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Developing tools for efficiently measuring cognitive change specifically and brain

health generally—whether for clinical use or as endpoints in clinical trials—is a major

challenge, particularly for conditions such as Alzheimer’s disease. Technology such

as connected devices and advances in artificial intelligence offer the possibility of

creating and deploying clinical-grade tools with high sensitivity, rapidly, cheaply, and

non-intrusively. Starting from a widely-used paper and pencil cognitive status test—The

Clock Drawing Test—we combined a digital input device to capture time-stamped

drawing coordinates with a machine learning analysis of drawing behavior to create

DCTclockTM, an automated analysis of nuances in cognitive performance beyond

successful task completion. Development and validation was conducted on a dataset

of 1,833 presumed cognitively unimpaired and clinically diagnosed cognitively impaired

individuals with varied neurological conditions. We benchmarked DCTclock against

existing clock scoring systems and the Mini-Mental Status Examination, a widely-used

but lengthier cognitive test, and showed that DCTclock offered a significant improvement

in the detection of early cognitive impairment and the ability to characterize individuals

along the Alzheimer’s disease trajectory. This offers an example of a robust framework

for creating digital biomarkers that can be used clinically and in research for assessing

neurological function.

Keywords: artificial intelligence, cognition, Alzheimer’s disease, dementia, DCTclock, clock drawing test, behavior

analysis

INTRODUCTION

Early detection and diagnosis of cognitive decline is critical to the development and deployment
of novel therapeutic interventions for patients with dementia due to Alzheimer’s disease
(AD) and other neurodegenerative diseases. Clinical detection currently largely depends on
reported complaints from patients or their family, or impaired performance on standard
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cognitive screening tasks such as the Mini Mental State
Examination (MMSE) (1) or the Montreal Cognitive Assessment
(MoCA) (2). These tests have been shown to be, relatively
insensitive to milder forms of impairment and require
administration and hand-scoring by trained administrators,
which can lead to subjectivity in both scoring and interpretation.
Computerized tests, such as CANTAB Mobile (3) and Cogstate
Brief Battery (4) have made significant strides in tackling these
problems by automating administration and scoring processes.
These tests, however, measure behaviors that are more unnatural
and distant from daily living, which, combined with lengthier
testing sessions, can limit the broad use of the technology,
especially in older individuals. Cerebrospinal fluid and positron
emission tomography (PET) imaging– gold standard diagnostic
indices of earliest stage disease in neurological disorders such as
AD—remain costly and invasive, have suboptimal accuracy in
predicting cognitively related impairment, and provide limited
clinical information for addressing patient and family concerns.

Pathology associated with AD and other neurodegenerative
diseases is present for years, often decades, prior to diagnosis,
and diagnosis at the point of overt clinical manifestations may
be too late to meaningfully impact outcome and prognosis
(5). Thus, there is not only a need for early diagnosis but
also for screening and detection of abnormalities in otherwise
asymptomatic individuals. To that end, digital markers might
be ideally suited as rapid, user-friendly, and objective screening
tools for detecting and tracking subtle cognitive change, and
as differential diagnosis tools that provide clinically useful
and patient-centered information to inform treatment. These
characteristics would enable the idea of a new “vital sign” for
the brain.

As a simple paper and pencil test used for over 50 years,
the Clock Drawing Test (CDT) is quick and easy to administer,
non-invasive and inexpensive, yet provides valuable clinical
information and diagnostic utility (6). The test instructions first
ask the subject to draw, on a blank sheet of paper, a clock
showing 10min after 11 (Command clock), and then asks them
to copy a pre-drawn clock showing that time (Copy clock).
Successful completion of the test requires a variety of cognitive
functions, including memory (working memory, visual memory,
semantic memory), executive function, selective and sustained
attention, visuospatial abilities, auditory comprehension, and
motor control (7). It has been a useful screening tool to
differentiate normal elderly individuals from those with cognitive
impairment, and has been effective in helping to diagnose
dementia, Parkinson’s disease, and other conditions (8).

