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Abstract: There continues to be significant debate regarding the most effective mode of ex situ
machine perfusion of livers for transplantation. Subnormothermic (SNMP) and normothermic
machine perfusion (NMP) are two methods with different benefits. We examined the metabolomic
profiles of discarded steatotic human livers during three hours of subnormothermic or normothermic
machine perfusion. Steatotic livers regenerate higher stores of ATP during SNMP than NMP. However,
there is a significant depletion of available glutathione during SNMP, likely due to an inability to
overcome the high energy threshold needed to synthesize glutathione. This highlights the increased
oxidative stress apparent in steatotic livers. Rescue of discarded steatotic livers with machine
perfusion may require the optimization of redox status through repletion or supplementation of
reducing agents.

Keywords: steatosis; subnormothermic; normothermic; machine perfusion; anti-oxidant;
metabolomics; liver transplantation

1. Introduction

Liver transplantation remains the only definitive cure for end-stage liver disease. Despite
significant success and innovation in the field, there continues to be a severe shortage of organs that is
unable to meet the need of transplant candidates. Machine perfusion technology has the potential to
alleviate a significant portion of the shortage, with initial clinical trial results demonstrating lower
organ discard rates in livers preserved by normothermic machine perfusion (NMP) compared to
conventional static cold storage (SCS) [1].
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Machine perfusion has been incorporated into clinical practice by transplant centers around the
world. However, there is a significant range of perfusion practices among different centers. Groups have
reported their experience with NMP [2–4], subnormothermic machine perfusion (SNMP) [5–7], and
hypothermic oxygenated perfusion (HOPE) [8,9], each with its own unique benefits and deficits. NMP
allows surgeons to evaluate the viability of grafts in real-time under conditions that most closely simulate
transplantation [2]. In addition, NMP can be leveraged as a platform for therapeutic interventions that
aim to remodel or rehabilitate marginal grafts [10]. SNMP and HOPE repair mitochondrial injury and
maximize adenosine triphosphate (ATP) stores prior to transplantation, though viability assessment is
not currently well-defined below normothermic temperatures [6,11]. Additionally, there is the added
benefit of not needing to use an oxygen carrier, such as packed red blood cells, at lower perfusion
temperatures. Recently, perfusion techniques have been combined in an attempt to maximize the
benefits of each method [12,13]. Currently, there is no consensus on the best approach for machine
perfusion of livers. This is further complicated by the heterogeneity of donor livers, which include
donation after cardiac death (DCD), steatotic grafts, and other extended-criteria (or marginal) donor
characteristics, each of which may benefit from a different application of machine perfusion.

Further elucidation of these subsets of donor grafts and their physiology during machine perfusion
is required to allow informed decision making by transplant surgeons. We compared the metabolomic
profiles of steatotic livers perfused at subnormothermic versus normothermic temperatures to evaluate
the advantages and disadvantages of each.

2. Results

2.1. Functional Recovery during Perfusion

Donor demographics are presented in Table 1. Given the temperature and perfusate differences
between the experimental arms, expected differences in perfusion dynamics were observed. NMP livers
demonstrated higher flow rates and resistance in both arterial and portal vein circuits (Figure 1a–d).
NMP livers also cleared lactate at a faster rate compared to SNMP livers, which became significant after
120 min of perfusion in the mixed model. Similarly, NMP livers produced more bile with increasing
perfusion time, demonstrating a significant difference at 180 min. Glucose levels in the perfusate were
significantly higher in the NMP group after 60 min of perfusion compared to the SNMP group. Finally,
ALT levels were higher in NMP livers at 60 (4350 ± 1656 U/L vs. 1800 ± 602, p = 0.35) and 180 min
(4672 ± 1721 vs. 1831 ± 587, p = 0.25) of perfusion, though they did not reach significance (Figure 2a–d).

Table 1. Donor demographics by perfusion method.

