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Long term safety of targeted 
internalization of cell penetrating 
peptide crotamine into renal 
proximal tubular epithelial cells  
in vivo
Joana Darc Campeiro   1, Wendy Dam2, Gabriela Guilherme Monte1, Lucas Carvalho Porta1, 
Lilian Caroline Gonçalves de Oliveira3, Marcela Bego Nering1, Gustavo Monteiro Viana4, 
Fernando Cintra Carapeto5, Eduardo Brandt Oliveira6, Jacob van den Born2 & 
Mirian A. F. Hayashi1

Activated proximal tubular epithelial cells (PTECs) play a crucial role in progressive tubulo-interstitial 
fibrosis in native and transplanted kidneys. Targeting PTECs by non-viral delivery vectors might be 
useful to influence the expression of important genes and/or proteins in order to slow down renal 
function loss. However, no clinical therapies that specifically target PTECs are available at present. 
We earlier showed that a cationic cell penetrating peptide isolated from South American rattlesnake 
venom, named crotamine, recognizes cell surface heparan sulfate proteoglycans and accumulates in 
cells. In healthy mice, crotamine accumulates mainly in kidneys after intraperitoneal (ip) injection. 
Herein we demonstrate for the first time, the overall safety of acute or long-term treatment with daily 
ip administrated crotamine for kidneys functions. Accumulation of ip injected crotamine in the kidney 
brush border zone of PTECs, and its presence inside these cells were observed. In addition, significant 
lower in vitro crotamine binding, uptake and reporter gene transport and expression could be observed 
in syndecan-1 deficient HK-2 PTECs compared to wild-type cells, indicating that the absence of 
syndecan-1 impairs crotamine uptake into PTECs. Taken together, our present data show the safety of 
in vivo long-term treatment with crotamine, and its preferential uptake into PTECs, which are especially 
rich in HSPGs such as syndecan-1. In addition to the demonstrated in vitro gene delivery mediated by 
crotamine in HK-2 cells, the potential applicability of crotamine as prototypic non-viral (gene) delivery 
nanocarrier to modulate PTEC gene and/or protein expression was confirmed.

Loss of renal function is often related to interstitial fibrosis and tubular atrophy1. Many attempts to slow down 
or even reverse the interstitial fibrosis are aimed at the level of (myo)fibroblasts or at the level of matrix remod-
eling2–5. Recently, major evidence suggests that tubulo-interstitial fibrosis is the consequence of chronic activa-
tion of tubular cells, mainly of proximal tubular epithelial cells (PTECs)6. This tubular activation is secondary 
to ischemia, salt- and acid-loading, proteinuria or exposure to toxic drugs, or is due to immunological signals 
during renal inflammation, injury or transplantation7–10. Related to these activating noxi, changes of PTECs 
proteome expression profile are reported, among which are the cell membrane receptors, cytoskeletal elements 
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and signaling pathways, and production of a wide array of soluble mediators, ranging from growth factors and 
chemokines to complement factors and reactive oxygen species11. In a vicious circle, recruited myeloid cells 
strengthen chronic PTEC activation and contribute to interstitial fibrosis12. Although a direct contribution of 
epithelial to mesenchymal transition to renal fibrosis seems not very likely, epithelial involvement in renal fibrosis 
via instruction of recruited interstitial myeloid and mesenchymal cells has been convincingly shown in renal 
transplantation ischemia-reperfusion, proteinuria and renal obstruction13,14.

Cornerstone for current treatment of renal function loss is based on lowering the blood pressure and proteinu-
ria, mainly by targeting the renin-angiotensin-aldosterone system15. Although this approach proved to effectively 
slow down end-stage renal disease, there is still no cure for renal fibrosis, most probably because the current 
treatments are not aimed at tubular, but rather at vascular and glomerular levels. At present, no clinical therapies 
that specifically target the PTECs are available.

In this report, we evaluate the use of the cell penetrating peptide (CPP) crotamine as a PTEC specific non-viral 
delivery nanocarrier. CPPs are molecules that display the ability to enter and efficiently carry into eukaryotic cells, 
a number of biologically active and therapeutically relevant molecules, including DNA and potentially chemical 
drugs as well16,17.

Crotamine is a positively-charged 42 amino acid residues polypeptide, isolated from the South American 
rattlesnake Crotalus durissus terrificus venom, with CPP properties, as the characteristic ability of crossing the 
lipid bilayer of cellular membranes and of transporting cargo into cells18–20. In addition, crotamine is non-toxic 
to cells at low micromolar concentrations, and thereby, it can be safely used to transfect mammalian cells in vitro 
and in vivo19–21. The mechanism by which crotamine or crotamine-DNA complexes enter tumor cells involves the 
binding to cell surface heparan sulfate proteoglycans (HSPGs), which is followed by endocytosis18. The ability of 
crotamine to permeabilize endosomal/lysosomal vesicles confers an additional and unique advantage for this pol-
ypeptide, as gene nanocarrier18–20,22. Furthermore, crotamine contains a nuclear retention motif, which after lib-
eration from endosomal/lysosomal vesicles, guides crotamine to the nucleus of transfected cells23,24. Combined, 
these characteristics make crotamine a unique and ideal candidate as nanocarrier for non-viral delivery of (ther-
apeutic) molecules into PTECs, which are especially rich in HSPGs such as syndecan-1 (Synd-1)25.