However, the utility of the traditional CDT is reduced by
a lack of consistency between diverse scoring systems, the
complexity and often imprecise scoring criteria, and inter-rater
unreliability due to the subjective nature of some scoring criteria
(9). Additionally, clinical assessment generally considers only the
final drawing, often with no evaluation of the drawing process.
While more impaired patients may make significant errors in
their drawings, subtly impaired patients may produce a final
drawing that appears normal or near-normal and are thus at
risk for having early cognitive change missed by the clinician.
In contrast, analyzing the entire drawing process offers better

opportunity to capture early change by revealing subtle behaviors
that precede impairment such as decision-making latencies,
compensatory strategies, and psycho-motor issues not visible in
the final drawing.

To address these issues, a first digital version of the
CDT was created by using a digitizing pen to capture the
entire drawing process—both spatial and temporal data—while
keeping the well-known administration procedures for the clock
drawing test administration standard. The digitizing pen works
as a standard ballpoint, enabling drawing on a paper and
avoiding the use of a digitizing tablet, which is less natural
for the elderly. From a digitally captured CDT performance,
two human raters independently classified the digital pen
coordinates into drawing components (i.e., digits, hands), with
a third reviewer for resolving any differences. This enabled the
creation and computation of novel drawing measures from these
classifications, such as between pen stroke latencies and drawing
velocities. Using these novel measurements, classification models
were developed for the detection of cognitive impairment,
with a focus on neurodegenerative disorders such as AD and
Parkinson’s disease, showing significant improvements over
existing manual scoring systems for the CDT (10). These
classification models were then further refined using clinician
input to make the classification results more transparent and
interpretable to clinicians, with only a small trade-off in accuracy
(10). Prior research has shown that patients have longer total
drawing times for completing the CDT task after total knee
arthroplasty with general anesthesia (11) and during normal
aging (12), and that specific process latencies during the drawing
can reveal deficits in processing speed and decision making in
subjects with Multiple Sclerosis (13). Previous work has also
shown that the order of clock component placement in non-
demented depressed older adults is associated with cognitive and
brain structural connectome differences (14).

Despite promising results, this first version of the digital
CDT suffered from significant limitations. First, it required
lengthy human review of the drawings to classify the pen strokes
into symbols, necessary to extract clinically meaningful features,
rendering the test time-consuming, prone to human error, and
unable to provide immediate, live results to a clinician or patient.
Second, more validation data was required to demonstrate overall
test accuracy, benchmark performance against other commonly-
used tests, and understand clinical benefits. Third, the software
and hardware of the system was not constructed to scale beyond
research use, and there was a clear need to convert it into an
easily-deployable platform. These issues limited the digital CDT
to research use and made it impossible to deploy clinically or
at scale.

The present study tackles the above limitations, summarizing
the development and validation of DCTclock, a fully automated
analysis of the drawing process and final drawing from the digital
CDT, as a screening tool for cognitive impairment. We describe
how the algorithms were developed, the resulting clinical scores,
and the validation findings based on comparisons between AD
and aMCI clinical samples and a community-based normal aging
population. A separate validation study of this technology in
pre-clinical AD individuals has already shown that DCTclock
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is strongly correlated with tau and amyloid loads on PET (15).
DCTclock is FDA-cleared to market as a computerized cognitive
assessment aid, offering a sensitive and scalable early detection
method for cognitive health and dementia.

MATERIALS AND METHODS

Compliance With Ethical Regulations
All procedures followed the ethical guidelines of the 1975
Declaration of Helsinki and data was collected under IRB
approved protocols at both sites–Framingham Heart Study and
Lahey Hospital and Medical Center. Data analysis herein was
conducted under an IRB approved protocol at Digital Cognition
Technologies/Linus Health (IRB Tracking Number 20160721).

Study Participants
Since 2005, 1,560 subjects from an outpatient Neurology
service at Lahey Hospital and Medical Center (LH) have been
administered DCTclock. Subjects were administered a subset
of the following neuropsychological tests within 2 weeks of
DCTclock:MMSE,MoCA, Repeatable Battery for the Assessment
of Neuropsychological Status (RBANS) (16), Halstad-Reitan
Trail Making Test (Trails) A and B (17), Hooper Visual
Organization Test (HVOT) (18), Boston Naming Test (BNT)
(19), and Beck Depression Inventory (BDI) (20). All individuals
had documented medical and cognitive status including medical,
neurological, surgical, and psychiatric conditions based on
consensus diagnosis. Consensus diagnosis was derived from
imaging, neuropsychological testing, and medical record review,
independently of DCTclock and MMSE performance. Three
groups of subjects aged 55+ were selected from this population
based on consensus diagnosis: a general cognitively impaired
group (N = 791), and subsets of individuals diagnosed with
amnestic mild cognitive impairment (aMCI; N = 113) and
dementia due to probable AD (N= 128).