Steatotic SNMP Steatotic NMP

N = 9 N = 5

Age (years) 44.9 (22–60) 48.4 (37–55)

Gender (female) 2 1

BMI (kg/m2) 29.4 (22.7–38) 32.6 (25.8–37.9)

Type of Donor Liver
DCD 5 2
DBD 4 3

WIT (min) 35.3 (17–48) 27 *

CIT (min) 554 (304–808) 735 (463–935)

Weight of Liver (kg) 2.3 (1.5–3.1) 2.3 (2.0–2.8)

Mean with range in parentheses. NMP, normothermic machine perfusion; SNMP, subnormothermic machine
perfusion; BMI, body mass index; DCD, donation after cardiac death; DBD, donation after brain death; WIT,
warm ischemic time; CIT, cold ischemic time; * indicates one available data point. Comparisons were not
statistically significant.
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statistically significant. Arterial resistance (c) was significantly higher throughout the majority of 
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Figure 1. Perfusion parameters during machine perfusion of steatotic livers. Steatotic livers had higher
qualitative hepatic artery (a) and portal vein (b) flows during NMP, though this was not statistically
significant. Arterial resistance (c) was significantly higher throughout the majority of three hours
perfusion during NMP compared to SNMP. Portal vein resistance (d) was also higher during NMP
but not statistically significant due to large variance. Random intercept mixed model analysis for
longitudinal data was used. Data shown as mean ± SEM, * indicates p < 0.05. NMP, normothermic
machine perfusion; SNMP, subnormothermic machine perfusion.
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2.2. Histologic Assessment 

Figure 3 shows representative histology for liver biopsies from both experimental groups. 
Comparison of pre- and post-perfusion histology demonstrates well-preserved architecture with 
minimal swelling and patent sinusoids in SNMP livers. NMP livers had similar findings, with 
preserved liver lobules, portal tract structures, and mild congestion of sinusoids. Table S2 lists the 
macrosteatotic content of each liver pre- and post-perfusion. 

Figure 2. Functional outcome measures during machine perfusion of steatotic livers. NMP of steatotic
livers resulted in evidence of higher metabolic activity as expected compared to SNMP. Venous lactate
content (a) decreased during three hours of perfusion in both groups but at a fast rate during NMP.
ALT (b) is qualitatively higher in steatotic livers during NMP compared to SNMP but did not reach
significance. Glucose content in the perfusate (c) was significantly higher during NMP. Steatotic
livers produced comparable volumes of bile during the first 2 h of perfusion, but production was
significantly higher by the third hour compared to SNMP (d) Data shown as mean ± SEM, * indicates
p < 0.05. NMP, normothermic machine perfusion; SNMP, subnormothermic machine perfusion; ALT,
alanine aminotransferase.
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2.2. Histologic Assessment

Figure 3 shows representative histology for liver biopsies from both experimental groups.
Comparison of pre- and post-perfusion histology demonstrates well-preserved architecture with
minimal swelling and patent sinusoids in SNMP livers. NMP livers had similar findings, with
preserved liver lobules, portal tract structures, and mild congestion of sinusoids. Table S2 lists the
macrosteatotic content of each liver pre- and post-perfusion.
Metabolites 2019, 9, x 5 of 14 

 

 

Figure 3. Histologic differences of steatotic livers during NMP and SNMP. Representative H&E-
stained liver sections from steatotic livers undergoing NMP and SNMP shown pre-perfusion and 
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biopsy after 3 hours of SNMP, (d) biopsy after 3 hours of NMP. 
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Livers undergoing SNMP and NMP demonstrated significant increases in ATP levels following 
three hours of perfusion. Despite not reaching significance in ATP:ADP and energy charge ratios, 
SNMP livers demonstrated a qualitatively larger increase in ATP stores compared to NMP livers. The 
ATP:AMP ratio was significantly higher at 180 min compared to pre-perfusion levels in the SNMP 
group, demonstrating a ratio >1. Interestingly, SNMP livers experienced a drop in ATP stores after 
60 min of perfusion but were able to regenerate this supply with ongoing perfusion. The more 
metabolically active NMP livers demonstrated smaller but significant increases in ATP:ADP, 
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Figure 3. Histologic differences of steatotic livers during NMP and SNMP. Representative H&E-stained
liver sections from steatotic livers undergoing NMP and SNMP shown pre-perfusion and post-perfusion.
No significant change in macrosteatosis was observed with either perfusion modality. (a) pre-perfusion
biopsy of liver in SNMP group, (b) pre-perfusion biopsy of liver in NMP group, (c) biopsy after 3 hours
of SNMP, (d) biopsy after 3 hours of NMP.