Proteoglycans are glycoconjugates of glycosaminoglycan chains covalently attached to a protein core26. 
Syndecans comprise a major family of cell surface HSPGs. The mammalian syndecan family consists of 4 distinct 
members i.e. syndecan 1–4, all encoded by distinct genes. Almost all cell types express one or more syndecans and 
their expression is spatio-temporally regulated.

Synd-1 is primarily expressed on epithelial cells such as PTECs, but it is also present in hepatocytes and 
plasma cells. In general, Synd-1 regulates the biological activity of ligands by affecting their stability, conforma-
tion, oligomerization, compartmentalization and cellular uptake, and thereby, Synd-1 modulates the concentra-
tion, distribution and activity of its ligands. Synd-1 mostly acts as a co-receptor by increasing the responsiveness 
to external stimuli27, and as an autonomous endocytosis receptor28,29. We earlier published on the significance of 
renal tubular Synd-1 in tubular regeneration30, and as a docking station for complement factors31.

In this report, we describe the in vivo specific internalization of crotamine administrated by intraperitoneal 
(ip) route into PTEC, which are especially rich in HSPGs such as Synd-1. The applicability and safety of long-term 
ip administration of crotamine in mice was indicated by the absence of any significant adverse effects, as assessed 
by histopathological analysis and evaluation of blood and urine biochemical markers of kidney function of mice 
receiving crotamine for three weeks. In addition, the importance of Synd-1 for crotamine and crotamine-DNA 
complex internalization into PTECs was verified in vitro using the wild-type and Synd-1 deficient PTECs. Taken 
together, these findings open possibilities of using crotamine as a non-viral nanocarrier vector in order to specif-
ically deliver therapeutic DNA and/or drugs into PTECs in vivo.

Results
Safety of long-term in vivo treatment with crotamine and its clearance by the kidneys.  
Continuous daily treatment with crotamine (1 μg/animal) by ip injection showed no significant change in average 
body weight of crotamine-treated compared to control mice receiving vehicle, at the end of 21 days treatment, 
which was also accompanied by non-obvious general influence in animal behavior, condition or healthy state. 
The similar weight of the organs and bone (femur) size, between the crotamine-treated and control group animals 
receiving saline, also confirmed the overall safety of this treatment (Table 1).

On the other hand, despite the relative smaller intake of food and water observed for the crotamine-treated 
compared to the control group, the levels of the biochemical biomarkers for renal function, namely creatinine and 
uric acid, were found unchanged in both plasma and urine of both crotamine-treated or negative control groups 
which received vehicle (Table 1).

We earlier showed that ip injected crotamine accumulates into the kidneys of healthy mice20,32, as also demon-
strated by others33. Herein, Coomassie blue or silver stained SDS-PAGE and Western blot analysis allowed con-
firming the presence of intact full-length crotamine in the urine of mice receiving crotamine (30 µg/animal) by 
ip route, 1.5 h before euthanasia (Fig. 1). The integrity of the full-length crotamine was also confirmed by mass 
spectrometry (MS) analysis (Supplementary Fig. S1) indicating glomerular filtration and urinary excretion of 
long-term ip injected native crotamine (Fig. 1) and/or of acute ip injected fluorescently-labeled Cy3-crotamine 
(Supplementary Fig. S2). The specificity of the anti-crotamine antibody employed in the present study was also 
confirmed by ELISA assay (Supplementary Fig. S3). In addition, the urinary protein excretion was analyzed by 
SDS-PAGE allowed observing that either long-term or acute crotamine administration exhibit no effect in pro-
teinuria, as similar whole-urine protein profile was observed for mice receiving crotamine or vehicle (Fig. 1A,B; 
Supplementary Fig. S4), indicating that glomerular filtration and tubular reabsorption were not affected by the 
long-term treatment (for 21 days) with low doses (1 μg/animal/day) or high single dose (30 μg/animal) of acute 
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ip administration of crotamine. However, the MS analyses did not allow detecting crotamine in the urine of mice 
treated daily with low doses of crotamine (1 μg/animal).

Tissue morphology assessment of mice kidneys by histological analysis after classical hematoxylin/eosin 
(H&E) and periodic acid-Schiff (PAS) staining highlighted the absence of any significant observable alterations 
in kidney tissues sections of long-term crotamine-treated mice, as representatively shown in Fig. 2. It is also 
important to note the absence of any remarkable injuries or any other important alterations in other tissues as 
liver, lung, spleen and heart of mice treated daily with crotamine (1 μg/animal) by ip route, for 21 days, which was 
exactly the same condition previously adopted by us for the antitumoral therapy with this peptide34,35.

Crotamine internalization in renal proximal epithelial cells in vivo.  Immunohistochemical analysis 
of the same kidneys allowed visualizing native crotamine administered at low doses (1 µg/animal) by ip injections 
daily, during 21 days. Crotamine was localized into the PTECs, indicating the in vivo uptake of crotamine by these 
cells (Fig. 3). As a control for antibody specificity, immunohistochemical analysis of the same kidneys with rabbit 
anti-crotamine, blocked with native crotamine, for 1 h prior to staining procedure, showed a completely negative 
staining.