Beginning in 2011, DCTclock was administered as part of the
standard cognitive assessment battery to participants enrolled
in the Framingham Heart Study (FHS) cognitive aging and
dementia studies, an established longitudinal epidemiological
research program. FHS has conducted on-going surveillance for
incident dementia since 1976 (21) and incident stroke since the
study inception in 1948 (22). DCTclock was administered to
participants in the Original, Offspring, New Offspring Spouses,
and OmniGeneration 1 cohorts (N = 2,309). For this study,
participants were excluded if aged below 55 (N = 610),
and diagnosed with prevalent dementia and/or stroke (N =

76). Additionally, examiner impression of possible cognitive
impairment was used to exclude individuals not deemed to be
cognitively unimpaired on the basis of clinical impression by the
examining technician, who was not a licensed neuropsychologist
(N = 581). This formed our cognitively unimpaired sample (N
= 1,042). A subset of these individuals were also administered
the MMSE as part of their longitudinal involvement in the study,
though unlike at LH, there was on average a multi-year difference
between DCTclock and MMSE.

For DCTclock development, the baseline DCTclock test of
each participant from FHS and LH was combined to form

a dataset of presumed cognitively unimpaired and clinically
diagnosed cognitively impaired individuals, respectively (N =

1,833). The combined dataset was randomly divided into training
(N = 912) and testing (N = 921) sets, stratified by the presence
of cognitive impairment to keep the classes balanced in both
datasets. Subjects contained within the training set were used
solely for development purposes (i.e., building the machine
learning models), while subjects within the testing set were used
exclusively for statistical and clinical validation. A subset of
the testing set was created for participants with both DCTclock
and MMSE administered within 18 months of each other (N
= 591) to enable the benchmark of these two tests. While
this time difference is significant and could lead to changes in
performance, the most rapid change would be expected from
cognitive impaired LH participants who had DCTclock and
MMSE within a 2 week period, while the presumed cognitively
unimpaired from FHS would likely fluctuate less rapidly making
the up to 18 months difference more acceptable. Demographics
for both the training and testing data sets are summarized
in Table 1.

DCT Platform
The DCT platform consists of the digitizing ballpoint pen
(Figure 1A), a computer application that sends encrypted test
data to remote servers where it is analyzed, and a web portal
to view and interact with results (Figure 1D). DCTclock is the
first cognitive test built on top of the DCT platform. The digital
pen functions as an ordinary ballpoint pen while recording
its position on the page with considerable spatial (±0.05 cm)
and temporal (12ms) accuracy. The raw data—a set of time-
stamped points—is encrypted by the pen and then transferred
to a computer that sends the data to DCT servers. The data is
securely stored and analysis software is run to analyze the tests.
The test administrators and clinicians may log into a web portal
to view the tests and results.

DCTclock Algorithm
Pen Stroke Classification for Drawing Understanding
The first step in the analysis consisted of developing an
understanding of the drawing by mapping each pen stroke into
expected symbols for the representation of a clock—clock face,
digits, hands—or as unexpected or unnecessary symbols such
as small noise strokes, cross-outs, and overwriting (Figure 1B).
We trained a convolutional neural network architecture (23) to
recognize these individual symbols by using our own database
of labeled symbols from our training set and supplementing
it with publicly available digits from MNIST (24). We then
developed amulti-pass, multi-layer rules algorithm for pen stroke
classification into drawing symbols, that iteratively combined pen
strokes based on their spatial and temporal distribution within
the drawing process and assigned symbol probabilities to each
combination using the trained neural net.

Drawing Measurements
Using the pen stroke classification output, measurements are
calculated from both the final drawing and the drawing
process (Figure 1C). Some measurements derived from the final
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TABLE 1 | Subject demographics for training and testing sets.