2.3. Targeted Energy Cofactor Analysis

Livers undergoing SNMP and NMP demonstrated significant increases in ATP levels following
three hours of perfusion. Despite not reaching significance in ATP:ADP and energy charge ratios,
SNMP livers demonstrated a qualitatively larger increase in ATP stores compared to NMP livers.
The ATP:AMP ratio was significantly higher at 180 min compared to pre-perfusion levels in the
SNMP group, demonstrating a ratio >1. Interestingly, SNMP livers experienced a drop in ATP stores
after 60 min of perfusion but were able to regenerate this supply with ongoing perfusion. The more
metabolically active NMP livers demonstrated smaller but significant increases in ATP:ADP, ATP:AMP,
and energy charge ratios after 120 and 180 min of perfusion compared to pre-perfusion levels (Figure 4).
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Figure 4. Energy cofactor changes during NMP and SNMP of steatotic livers. (a) ATP:ADP, (b) ATP:AMP,
and (c) energy charge ratios at each hour of perfusion. Given the lower metabolic activity at
subnormothermic temperatures, steatotic livers are able to regenerate ATP and energy charge to
higher levels with oxygenated perfusion compared to NMP. Energy charge was calculated as (ATP
+ ADP*0.5)/(ATP + ADP + AMP). Within group comparisons at 60, 120, and 180 min are made
to a pre-perfusion measurement (time = 0 min). * indicates p < 0.05 for random intercept mixed
model comparison of longitudinal data to pre-perfusion levels. Data shown are mean ± SEM. NMP,
normothermic machine perfusion; SNMP, subnormothermic machine perfusion.

2.4. Untargeted Metabolomic Analysis

2.4.1. Data Reduction Methods

Figure 5 illustrates pathway enrichment scores for comparisons of tissue metabolite ratios for
SNMP and NMP livers (n = 3 each) at 180 min compared to pre-perfusion concentrations. Subsequently,
principle component analysis (PCA) demonstrated similar composition of metabolites in pre-perfusion
biopsies of steatotic livers, with divergence after initiation of SNMP or NMP. Interestingly, PCA of
lipids clustered by mode of perfusion (Figure S1).
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Figure 5. Pathway enrichment analysis for metabolomic profiles of steatotic livers during NMP
and SNMP. Pathway enrichment scores of metabolite subgroups at 180 min of perfusion compared
to pre-perfusion concentrations between SNMP and NMP groups. NMP, normothermic machine
perfusion; SNMP, subnormothermic machine perfusion.
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2.4.2. Anti-Oxidative Capacity

A significantly different anti-oxidative capacity was seen in the two groups. SNMP livers
demonstrated a reduction in tissue N-acetylcysteine (N-Ac) levels (fold change range 0.41–0.49, p < 0.05
for all), the main cysteine donor involved in glutathione synthesis. NMP livers, however, demonstrated
a gain in N-Ac stores during three hours of perfusion (fold change range 1.94–2.27, p < 0.05 for all).
Notably, there was marked depletion of tissue reduced glutathione (GSH) levels in SNMP livers (fold
change range 0.01–0.03, p < 0.05 for all), suggesting the immediate utilization of available glutathione
after initiation of SNMP. Oxidized glutathione (GSSG) levels decreased to a ratio of 0.02 at 60 min of
perfusion from pre-perfusion levels (p < 0.05), indicating degradation and utilization of glutathione
components for other cellular processes. NMP livers were able to sustain their anti-oxidative capacity
comparatively; GSH levels decreased after the initiation of perfusion (0.24–0.29, p < 0.05 for all) but to
a lesser degree than SNMP livers (Figure 6a–c).
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glutathione, and (c) oxidized glutathione ratios demonstrate depleted redox capacity within hepatocytes
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to pre-perfusion concentrations.