Fluorescent analysis of sections of mice kidney collected 2 h after acute single dose ip administration of fluo-
rescently labeled Cy3-crotamine (5 µg/animal), employing In Cell Analyzer for whole tissue section analysis and 
also confocal microscopy for magnified pictures allowed observing the presence of crotamine localized in the 
microvilli-covered luminal surface (brush borders) of PTECs in several regions of the kidney (Fig. 4).

In vitro assays for crotamine using cultured HK-2 PTEC cells.  Since crotamine mainly enters cells via 
HSPGs18 and Synd-1 is the dominant HSPG in HK-2 cells, wild-type and Synd-1 knockdown (KD) HK-2 cells 
(Synd-1 KD) were compared in the following in vitro experiments:

Crotamine toxicity for cultured HK-2 PTEC cells.  Cell viability assay of wild-type and Synd-1 deficient PTEC 
HK-2 cells treated with several concentrations of crotamine (0–40 µM), for 72 h, demonstrated that crotamine 
LC50 for wild-type HK-2 cells was ~17.97 ± 0.73 µM, whilst for Synd-1 deficient HK-2 cells (Synd-1 KD) was 
~24.53 ± 0.63 µM (p < 0.0001) (Fig. 5).

Crotamine interaction with and internalization by human PTEC HK-2 cells.  First we confirmed by FACS analysis 
(Supplementary Method S3) that the shRNA strategy reduced the expression of in PTEC HK-2 cells in about 80% 
(see Supplementary Fig. S5). The binding of Cy3-crotamine was also demonstrate to be ~3–4 times higher for 
wild-type human PTEC HK-2 cells compared with Synd-1 KD cells, which support the suggestion of a possible 
Synd-1 role in crotamine uptake by PTEC HK-2 cells (see Supplementary Fig. S5). In addition, confocal micros-
copy analysis allowed observing crotamine distributed in the cell cytosol, and accumulated in perinuclear area 
of HK-2 cells incubated with crotamine for 1 h (Fig. 6A,B), and this crotamine distribution pattern was similar 
to that in Synd-1 KD cells (Fig. 6C,D), but with a significant reduced intensity (~four fold less) (Supplementary 
Fig. S6).

Delivery of plasmid DNA into PTEC cells.  To verify whether crotamine is able to translocate plasmid DNA into 
PTEC cells, a complex of crotamine and pEGFP-N1 plasmid vector was used to transfect wild-type HK-2 and 
Synd-1 KD cells. Crotamine-DNA complexes, formed by a peptide:DNA liquid charge ratio of 10:4, diluted in 
PBS solution was dropped onto semi-confluent cultured cells, and 24 h after, s strong green fluorescent signal, due 
to the plasmid DNA delivery and green fluorescent reporter protein (GFP) expression, was observed in wild-type 
HK-2 cells (Fig. 7), demonstrating the efficiency of transfection mediated by crotamine in this specific cell type. 
As expected, the green fluorescence signal was mainly localized in the cytoplasm of transfected cells, as similarly 

Control Crotamine

Kidney (g) 0.34 ± 0.01 0.33 ± 0.01

Liver (g) 1.14 ± 0.07 1.11 ± 0.09

Heart (g) 0.14 ± 0.01 0.13 ± 0.01

Femur (cm) 1.58 ± 0.01 1.56 ± 0.02

Body Weight (g) 25.78 ± 0.71 24.88 ± 0.72

Food Intake (g/24 h/5 mice) 83.50 ± 2.08 76.32 ± 1.95*

Water Intake (mL/24 h/5 mice) 21.62 ± 0.72 18.39 ± 0.93*

Creatinine (mg/dL)
Plasma 2.84 ± 0.61 2.39 ± 0.42

Urine 3.86 ± 0.07 2.91 ± 0.48

Uric acid (mg/dL)
Plasma 1.55 ± 1.01 1.89 ± 0.64

Urine 2.30 ± 0.53 3.73 ± 0.40

Table 1.  Main organs and body weight, femur size, food and water intake and renal function parameters. 
Measurements of body and organs weights, femur size and plasma and urine biochemical biomarkers analyses 
were performed at the end of the treatment for 21 days with crotamine (1 μg/animal/day). For food and water 
intake assessment measures were performed at every 4 days, and the presented data correspond to the final 
mean value of consumption after the end of 21 days treatment period. *p < 0.05 for t-Student statistical test. 
Results are expressed as mean ± SEM (N = 5 per group).
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observed for Synd-1 KD HK-2 cells, but with significantly lower signal intensity (about 2.5 fold lower compared 
to wild-type cells) (Supplementary Fig. S6), reinforcing the contribution of the presence of HSPG Synd-1 for the 
internalization of crotamine-DNA complex.

Discussion
In this communication we show that the ip injected CPP crotamine is partly reabsorbed by PTECs, and the 
full-length form of this polypeptide is partly excreted via urine. In vitro experiments with human PTEC cell line 
HK-2 suggest Synd-1 as one of the contributors for crotamine uptake into these cells. The possibility of oriented 
delivery of therapeutic compounds to PTECs would be of great interest for the treatment or intervention in dif-
ferent renal diseases with progressive tubulo-interstitial fibrosis such as diabetic kidney disease36.