Variable Level Training set Testing set P-value

Sample size 912 921

Age [mean (sd)] 69.94 (8.49) 69.88 (8.32) 0.867

Cognitive status [N (%)] Cognitively unimpaired 530 (58.1) 512 (55.6) 0.297

Cognitively impaired 382 (41.9) 409 (44.4)

Education [N (%)] College graduate 465 (51.0) 476 (51.7) 0.380

Some college 221 (24.2) 245 (26.6)

HS graduate 192 (21.1) 167 (18.1)

Less than HS 34 (3.7) 33 (3.6)

Gender [N (%)] Female 483 (53.0) 449 (48.8) 0.079

Male 429 (47.0) 472 (51.2)

Race [N (%)] Asian 21 (2.3) 21 (2.3) 0.984

Black/African American 17 (1.9) 16 (1.8)

White/Caucasian 861 (95.8) 863 (95.9)

Ethnicity [N (%)] Hispanic/Latino 13 (1.7) 17 (2.2) 0.568

Non-Hispanic/Latino 763 (98.3) 754 (97.8)

MMSE Score (median [IQR]) 28 (25, 29) 28 (25, 29) 0.696

FIGURE 1 | DCTclock automated analysis steps. (A) Digitizing pen and standard test paper to capture timestamped-coordinates of drawing motion. (B)

Time-stamped pen stroke coordinates are classified into drawing symbols. (C) Using knowledge from the classified strokes, low-level features are extracted from the

drawing process. (D) Low-level features are combined into a set of interpretable Composite Scales and an overall score of test performance.

drawing, such as the correct placement of clock components, are
equivalent to measurements used in scoring systems from the
CDT; others are novel and include the overall position of the
drawing on the page, the total number of strokes, and the lengths
of various strokes. Most of the measurements, however, are
focused on the drawing process and include total time, different
types of latencies, pen speeds and oscillations during various
portions of the drawing process, and measures of efficiency in the
drawing production.

Creating Composite Scales and DCTclock Score for

Cognitive Impairment Classification
Measurements were harmonized to produce a collection of
meaningful metrics of cognition based on brain-behavior
principles. In this process, opaque variables were eliminated

through clinician feedback. While this resulted in a small loss of
classification accuracy, it produced increased transparency (10).
These features, denoted as cognitive features and detailed in
Table 2, were designed to have stronger face validity by looking
at the drawing or viewing a replay of the drawing process. These
measurements were assigned to one of four functional groups
Drawing Efficiency, Simple and Complex Motor, Information
Processing, and Spatial reasoning.

For each functional group and for each of the Command
and Copy conditions of the clock separately, a composite score
was learnt using Lasso regularized logistic regression to classify
the Cognitively Impaired and Cognitively Unimpaired groups
in our training set. These eight scores were then combined
using L1 regularized logistic regression to form a top level
DCTclock score.
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TABLE 2 | Table of DCTclock metrics with definitions and median [IQR].

DCTclock

metric

Definition Cognitively unimpaired Cognitively impaired

DCTclock

score

A number between 0 and 100 that represents a

person’s overall cognitive function as assessed by

DCTclock

86.23 [71.79, 93.68] 39.16 [14.27, 60.00]

Command clock Copy clock

Cognitively

unimpaired

Cognitively

impaired

Cognitively

unimpaired

Cognitively

impaired

Drawing

efficiency

The efficiency the individual demonstrated during the

process of drawing each clock. This considers

metrics such as time spent relative to properties of

the drawing including number of pen strokes, stroke

length, and size of the drawing.

0.16

[−0.51, 0.66]

−1.11

[−2.62, −0.06]

0.10

[−0.41, 0.58]

−0.91

[−2.26, 0.07]

Stroke count

conformity

The deviation from the expected number of pen

strokes in the drawing.

0.00

[0.00, 2.00]

1.00

[0.00, 5.50]

0.00

[0.00, 1.00]

0.00

[0.00, 2.00]

Total time The total time spent completing the drawing,

measured from the first touch of the pen on the

paper to the last pen lift off the paper.

34.37

[27.48, 42.98]

44.42

[32.04, 65.01]

26.22

[22.28, 32.49]

32.12

[25.41, 43.58]

Ink length The sum, in millimeters, of the lengths of all pen

strokes used in the drawing.