2.4.3. Glutathione Cycle

The glutathione cycle is the degradation and biosynthetic pathway by which glutathione is
metabolized in cells (Figure 7a). GSH is regenerated at the expense of three molecules of ATP [14].
Figure 7b represents a heatmap of the metabolites involved in the glutathione cycle. SNMP livers
demonstrate near-total depletion of GSH compared to NMP livers. The precursor metabolites for
glutathione biosynthesis (cysteine, γ-glutamylcysteine) are similarly depleted over time to a larger
degree in SNMP vs. NMP livers. During the same interval, there is a significant accumulation of the
GSH breakdown product, 5-oxoproline, and to a lesser extent, glutamate, as the degradation of each
metabolite requires one molecule of ATP.
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Figure 7. Glutathione degradation varies in steatotic livers during SNMP compared to NMP. (a) The
glutathione cycle involves the degradation of glutathione into its base amino acids. Synthesis of
glutathione involves three molecules of ATP. (b) Heatmap of the metabolites in the glutathione cycle
compared between SNMP and NMP of steatotic livers. There is a significant depletion of the precursor
metabolites in the synthesis arm of the cycle during SNMP compared to NMP, as well as a larger
accumulation of 5-oxoproline. Reduced glutathione content in hepatocytes is decreased during NMP
but depletion is near-total during SNMP. GSH, reduced glutathione; GSSH, oxidized glutathione;
Cys-Gly, cysteinylglycine; γ-Glu-Cys, γ-glutamylcysteine; NMP, normothermic machine perfusion;
SNMP, subnormothermic machine perfusion; x-axis represents fold change at 60, 120, and 180 min
compared to pre-perfusion concentrations.

2.4.4. Carbohydrate Metabolism

NMP livers demonstrated qualitatively higher ratios of glycogen components with perfusion
compared to SNMP livers. One component, maltose, reached significance with fold change ratios 2.27
and 2.89 (p < 0.05 for both) at 120 and 180 min of perfusion, respectively. Metabolite concentrations
involved in the tricyclic acid cycle generally showed increased fold change ratios in SNMP livers and
decreased ratios in NMP livers, consistent with the temperature-dependent rate of metabolic activity
(Figure S2).

2.4.5. Lipid Metabolism

Several subclasses of lipid metabolites demonstrated notable enrichment scores during SNMP.
Interestingly, fatty acyl cholines, hydroxyeicosatrienoic acids (cytochrome P450 eicosanoids), and
dicarboxylic fatty acids demonstrated significantly increased tissue concentrations with perfusion
compared to NMP livers. Ceramides and dihydroceramides were significantly increased in both
groups, while sphingolipids and monoacylglycerols were significantly decreased in SNMP livers
(Supplemental Datasheet).

3. Discussion

The debate regarding the best modality of machine perfusion continues. This study provides
a metabolomic profile of discarded steatotic human livers during three hours of subnormothermic
versus normothermic machine perfusion to help inform future perfusion studies.

Our most significant finding is that steatotic livers undergoing SNMP are able to increase ATP
and energy charge ratios; however, this appears to hinder the anti-oxidative capacity that would
be required to overcome the oxidative injury encountered during surgical reperfusion at the time
of implantation [15]. Given that metabolic activity and consumption of ATP is decreased at lower
organ temperatures [16], the accumulation of ATP during SNMP is not surprising. Conversely, while
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mitochondrial activity is higher at normothermic temperatures, so is ATP consumption through
energy-driven processes. Unfortunately, the regeneration of ATP during SNMP is associated with
glutathione depletion, and while they may not be directly related, do still represent a significant
trade-off between the benefits of SNMP compared to NMP. Glutathione degradation has until now
been an unrecognized disadvantage of SNMP of steatotic human livers. The inability of hepatocytes to
synthesize glutathione is likely responsible for the massive accumulation of its breakdown product
and precursor, 5-oxoproline. This may lead to further inherent cytotoxicity of the graft as the
accumulation of 5-oxoproline has been associated with hemolytic anemia, metabolic acidosis, and
central nervous system damage in inherited glutathione synthetase deficiency [17]. Residual metabolic
activity at subnormothermic temperature allows some progression of 5-oxoproline through the first
ATP-dependent step to glutamate, which accumulates to a much lesser extent than 5-oxoproline.
Further, ATP-dependent advancement to glutathione regeneration appears to be significantly impaired,
with marked depletion of subsequent intermediates, such that the immediate precursor of glutathione,
γ-glutamylcysteine (and breakdown product of glutamate) dramatically decreases during SNMP. This
is in direct contrast to NMP, where γ-glutamylcysteine concentrations increase during perfusion and
glutathione stores are able to be maintained. This is a clinically relevant finding given prior studies
demonstrating an acute depletion of reduced glutathione stores following graft reperfusion in clinical
liver transplantation studies [18,19]. Though no clinical reports of transplantation of steatotic human
livers after SNMP exist, these grafts may suffer severe ischemic-reperfusion injury (IRI) at reperfusion
and could potentially experience higher rates of early allograft dysfunction (EAD) or post-reperfusion
syndrome (PRS) as a result of glutathione depletion. Interestingly, even oxidized glutathione stores are
depleted during SNMP, which may indicate the breakdown of glutathione for its essential amino acids
(cysteine) to be used in other cellular processes.