It is worth to consider that after long-term daily administration of crotamine by ip injection for 21 days, cro-
tamine main localization was noticed inside kidneys PTECs, but with no detectable noxious effect, as suggested 
by the general analysis of tissues (as liver and heart, among others) and cells morphologies by H&E staining. 
In addition, general biochemical biomarkers (namely creatinine kinase and uric acid) assessments suggested 
the healthy functioning of kidneys with excretion of the full-length intact crotamine in the urine of animals 
receiving high doses of this peptide acutely (single dose of 30 µg/animal, 1.5 h before urine collection), although 
long-term treated mice receiving low doses of this peptide (1 µg/animal/day) did not present detectable amount 

Figure 1.  SDS-PAGE and Western blot analysis of mice urine samples. Urine of mice treated daily with vehicle 
saline or crotamine, by intraperitoneal (ip) route 1.5 h before urine collection, were applied to a 15% SDS-PAGE 
before the (a) staining with Coomassie blue, (b) silver staining, or (c) Western blot analysis with anti-crotamine 
antibody followed by development with alkaline phosphatase substrates NBT/BCIP. The presence of a protein 
band of about 5 kDa, corresponding to the full-length crotamine, is indicated by the arrows. MW: molecular 
weight markers (kDa), lane 1: native crotamine (100 ng), lane 2: urine of drug-naïve mouse receiving a single 
injection of vehicle saline (100 µL/animal), lane 3: urine of drug-naïve mouse receiving a single injection of 
native crotamine (30 µg/100 µL/animal), lane 4: urine of negative control mice treated daily with vehicle (100 µL/
animal) for 21 days, and lane 5: urine of mice treated daily with crotamine (1 μg/100 µL/animal) for 21 days. 
In each lane, 5 µL of urine sample were loaded. The gels (a and b) and blot (c) are cropped along the edges. 
Complete uncropped blots/gels are presented in Supplementary Figure 3.
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of crotamine in the urine collected daily along the treatment. On the other hand, single ip administration of 
fluorescently-labeled Cy3-crotamine (5 µg/animal), 2 h before euthanasia, allowed observing its presence in the 
brush borders area of PTECs (Fig. 3) and in the urine (Fig. 1 and Supplementary Figs S1 and S2), suggesting 
that crotamine is reabsorbed from pro-urine by PTECs. Unfortunately, the non-quantitative character of the 
MALDI-TOF MS37 did not allow us to quantify the precise amount of crotamine in the urine herein.

The universally expressed isoform of the syndecan, syndecan-4, is known to bind and mediate the transport of 
the most frequently utilized cationic CPPs, as penetratin, octaarginine and TAT38. Various experiments performed 

Figure 2.  Histopathological analysis of kidney sections. Representative pictures of kidney sections stained by 
hematoxylin/eosin (H&E) (a,b) and periodic acid-Schiff (PAS) (c–f). Kidneys from control receiving vehicle 
(a, c and e) and crotamine-treated (b,d and f) mice. The glomerulus structure is shown in the magnified images 
(e and f). No evidence of histopathological lesions was noticed in the kidney sections analyzed by trained 
pathologists. Bar = 30 μm (a–d) and 15 μm (e,f).
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here indicate the participation of Synd-1 in the crotamine internalization into HK-2 PTECs. Firstly, compared 
with wild type HK-2 PTEC, crotamine binding is largely diminished in Synd-1 KD cells (Supplementary Fig. S5). 
Secondly, the LC50 concentration of crotamine is higher for the Synd-1 KD cells (Fig. 5). Thirdly, the crotamine 
cellular uptake and cytoplasmic/perinuclear staining is also reduced in the Synd-1 KD cells (Figs 6, 7).

The crucial roles of the proteoglycans for crotamine internalization was previously shown by us using Chinese 
hamster ovary (CHO) knockout cells for proteoglycans, namely CHO-74518. However, although we have showed 
earlier that Synd-1 is the dominant HSPG on PTECs both in vivo and in vitro30, it is important to consider that 
the knockdown strategy in the current report via shRNA strategy did not promote the complete suppression 
of Synd-1 expression30, and strong reduced expression (about 80%) but not a complete suppression of Synd-1 
expression was observed (see Supplementary Fig. S5). At this point, one also needs to consider that potentially 
other proteoglycans with the ability to bind to crotamine18 might be present and eventually over-expressed as 
compensation in these human PTEC HK-2 cells, possibly ensuring the internalization of this peptide into PTEC 
cells. Although the suppression of Synd-1 expression did not completely suppress the internalization of cro-
tamine or of crotamine-DNA complexes in Synd-1 KD, the internalization was significantly diminished in this 
knockdown (KD) cells, as demonstrated here. Also, lower toxicity for crotamine was also observed in the Synd-1 
KD cells compared to HK-2 cell line (Fig. 5). It is worth to mention here that the LC50 for the wild-type human 