580.32

[470.2, 694.1]

480.08

[365.47, 637.09]

440.93

[390.92, 495.32]

392.1

[341.4, 464.6]

Drawing Size The size, in millimeters, of the clock face circle. 80.29

[65.69, 94.16]

64.06

[46.66, 82.06]

59.15

[52.92, 67.71]

50.95

[44.18, 59.52]

Drawing

Process

Efficiency

A relative measure that combines Ink Length and

Total Time.

16.48

[13.06, 20.75]

10.70

[6.93, 15.12]

16.63

[13.11, 20.76]

12.08

[8.42, 16.01]

Noise A measure of the drawing that includes non-standard

pen strokes, cross outs, and overwriting.

0.40

[0.40, 0.42]

0.41

[0.40, 0.44]

0.39

[0.39, 0.42]

0.41

[0.39, 0.44]

Information

processing

The non-motor cognitive functions used during the

drawing process. This considers metrics such as

absolute and relative duration of latencies, number of

pauses, and relative time spent thinking vs. actively

drawing with pen on the paper.

0.19

[−0.49, 0.75]

−0.65

[−1.67, 0.22]

0.16

[−0.59, 0.74]

−0.74

[−1.70, 0.19]

Percent think

time

The percentage of the test time spent “thinking” (i.e.,

holding the pen off the page but not actively drawing)

measured from the first touch of the pen on the

paper to the last pen lift off the paper.

59.48

[54.01, 65.19]

62.10

[54.78, 69.95]

53.70

[49.00, 58.12]

55.84

[49.20, 62.46]

Average

latency

The average duration of the latencies between each

pen stroke.

0.84

[0.68, 1.10]

1.18

[0.82, 1.77]

0.62

[0.51, 0.77]

0.80

[0.60, 1.08]

Latency

variability

The variability in the latencies throughout the drawing

process.

0.99

[0.68, 1.51]

1.62

[0.96, 2.62]

0.49

[0.37, 0.68]

0.79

[0.52, 1.21]

Relative long

latency

A measure of the difference between the average

latency and the longer latencies within this drawing.

7.26

[5.01, 10.43]

11.62

[6.65, 19.96]

4.20

[3.19, 5.73]

5.98

[4.09, 9.32]

Long latency

count

The total number of latencies in the drawing that are

notably longer than the normative sample standard.

1.00

[0.00, 1.00]

2.00

[1.00, 3.00]

1.00

[0.00, 2.00]

2.00

[1.00, 4.00]

Longest

latency

The duration of the longest latency in the drawing. 4.46

[2.94, 6.84]

6.87

[4.16, 11.64]

1.98

[1.50, 2.83]

3.12

[2.09, 5.37]

Simple and

complex

motor

The graphomotor components involved in the

process of drawing each clock. This considers

metrics such as pen stroke speeds and oscillatory

motion and can be helpful in parsing out motor and

non-motor cognitive functions.

0.24

[−0.48, 0.82]

−1.12

[−2.20, −0.04]

0.14

[−0.44, 0.68]

−0.75

[−1.68,0.13]

Percent Ink

Time

The percentage of the test time spent actively

drawing with the pen on the paper.

40.52

[34.81, 45.99]

37.90

[30.05, 45.22]

46.30

[41.88, 51.00]

44.16

[37.54, 50.80]

Average speed The average speed of the pen for all pen strokes

used during the drawing of the clock face.

127.09

[91.95, 170.8]

81.47

[54.75, 129.92]

100.37

[73.59, 138.40]

78.74

[51.16, 113.3]

Max speed The maximum speed of the pen on the page during

the drawing of the clock face.

208.9

[157.9, 265.2]

158.17

[104.80, 217.74]

168.30

[129.06, 229.47]

140.3

[97.12, 193.2]

(Continued)
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TABLE 2 | Continued

DCTclock

metric

Definition Cognitively unimpaired Cognitively impaired

Command clock Copy clock

Cognitively

unimpaired

Cognitively

impaired

Cognitively

unimpaired

Cognitively

impaired

Initiation speed The speed of the pen when beginning to draw the

clock face.