One potential way to overcome glutathione depletion while capitalizing on ATP production
is to combine perfusion modalities. Several groups have reported their experience with combined
hypothermic and normothermic machine perfusion of livers with results indicating improved liver
function and viability compared to NMP or SCS alone [13,20]. This technique and a similar one, known
as controlled oxygenated rewarming, have shown promise in animal and human trials [21,22]. An initial
period of hypothermic perfusion, with or without an acellular oxygen carrier, allows the regeneration of
ATP stores, followed by a period of normothermic perfusion for viability assessment. Similar strategies
with SNMP preceding NMP could provide the benefits of both modalities. Alternatively or in addition,
supplementation of the perfusate with anti-oxidants, such as glutathione [23], N-acetylcysteine [24], or
Vitamin E [25], could buffer against the depletion of glutathione seen during SNMP.

With respect to lipid metabolism, it is notable that steatotic livers appear to synthesize ceramides
regardless of perfusion modality. Ceramides can be generated through the hydrolysis of sphingomyelin
by the enzyme acid sphingomyelinase (ASMase) or through de novo synthesis in the endoplasmic
reticulum. ASMase appears to be linked to key mechanisms involved in the regulation of steatosis,
fibrosis, and lipotoxicity [26]. The inhibition of de novo ceramide synthesis has been demonstrated to
decrease hepatic steatosis [27] and improve insulin resistance [28] in animal models, suggesting that
either temperature may be efficacious in strategies targeting lipid modulation.

In contrast, SNMP livers demonstrate significantly larger fold increases in cytochrome P450
(CYP450) eicosanoid products, 14,15-dihydroxyeicosatrienoic acid (14,15-DHET or 14,15-DiHETrE) and
8,9-dihydroxyeicosatrienoic acid (8,9-DHET). DHETs are the breakdown product of epoxyeicosatrienoic
acids (EETs), which have been shown to possess significant vasodilatory and anti-inflammatory
properties and play an important role in liver physiology. One limitation of our metabolomic analysis is
that it does not include the concentrations of EETs or its counterpart 20-hydroxyeicosatraenoic
acid (20-HETE), which has vasoconstrictive and pro-inflammatory properties [29], but if the
breakdown product, DHETs, are found in higher concentrations during SNMP, this could indicate
that anti-inflammatory or vasoactive supplements are more important during SNMP than NMP.
Pharmacologic manipulation of CYP450 eicosanoid metabolism is an active area of drug investigation
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in cardiovascular disease [30,31] and has a potentially important and novel application in machine
perfusion of steatotic liver grafts by improving the hindered microcirculation and decreasing
pro-inflammatory signaling [32] associated with ischemia-reperfusion injury.