Figure 3.  Localization of crotamine in kidneys PTECs of mice receiving daily crotamine by ip injections during 
21 days. Kidney sections from mice receiving vehicle saline (a–c) or native crotamine (1 µg/animal), daily, 
for 21 days (d–h). The perinuclear localization of crotamine (red) is shown in the magnified picture (g). The 
presence of crotamine (red) inside the nuclei was confirmed by the three-dimensional reconstitution of cell 
nucleus as shown in (h). Differential interference contrast (DIC) with nuclei stained with DAPI (blue) (a and 
d), and crotamine immunorecognized by rabbit anti-crotamine antibody followed by signal amplification by 
the Tyramide Signal Amplification (TRITC-labeled tyramide solution, tetramethyl rhodamine system, in red) 
(b,c,e,f,g and h). Overlay of red and blue fluorescence (c,f,g and h). Bar = 50 μm (a–f) and 5 μm (g, h).
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Figure 4.  Cy3-labeled crotamine is reabsorbed from pro-urine by PTECs. Kidney sections from mice receiving 
vehicle (a–d) or a single ip administration of fluorescently-labeled Cy3-crotamine (5 µg/animal), 2 h before 
animal euthanasia (e–j). Fluorescence microscopy of transversal section of whole kidney (a and e), in which 
the boxes correspond to the areas magnified (as presented in b,c,d,f,g and h). Zoom out of kidney transversal 
section of mice showing the presence of Cy3-crotamine in the brush borders area of PTECs (i,j). Differential 
interference contrast (DIC) showing kidney tissue structure with nuclei stained with DAPI (blue) (b,f), and 
Cy3-crotamine stained in red (a,c,d,e,g,h and j). Differential interference contrast (DIC) image (i), and overlay 
of red and blue fluorescence with DIC (d,h and j). Bar = 1 mm (a,e), 50 μm (b–d, f–h), and 20 μm (i, j).

Figure 5.  Cell viability assay for wild-type and Synd-1 deficient HK-2 cells (Synd-1 KD) treated with 
crotamine. Cytotoxicity of about 50% of wild type HK-2 cells was observed with ~18 µM of crotamine, while for 
Synd-1 KD cells, concentrations of ~25 µM of crotamine were required. Cytotoxicity for 90% of the wild-type 
HK-2 cells was observed with ~33 µM of crotamine, while a concentration higher than ~40 µM of crotamine 
would be required for Synd-1 KD cells. LC50: concentration of drug required to reach 50% of cytotoxicity 
(dotted line). LC90 concentration of drug required to determine 90% of cytotoxicity (dashed line).

https://doi.org/10.1038/s41598-019-39842-7
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kidney cells was also significantly higher compared to those determined for tumoral cell lines, including murine 
melanoma B16F10 cells, for which a LC50 of about 1 µM was described19,34,39. Lower cytotoxicity of crotamine 
against non-tumoral compared to tumoral cells was also previously described by the group34,39, and the higher 
availability of proteoglycans on tumoral cells surface was suggested to explain this specificity of crotamine for 
highly proliferating cells18. Importantly, crotamine is therefore non-toxic for PTECs at working concentrations, 
which was always below 5 µM in the present study. Also, LC50 for cytotoxic effect against human HK-2 PTEC cells 
far exceeds the concentrations needed for gene transfection.

Although we did not show the in vivo delivery of reporter and/or therapeutic genes in the mice kidney PTECs, 
the absence of any noticeable damage or noxious effects on targeted cells and tissues using the free purified native 
crotamine, in addition to the successful delivery and expression of reporter gene in HK-2 cells mediated by cro-
tamine showed in the present work, strongly stimulate us to continue this work, aiming the optimization of the 
conditions for the effective transfection of PTECs in vivo. We also envision therapeutic possibilities for non-viral 
crotamine-based PTEC-specific inhibition of Rho kinase in acute renal injury or peri-operatively, in renal trans-
plantation. Beneficial effects of a lysozyme-conjugated Rho kinase inhibitor on acute renal allograft rejection were 
earlier shown40.

The specific targeting by crotamine can be used to reach specificities of PTECs such as IL-22R1 renal expres-
sion which is exclusive of this cell type, as this interleukin protects against renal I/R injury by activating STAT3 
and AKT ameliorating I/R-induced renal inflammation and tubular cell injury41. Mitochondrial targeting 
ability of crotamine32 may also motivate the exploration of its potential application in mitochondrial dysfunc-
tions in proximal tubule cells, aiming to protect, for instance, from nephrotoxicity associated with progressive 
tubulo-interstitial disease42.

Different therapeutic strategies targeting PTECs are described in literature. Protein- and peptide-based carrier 
systems, polymeric carrier systems, folate and antibody fragments are examples of PTECs targeting approaches43. 

Figure 6.  Reduced crotamine uptake in Synd-1 deficient HK-2 cells. Wild-type human PTEC HK-2 cells 
(a,b) and Synd-1 KD cells (c,d) treated with crotamine (5 μM) for 1 h, at 37 °C. Nuclei were stained with 
DAPI (in blue), and crotamine recognized by antibody after signal amplification with TSA-TRITC (in red). 
Crotamine (red) is visualized in the cytoplasm of wild-type human PTEC HK-2 cells, whilst in Synd-1 KD cells, 
significantly reduced fluorescence is noticed. Bar = 50 μm.
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A variety of therapies aims the drug delivery into the luminal side of the tubular cells, as on the apical membranes 
of these cells are found different internalizing receptors, which are able to internalize small molecules and mac-
romolecules, such as proteins that are filtered into the urine, obtaining efficient drug uptake. Two well-known 
endocytic receptors are the megalin and cubilin, both expressed on the apical membrane of proximal tubular 
cells43. Molecules with strong affinity toward megalin are used as targeting delivery mediators such as polymyxin 
B, a polypeptide antibiotic44 and aminoglycoside antibiotics45, but these compounds show nephrotoxicity risk 
even in therapeutic doses.