109.59

[76.09, 148.5]

76.18

[50.09, 111.70]

85.16

[60.15, 119.44]

68.08

[43.16, 95.27]

Termination

speed

The speed of the pen when finishing the clock face. 117.93

[83.36, 166.7]

72.43

[45.29, 116.98]

94.97

[67.99, 138.3]

71.90

[43.42, 110.1]

Oscillatory

motion

A measure of how much the motion of the pen

deviates from a smooth motion

2.16

[1.67, 2.74]

3.01

[2.35, 3.94]

2.38

[1.93, 2.83]

3.04

[2.47, 3.88]

Spatial

reasoning

The spatial abilities demonstrated during the drawing

process. This considers metrics pertaining to the

geometric properties of the drawing including the

circularity of the clock circle, placement of clock

components, and drawing placement on the page.

0.31

[−0.39, 0.68]

−1.65

[−3.58, −0.21]

0.27

[−0.63, 0.80]

−1.58

[−2.81, −0.49]

Clock face

circularity

A measure of the roundness of the clock face circle. 2.38

[2.21, 2.60]

2.59

[2.36, 2.83]

2.36

[2.19, 2.61]

2.55

[2.33, 2.80]

Component

placement

A measure of the spatial relationships among the

drawing components.

0.29

[0.24, 0.37]

0.52

[0.35, 0.81]

0.32

[0.27, 0.40]

0.49

[0.37, 0.69]

Vertical spatial

placement

A measure of the vertical position of the drawing on

the page.

6.75

[3.16, 12.12]

10.25

[4.09, 18.12]

10.34

[4.58, 17.52]

19.77

[10.90, 27.98]

This analysis results in an easily interpretable hierarchical
structure: cognitive problems manifest in performance on
cognitive features that individual are easily visually understood
and verified, which translates to lower performance on functional
domain composites associated with those features, and, in turn,
results in a lower DCTclock score.

DCTclock Cut Scores
DCTclock score cutoffs that maximize classification accuracy
between cognitively unimpaired and cognitively impaired
participants were determined by a Receiver Operating
Characteristic (ROC) curve analysis on the development
sample. Specifically, the cutoff of 60 for impaired classification
was determined by the Youden Index, an optimal cutoff point
statistic calculated as sensitivity + specificity–1 (25). The cutoff
of 75 for Indeterminate classification was determined via a
comparative analysis of possible DCTclock cutoffs to established
cutoffs used for MMSE classification to facilitate utility in a
clinical setting, and was selected to match a cutoff of 28 on the
0–30 MMSE range.

Statistical Analysis and Validation
Procedures
All statistical analyses and validation procedures were conducted
on the testing set, using R version 3.4.2.

Demographic variables were summarized by means and
standard deviations for normally distributed continuous
variables, by median and interquartile range (IQR) for
non-normally distributed variables, and by frequencies and
percentages for discrete variables. Differences in demographics

between the training and testing sets were tested using t-tests for
normally distributed continuous variables, Wilcoxon Rank Sum
tests for non-normally distributed variables, and chi-square tests
for discrete variables.

To compare DCTclock to existing clock scoring systems, the
following scoring systems were operationalized and applied to
our clock test data: MoCA (2), Mini-Cog (26), Manos (27), Royall
(28), Shulman (29), Libon (30), Rouleau (31), and Mendez (32).
Full details on the operationalization of these scoring systems
have been previously published (10).

ROC curves were built for scores of DCTclock and the
CDT operationalized scoring systems to measure their ability
to distinguish cognitively unimpaired and cognitively impaired
participants in the testing set (N = 905). ROC curves were also
built for participants in the testing set with both DCTclock scores
and MMSE scores within 18 months of each other (N = 591).
The area under the ROC curve was calculated for all curves
and differences in AUC between DCTclock and operationalized
scoring systems and relation between DCTclock and MMSE
scores were tested using the paired non-parametric test presented
by DeLong et al. (33). Sensitivities and specificities between
DCTclock scores and MMSE scores were compared at the
optimal cutoff point, determined by the Youden Index (27).