Several limitations are worth discussion. First, there is inherent heterogeneity in discarded organ
research. Livers with similar profiles were submitted for metabolomic analysis in an attempt to control
for these various factors, though variability was unavoidable. Notably, the two groups differed in
macrosteatosis (more severe macrosteatosis in SNMP group compared to NMP), which could impact the
functional and metabolomic changes observed. In addition, baseline comparison of lipidomic profiles
prior to initiation of perfusion demonstrated pathway enrichment in phospholipid and secondary
bile acid metabolism. Though the majority of the lipid subclasses demonstrated no enrichment, these
pre-perfusion differences could certainly impact the observed changes during perfusion (Figure S3).
This study also used a synthetic hemoglobin-based oxygen carrier rather than conventional packed
red blood cells, given evidence of similar efficacy [3]. While the use of a blood-based oxygen carrier
would have impacted the metabolic profiles of the perfused livers, the use of HBOC-201 may provide
a more consistent picture of metabolic activity, has the benefits of avoiding consequences of pooled
blood donations (such as RBC hemolysis and immune-mediated phenomena) [33], and is capable of
being perfused at hypothermic, subnormothermic, and normothermic temperatures [13]. While the
use of HBOC-201 is likely to minimize experimental variability, some metabolic differences should be
expected if a blood-based perfused is used, therefore future comparisons with literature data should be
done with caution. The use of fresh frozen plasma and albumin in the NMP perfusate does represent
a significant procedural difference compared to the SNMP perfusate, which resulted in the lower
vascular resistance seen in the SNMP livers. Future studies should ideally avoid the use of FFP in favor
of using albumin for the benefit of oncotic pressure. Finally, we performed a three-hour perfusion, as
this is generally the clinical timeframe in which transplant surgeons determine viability of a machine
perfused graft [2], and prior studies have shown that livers achieve a physiologic steady-state by three
hours [6,34,35]. This allowed the metabolic differences between SNMP and NMP of steatotic grafts to
be well-defined in order to achieve our goal of optimizing these grafts for transplantation within a
relevant time period, however analysis of metabolic changes over a longer perfusion period in future
studies will strengthen these results.

The use of metabolomics has numerous clinically relevant applications for transplantation. In
this study, metabolomic profiling using mass spectrometry was used to examine differences between
discarded livers undergoing SNMP versus NMP in order to assist in designing optimized perfusion
conditions for steatotic grafts. Faitot et al. reported the use of real-time high-resolution nuclear magnetic
resonance (NMR) metabolomic analysis in patients undergoing liver transplantation and demonstrated
the ability to accurately predict EAD using lactate and phosphocholine (L + PC) levels [36]. Notably,
the authors describe that metabolic mismatch between the recipient native liver and donor graft L +

PC levels resulted in 100% incidence of EAD, indicating that donor-recipient matching of metabolic
profiles has a significant role in graft function after implantation. Incorporating machine perfusion
and real-time NMR into the transplant workflow can further enhance the surgeon’s ability to match
metabolic profiles of donor and recipient, as grafts with mismatched profiles can potentially be further
optimized with targeted perfusion techniques in a realistic timeframe. This may be a novel application
of both technologies with real potential to bring bench research into the operating room with the goal
of improving patient outcomes.

4. Materials and Methods

4.1. Donor Livers

Fourteen human donor livers with moderate (30–59%) or severe (>60%) macrosteatosis, declined
for transplantation by all transplant centers in our donation service area, with consent for research,
between August 2015 and April 2018 were included in this study. All donor livers were received
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through New England Donor Services (NEDS); no organs were procured from prisoners. Donors or
their surrogates (including parents or legal guardians) provided informed consent for use of donor
organs in research. The Massachusetts General Hospital Institutional Review Board (IRB) and the
NEDS approved this study (No. 2011P001496), and all studies were carried out in accordance with IRB
and NEDS approved guidelines.

4.2. Procurement and Preparation of Liver Grafts

All donor livers were procured based on the standard technique of in situ cold flush using
University of Wisconsin (UW) preservation solution. Procurement techniques for donation after brain
death (DBD) or donation after circulatory death are previously described [6]. Warm ischemic time
(WIT) is defined as time from circulatory arrest to in situ cold flushing for DCD livers. Cold ischemic
time (CIT) is defined from in situ cold flushing to start of machine perfusion.

Upon arrival to our perfusion lab, back table preparation of the livers was performed as described
previously [37].