During years, conjugate delivery systems were tested as renal-specific delivery alternatives to reduce drug 
nephrotoxicity such as 2-glucosamine conjugated with prednisolone46, carboxylated polyvinylpyrrolidone car-
rier47, conjugation with streptavidin48 or low-molecular-weight proteins such as lysozyme49, but these strategies 
still present renal toxicity and cardiovascular side effects. At this point, the use of crotamine as alternative drug 
carrier shows the advantage of showing no nephrotoxicity at therapeutic doses, even if needed for long-term 
treatments.

Conclusion
Long-term (21 days) continuous (daily) administration of crotamine (1 µg/animal) by ip route in mice was gen-
erally non-toxic to the animals, as no significant change could be observed in weight of body or main organs, or 
bone size of treated animals. In addition, crotamine is also non-toxic for PTECs or kidneys of treated animals at 
the working concentrations, as no lesions were observed after histopathological analysis with two different stain-
ing and also kidney function biomarkers were not altered after daily treatment with crotamine. In addition, it is 
worth to mention that the cytotoxic concentrations far exceed the concentrations needed for gene transfection. 
Unprecedentedly, the accumulation of crotamine in kidney, more precisely, in PTECs was confirmed both for 
acute and long-term administration of crotamine, and we suggest Synd-1 as one of the contributors for crotamine 
internalization in PTECs, as it is the most abundant proteoglycan present in this cell type. Assays with Synd-1 
deficient cells showed lower internalization of crotamine and also lower reporter gene transfection mediated by 
crotamine compared to wild-type HK-2 cells, reinforcing this hypothesis. Therefore, we propose here crotamine 
as a powerful tool for non-viral delivery and transport of therapeutic molecules aiming the modulation of aber-
rant gene and/or protein expression in PTECs, with no important noxious effects, to eventually slow down pro-
gressive tubulo-interstitial fibrosis.

Figure 7.  High transfection efficiency was observed in wild-type HK-2 cells for crotamine-mediated gene 
delivery and with reduced transfection in Synd-1 deficient HK-2 cells. Fluorescence confocal images of green 
fluorescent reporter gene expression in wild-type human PTEC cells (HK-2) (a–c) and Synd-1 KD cells (d–f) 
transfected by crotamine-mediated gene delivery. Nuclei stained with DAPI (in blue), GFP fluorescence (in 
green). Merged images (c,f). Bar = 50 μm.
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Materials and Methods
Crotamine and other reagents.  Crotamine was purified in the Ribeirão Preto Medical School, (FMRP), 
São Paulo University (USP), by Prof. Dr. Eduardo Oliveira from commercially available Crotalus durissus terri-
ficus venom, basically employing the protocol previously described20. Rabbit anti-crotamine antibody was pro-
duced and purified by affinity chromatography by Dr. Eduardo Oliveira. Details about specificity are given in 
Supplementary Method. S4 and Supplementary Fig. S3. All other reagents, when not specified in the text, were 
of analytical grade and were mainly purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA). The overall yield 
and purity of crotamine isolated from rattlesnake crude venom was determined by amino acid analysis after acid 
hydrolysis as previously described20. Purified native crotamine was labeled with the Cy3 fluorescent dye (Thermo 
Fisher Scientific Inc., Waltham, MA, USA), strictly following the instruction of the manufacturer, as described20. 
After labeling, the excess of fluorescent dye was removed by centrifugal 3 K filter unit device (Centricon, Amicon, 
Millipore Corp, Billerica, MA, USA). The labeling yield was calculated by absorbance measuring accordingly to 
manufacturer instructions, as described in details by Hayashi and collaborators20.

Animal treatment and sample collection.  Animals (male C57Bl/6 mice) were from the Experimental 
Animal Laboratory (INFAR) of the Federal University of São Paulo (UNIFESP/EPM, SP, Brazil). Mice were 
housed under controlled temperature (19 °C), 12 h dark and 12 h light cycles, and with free access to food and 
water, as recommended by the Guidelines for Ethical Conduct in the Care and Use of Animals, from American 
Psychological Association and the Guideline of the Committee on Care and Use of Laboratory Animal Resources 
of National Research Council from United States of America. This project was approved by Ethic Committee for 
Animal Use (CEUA) of UNIFESP/EPM (approval No. 6237220116), and the experiments with the animals were 
performed in accordance with FELASA guidelines.

Male C57Bl/6 mice (14 weeks old, 25–30 g) were divided in two experimental groups (N = 5 each): (1) control 
group, which received daily, 100 μL of saline per animal by intraperitoneal (ip) injection; (2) crotamine-treated 
experimental group which received during 21 days, the purified native crotamine (1 µg/animal/day by ip injec-
tion) freshly diluted in 100 μL of saline at the time of injection, following essentially the same protocol previously 
employed by us for the antitumor therapy34,35. Food and water intake were monitored per group of five mice 
and the data represent the mean value of 24 h consumption assessment. At the end of the treatment (i.e. after 21 
days), for the analysis of crotamine localization in tissues, two animals of the treated group received a single shot 
fluorescently-labeled Cy3-crotamine (5 µg/animal in 100 μL of saline ip injected), while two control mice received 
100 µL of saline by ip route, 2 h before the euthanasia. All animals were then weighed using a semi-analytical bal-
ance and after animal euthanasia, tissues were removed and weighed, before they were prepared for subsequent 
histological analysis.

