activate complementary or antagonistic systems.
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Typically, cAMP mediates the effects of isoproterenol
through/3-adrenergic activation of adenylate cyclase
that usually leads to increased gap-junction coupling.
In our cells, the average CI was not significantly
higher although those syncytia present were larger.
These cells are known to have/3-adrenergic receptors
(Kurz et al., 1997) that elevate intracellular cAMP
and decrease proliferation, as observed in this study.

Neuropeptides may indirectly affect the secretory
activity of endocrine tissue by altering signal trans-

mission within the syncytium. Rises in intracellular
calcium stimulating secretion in some organs do not

start in all cells. They are initiated at one site and

progress from cell to cell in a regular manner. The site
of initiation can be different for different stimuli (e.g.,
vasopressin and noradrenaline in bile canaliculi;
Combettes et al., 1994). Thus, disruption of gap-
junction communication represses the recruitment of

secretory cells and may change the dose-response
characteristics of the syncytium. This has been shown
for the response of human adrenal cells to cortico-

trophin (Munarisilem et al., 1995). Thus, neuropep-
tide action on thymic epithelial cells may directly
initiate cellular responses or modulate the efficacy of
other stimuli.

MATERIALS AND METHODS

Culture and Incubation with Stimulants

Thymic epithelial cell cultures were produced,
characterized, and passaged according to the method
of Kurz et al. (1996). Three culture media (some with

additions from Sigma) were used in the study:
DMEM/F12 (Gibco) alone; a defined medium,
DMEM/F12, plus the following additions: 2 mM L-
glutamine, 100 U/ml penicillin/streptomycin, and 25
/zg/ml transferrin; and the standard culture medium

comprising the defined medium plus 10% horse
serum, 5 pg/ml insulin, 10 ng/ml cholera toxin, and

epidermal growth factor (100 ng/ml). Stimulants

(from Sigma) were added to the defined medium to

the following final concentrations: acetylcholine, 1
mM; isoproterenol, 1 /zM; GABA, 0.1 mM; NPY,

100 nM; CGRP, 100 nM; VIP, 100 nm; SP, 100 nM;
5-HT, 0.1 mM, and histamine, 0.1 mM.

Dye Coupling

Cell cultures grown in the standard medium in 35-mm
dishes were equilibrated for 2 hr in DMEM/F12

alone, and then incubated in a test medium for 24 to

36 hr. Cell cultures were transferred to a pressure
microinjection apparatus (room temperature), and

perfused with a modified Ringer’s solution through-
out the microinjection procedure, which was limited

to a maximum of 15 min. Before injection, dye was

applied to the external surface of the cells. If any
incorporation of dye within the cells was observed,
then no injections were performed at that site.

Injection sites were widely spaced to prevent two

injections into the same syncitium. Dye coupling was

assessed by the injection of lucifer yellow dextran

(LYD) at a 2.5 mM concentration (Molecular Probes;
mol wt 10,000) and Cascade blue (CB) at 5 mM
concentration (Molecular Probes; mol wt 644.77)
close to or into the nucleus of individual cells. The
dyes were visualized (blue fluorescence for CB and

yellow fluorescence for LYD) by simultaneous

excitation at 365 nm (dichroic filter, 395 nm; emission

filter, 420nm) and the cells were observed by phase
contrast microscopy.
To quantitate the extent of dye coupling for each

culture, the results are expressed as a coupling index

(CI), which is the average number of cells that are

coupled to each injected cell. Thus, when is there is

no coupling, CI 0.

Multinucleate Cells

The occurrence of multinucleate cells was estimated

by counting the number of nuclei per cell in a sample
of >150 cells, and expressed as a percentage of the

population. Because multinucleate cells in these
cultures have previously been observed to undergo
mitosis without cytokinesis (Head et al., 1997), it is

assumed here that each nucleus within a multinucleate
cell contains a full complement of chromosomes. To
represent the extent of chromosome duplication
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within these cells, the results are also expressed as the
average number of additional nuclei per cell (the
multinuclear index, or MI).

Proliferation

Statistics

Data are expressed as mean + standard error of the
mean and significance analyzed using Student’s
tests.

Confluent cultures in 35-mm dishes were equilibrated,
incubated for 24 hr with defined medium alone or

with stimulants, /Ci 3H-thymidine (Amersham,
UK; Code TRK 565) was added to the test medium,
and incorporation continued for 5 hr at 37C. The
supernatant was discarded and the cells washed
sequentially with phosphate-buffered saline (PBS),
water, methanol twice, 10% trichloracetic acid, and
water (5 min each). The cells were dissolved in 1 ml
of 0.3 M sodium hydroxide (15 min), neutralized with

ml of 0.3 M HC1, and then 2 ml of sample was

added to 10 ml scintillation fluid (Hydroluma, Baker
Chemicals, Code 8584) and the beta activity recorded.
All experimental replicates had paired control cul-
tures from passages 20 to 30, and changes in

proliferation were calculated relative to these. Each
condition was replicated four times.

Estimation of Thymulin in Supernatants

Cells cultured as for the earlier dye-coupling experi-
ments were equilibrated for hr in DMEM/F12 alone.
They were then incubated for 2 hr each in the defined
medium, defined medium plus stimulant (at the
concentrations previously listed), and again in the
defined medium. Each experiment was replicated
three times except isoproterenol (five times). The
supernatant from each incubation was reserved and
stored at -70C before estimation of thymulin
content by ELISA, as described in Head et al. (1997).
Briefly, thymulin in supernatants was mixed with a

polyclonal anti-thymulin antiserum (MK-R4) in a

low-binding plate, and then transferred into a high-
binding plate previously coated with synthetic thymu-
lin. Only the free antiserum can bind to the thymulin
coating, and this complex is visualized with a

chromogen and the resultant color read in a plate
reader at the appropriate wavelength. The lower the
color, the higher the thymulin content in the sample
tested.
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