4.3. Machine Perfusion

Liver grafts were perfused for three hours using a pressure and temperature-controlled perfusion
device, Liver Assist (Organ Assist, Groningen, Netherlands). During SNMP, livers were perfused with a
portal venous pressure (PVP) of 3–7 mmHg and mean hepatic arterial pressure (HAP) of 30–60 mmHg.
The temperature of the perfusate was maintained between 20–22 ◦C. The perfusate consisted of
Williams’ medium E supplemented with hydrocortisone, insulin, and penicillin/streptomycin [6].
During NMP, albumin, fresh frozen plasma and a hemoglobin-based oxygen carrier, HBOC-201 (HbO2

Therapeutics LLC, Souderton, PA, USA) were added to the base perfusate. Detailed composition is
provided in the Supplementary Methods (Table S2). NMP grafts were perfused at a PVP 6–8 mm Hg
and HAP 60–70 mm Hg. Perfusate samples were collected from the arterial inflow and venous outflow
at 30-min intervals. Blood gas and chemistry analysis was performed using i-STAT Blood Analyzer
(Abbott Point of Care Inc., Princeton, NJ, USA). Donor livers were perfused for three hours, a duration
chosen based on prior studies demonstrating adequate ATP regeneration within that time period [6,38].

4.4. Evaluation of Hepatic Injury and Function

Perfusion dynamics were recorded every 30 min. Vascular resistance was defined as perfusion
pressure divided by flow rate (mmHg1 min1 mL−1). Alanine aminotransferase (ALT) was determined
using Piccolo Xpress Chemistry Analyzer (Abbott Point of Care Inc., Princeton, NJ, USA). The volume
of bile produced was recorded at 1-h intervals. Two wedge liver biopsies were collected immediately
prior to perfusion and then hourly during perfusion. One tissue sample was snap-frozen in liquid
nitrogen for future analysis and the other preserved in formalin for histology.

4.5. Histological Assessment

After formalin fixation, tissue samples were paraffin-embedded, and stained with hematoxylin-
eosin (H&E). Tissue slides were evaluated for macrosteatosis content and preservation injury by a
blinded expert pathologist (EOAH).

4.6. Targeted Metabolomics Analysis—Energy Cofactors

Frozen liver biopsies from each time point (~25 mg) were pulverized in liquid nitrogen and
analyzed for metabolic cofactors using a targeted multiple reaction monitoring analysis on a Sciex
TripleTOF 6600 Quadruple Time-Of-Flight system, performed at the principle research institution.
Metabolites were extracted using the protocol provided by Yuan et al. [39]. Concentrations of hepatic
adenosine tri-, di-, and mono- phosphate (ATP, ADP, AMP) were quantified. Energy charge was
calculated as: [ATP + ADP*0.5] / [ATP + ADP + AMP].
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4.7. Untargeted Metabolomic and Lipidomic Analysis

Tissue biopsies of three livers from each group were analyzed for 1600 compounds of known
identity by Metabolon, Inc. (Durham, NC, USA). Principal component analysis, pathway enrichment
scores, detailed methods, and statistical approach are provided in the Supplementary Methods.

4.8. Statistical Analysis

Demographic and perfusion data are presented as the mean ± standard error of the mean (SEM),
unless otherwise specified, with statistical significance defined as p < 0.05. Wilcoxon’s rank-sum
(Mann-Whitney U) test and Fischer’s exact test were used for continuous and categorical comparisons,
respectively. Repeated measures data were analyzed using a random intercept mixed model with a
categorical effect of time. If between-group comparisons were made, the categorical effect of group
and the group by time interactions were added to the model. Statistical analysis was performed using
Stata 15.1 (StataCorp, College Station, TX, USA).

5. Conclusions

Subnormothermic and normothermic machine perfusion of liver grafts are techniques of organ
resuscitation that produce significantly different metabolomic profiles. Perfusion protocols that
combine sequential temperature variation, guided by evidence-based metabolite replacement, can
maximize the potential of both methods to improve organ quality for successful transplantation.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/246/s1:
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Figure S2: Heatmap of Metabolites Involved in Tricyclic Acid Cycle and Glycogen Metabolism; Figure S3:
Pathway Enrichment Analysis Comparing Pre-Perfusion Metabolomic Profiles of Steatotic Livers in SNMP versus
NMP Group; Supplementary Methods: Untargeted Metabolomic and Lipidomic Data Processing and Analysis;
Supplementary Datasheets: Entire metabolomic and lipidomic data set.
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