Blood and urine samples were also collected for analysis at the end of 21 days treatment 24 h and 1.5 h, respec-
tively, after last administration of crotamine. In order to detect crotamine in urine samples, two naive mice 
received a single ip injection of native purified crotamine or fluorescently-labeled Cy3-crotamine (30 µg/animal) 
while two control mice received 100 µL of saline by ip route, 1,5 h before the urine collection. The total volume of 
blood collected from each animal (~0.5 mL) was placed in microtubes containing heparin sodium 100 I.U./mL,  
and the sample was centrifuged for 10 min at 300 × g at room temperature for plasma fraction (supernatant) 
collection. The urine collected was centrifuged for 10 min, at 2000 × g, at 4 °C, to remove sediments. Aliquots of 
plasma and urine were stored in 0.2 mL microtubes at −80 °C until analysis.

Biochemical markers analysis in blood and urine.  The levels of creatinine in plasma and urine were 
measured by alkaline picrate method, as described by Jaffé50. Levels of uric acid in plasma and urine were meas-
ured by Uricase-PAP method51. For this purpose, specific kits, namely uric acid (Ácido Úrico Monoreagente 
– K139) and creatine (Creatinina Enzimática – K161), both from BIOCLIN (São Paulo, SP, Brazil), were used 
according to the manufacturer’s instructions.

SDS-PAGE electrophoresis and Western blotting in urine.  The presence of crotamine in the urine 
was determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS/PAGE), Western blot anal-
ysis and mass spectrometry (MS) analysis (Supplementary Method. S1), which also confirmed the integrity of 
detected crotamine. For SDS-PAGE, 5 µL of urine samples of mice receiving vehicle (control), native crotamine 
(1 µg/animal/day) for 21 days, or acute administration of native crotamine (30 µg/animal). For the gel loading con-
trol, 100 ng of native purified crotamine were used. All samples were mixed with 2 × sample buffer (2% SDS, 10% 
glycerol, 0.1% bromophenol blue, 50 mM Tris pH 6.8), before denaturation by heating at 95 °C, and separation 
by electrophoresis in 15% SDS-PAGE, followed by Coomassie blue or silver staining. Another gel was prepared 
exactly in the same way, before it was transferred to nitrocellulose membrane (Hybond ECL; GE HealthCare, 
Little Chalfont, UK) for development by Western blot employing the anti-crotamine antibody (1:200) diluted in 
blocking buffer (3% bovine serum albumin), essentially as previously described52. The employed anti-rabbit IgG 
conjugated with alkaline phosphatase (Promega, Wiscosin, USA) secondary antibody was diluted 1:10,000 in 
TBST buffer (150 mM NaCl, 20 mM Tris-HCl pH 7.5 and 0.05% Tween-20), and a solution of 5-bromo-4-chloro-
3-indolyl phosphate (BCIP) and nitro blue tetrazolium (NBT) in dilution buffer (0.10 M Tris–HCl pH 9.5, 0.02 M 
NaCl and 0.005 M MgCl2), strictly following the manufacturer’s protocols, was employed for the development 
of the immunorecognized protein bands. Imaging was captured by digital camera SM-G950x (Samsung, Seoul, 
South Korea) with the following specifications, ISO: 100, exposure time: 1/60 s, and focal length: 4.20 mm.

Histopathological analysis of kidney.  Kidneys were fixed in 4% paraformaldehyde before embedment 
in paraffin. Tissue sections (5–7 μm thick) were obtained from the paraffin-embedded blocks and they were 
mounted onto glass microscope slides after stretching at 40 °C. After deparaffinization, sections were stained with 
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H&E and PAS for routine light microscopy examinations. Sections of kidneys from mice receiving Cy3-crotamine 
were deparaffinated and only incubated with DAPI followed by embedment with CitifluorTM AF1 Mounting 
Medium (EMS Acquisition Corp., Pennsylvania, USA), before fluorescence confocal microscopy analysis.

Immunohistochemistry.  For the immunohistochemical analysis, tissue sections (3–4 μm thick) were pre-
pared on a microtome from paraffin-embedded blocks, and they were mounted on superfrost glass slides, and 
dried overnight at 60 °C. Slides were deparaffinized with xylene/ethanol and rehydrated in PBS. Then, an antigen 
retrieval protocol was performed with Tris-HCl buffer pH 9.0, at 95 °C for 20 min. All further immunohisto-
chemistry steps were carried out at room temperature (25 °C). Endogenous peroxidase was blocked with 0.03% 
H2O2 in phosphate buffer solution (PBS) for 30 min. To prevent non-specific binding of the antibodies to the 
tissues, the sections were incubated with 5% normal goat serum in PBS for 30 min. Rabbit anti-crotamine was 
used as primary antibody (diluted 1:2000 in 1% BSA/PBS), which was incubated on the tissue sections for 1 h. To 
control for specificity rabbit anti-crotamine in 1% BSA/PBS was blocked with 25 µg/mL of crotamine for 1 h prior 
to staining procedure. Goat anti-rabbit IgG conjugated with horseradish peroxidase (HRP; DAKO, Glostrup, 
Denmark) (1:100 in 1% BSA/PBS) was used as secondary antibody, which was incubated for 30 min, before the 
10 min incubation in the dark with Tyramide Signal Amplification (TRITC-labeled tyramide solution, tetrame-
thyl rhodamine system, Perkin Elmer, Waltham, MA, USA), employed to show the localization of the HRP-label 
by immunofluorescence. For nuclear staining, sections were incubated for 10 min in the dark with 300 nM DAPI 
(4′,6-diamidino-2-phenylindole), and embedment was done by CitifluorTM AF1 Mounting Medium (EMS 
Acquisition Corp., Pennsylvania, USA) before fluorescence confocal microscopy analysis.

Cell culture experiments.  Human renal epithelial HK-2 cells were from ATCC® (CRL-2190TM) and 
syndecan-1 deficient HK-2 cells were obtained by shRNA technology and selected based on zeocin resistance30. 
Cells were cultured in a mixture of DMEM and Ham’s F-12 medium, supplemented with 10 ng/mL human recom-
binant epidermal growth factor (EGF), 36 ng/mL hydrocortisone, 5 μg/mL bovine insulin, 5 μg/mL human trans-
ferrin, 5 ng/mL sodium selenite, 2 mM glutamax (Life Technologies, Carlsbad, CA, USA), 100 U/mL penicillin, 
and 100 μg/mL streptomycin.

Cell viability assay.  Cell viability after exposure to crotamine was examined using the MTT assay, in 
which metabolically active mitochondrial dehydrogenase activity converts the tetrazolium salt 3-[4,5-dime
thylthiazol-2-yl]-2,5-diphenyltetrazolium bromide to insoluble purple formazan crystals at a rate proportional 
to cell viability. Cultured Synd-1 deficient and wild type HK-2 cells were plated in 96-wells microtiter plates, at a 
density of 2,500 cells/well, in 200 μL of culture medium (density was established by absorption curve and growth 
curve evaluation). After overnight incubation at 37 °C, the cells were incubated with crotamine (at concentrations 
ranging from 0 to 50 μM), in 200 μL of culture medium for 3 days, at 37 °C. At the end of the incubation, 20 μL 
of MTT solution (5 mg/mL in PBS) was added to each well. After 4 h, the plates were centrifuged at 900 rpm for 
15 min, the culture medium was removed and 100 μL of DMSO 100% was added to each well and thoroughly 
mixed before the plate was read at 520 nm on a FlexStation3 microplate reader (Molecular Devices, Sunnyvale, 
CA, USA). Percentage of cytotoxicity was calculated using the following equation 100 × (1 − [optical density at 
520 nm with crotamine]/[optical density at 520 nm without crotamine]). The assay was performed twice each of 
them in triplicate.

Crotamine internalization assay.  Analysis of crotamine internalization by PTEC HK-2 cells, cultured on 
glass cover slips, was performed by incubation of the cells with 5 μM of native non-labeled crotamine, at 37 °C 
for 1 h. After rinsing with PBS, the cells were fixed with 2% paraformaldehyde in PBS for 20 min, at room tem-
perature. All further immunocytochemistry steps were carried out at room temperature (25 °C). Cover slips were 
mounted and evaluated for fluorescence signals by fluorescence microscopy.

Crotamine transfection assay.  Wild-type human HK-2 cells and Synd-1 deficient HK-2 cells (Synd-1 KD) 
were plated on 6 × 35 mm well plates using appropriate cell culture media. One day before transfection the cells 
were plated on glass slides at a density reaching about 50% confluence in 24 h. The crotamine-DNA complexes 
were prepared with plasmidial vector pEGFP-N1 (Clontech, Mountain View, CA, USA), containing a gene coding 
for GFP, essentially as previously described18,20. On the transfection day, the peptide-DNA complexes solution was 
added dropwisely to the cultured cells, and the cells with the peptide-DNA complex were incubated for 48 h. Cells 
were then fixed and stained with DAPI, before analysis in confocal microscopy.

Confocal microscopy analysis.  For immunohistochemical, immunocytochemical and transfection anal-
ysis, data acquisition was performed in Leica DM4000B fluorescence microscope (Leica Microsystems) or Leica 
TCS SP8 confocal microscope (Leica Microsystems), using 40× and 63× objectives, Leica TCS SP8 CARS – 
Coherent Anti-Stokes Raman Scattering (Leica Microsystems, Wetzlar, Germany) using 63× objective or IN Cell 
Analyzer 2000 (GE Healthcare, Little Chalfont, UK), using 2× objective. The parameters used were λEX 545 nm 
and λEM at 590–620 nm for Cy3-crotamine or TRITC, λEX 475–495 nm and λEM at 520–560 nm for GFP and λEX 
405 nm/λEM 420–470 nm for DAPI fluorescence for microscopes or LED light source with TRITC filter for IN 
Cell Analyzer.

Statistics.  Data were analyzed using Student’s t-test comparing two groups (namely control and 
crotamine-treated groups). Results are presented as mean ± SEM with p < 0.05 considered as statistically 
significant.
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Data Availability
All data presented in this report are available for those who are interested in.
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