For each metric developed, differences between cognitively
unimpaired and cognitively impaired groups were tested using
the Wilcoxon Rank Sum test, adjusting for multiple comparisons
using the Bonferroni-Holm method (34). Additionally, a
subgroup analysis was conducted using primary consensus
diagnosis for subjects diagnosed with aMCI and AD and
compared to cognitively unimpaired. Overall group differences
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TABLE 3 | Correlation of DCTclock scores to standard neuropsychological test

scores.

Neuropsychological test (n) Correlation, r2 (95% CI)

RBANS (256) 0.59 (0.51, 0.67)

MoCA (85) 0.55 (0.39, 0.69)

MMSE (772) 0.60 (0.55, 0.64)

Trails A (400) 0.66 (0.60, 0.71)

Trails B (357) 0.60 (0.53, 0.66)

Hooper (340) −0.51 (−0.58, −0.43)

Beck depression inventory (386) −0.14 (−0.23, −0.04)

for both DCTclock and MMSE were tested using the Kruskal-
Wallis test; post-hoc analyses were conducted using theWilcoxon
Rank Sum test, adjusting for multiple comparisons using the
Bonferroni-Holm method.

Construct validity of DCTclock was determined by
correlational analyses. For a given NP test, the Pearson
correlation coefficient was calculated for individuals in the
testing set who took a DCTclock test and the specific NP test
within 10 days of each other. Thus, the sample size (Table 3) for
each NP test varied, as not all participants were administered all
NP tests within that window.

RESULTS

Demographics
Demographics for both the training and testing data sets are
summarized in Table 3. There were no significant differences in
demographic variables between the training and testing groups.
The mean age for both sets was 69.9, the majority were non-
Hispanic, white, college graduates. For both sets, the median
MMSE score was 28. Approximately 43% were cognitively
impaired in each dataset.

DCTclock Metrics
The list of developed metrics and their definitions can be found
in Table 2, along with the median and IQR of each metric
across both the cognitively unimpaired and cognitively impaired
groups. Every metric was shown to be significantly different
across the two groups at p < 0.01.

Validation of DCTclock
DCTclock overall score accuracy measures were compared with
the operationalizations of other clock scoring systems using the
overall testing set (N = 921) (Figure 2A). Results indicate that
DCTclock score has a significantly higher AUC compared to the
operationalized scoring systems. To compare the discriminatory
ability of DCTclock to that of MMSE, ROC analysis was
conducted on the subset of the testing set who were administered
both DCTclock and the MMSE (N = 591). Construction of a
ROC curve for DCTclock scores indicate an AUC of 0.89, while
the MMSE showed a statistically significantly lower AUC of
0.85 (p = 0.029) (Figure 2B). The sensitivity and specificity of
DCTclock at the optimal cutoff of 60 (Youden Index) was 0.74

and 0.90, respectively, while the MMSE had a lower sensitivity
(0.67) and comparable specificity (0.90) at the optimal cutoff of
27.5 (i.e., <28 vs. ≥28).

Figure 3 displays the performance, in terms of AUC, of
DCTclock for different population subsets based on minimum
MMSE score (i.e., subset of subjects who scored > 19, 20, 21, etc.
on the MMSE). DCTclock’s AUC is >0.80, independently of the
subset being analyzed.

Using the primary diagnoses provided by LH, probable AD,
aMCI, and the FHS cognitively unimpaired subgroups were
summarized by MMSE score and DCTclock score. MMSE scores
differed significantly (p < 0.001) between the groups, with
median [Q1, Q3] of 29 [29, 30], 27 [25.25, 29], and 21 [19,
23] for the cognitively unimpaired, aMCI, and probable AD
groups, respectively, and some did show the previously reported
ceiling effect [40, 41]. DCTclock score also differed significantly
(p < 0.001) between cognitively unimpaired (86.23 [71.79,
93.68]), aMCI (48.50 [38.80, 68.40]), and probable AD (15.45
[6.36, 39.94]). Wilcoxon Rank Sum tests showed significant
differences between cognitively unimpaired and aMCI, as well
as between aMCI and AD, individually, after adjusting for
multiple comparisons.

Within the LH subjects, DCTclock Score correlates well with
the RBANS, MoCA, MMSE, Trails A, Trails B, and Hooper
tests. This indicates that, in this sample, there is significant
agreement between the DCTclock algorithm and these standard
Neuropsychological tests. Conversely, DCTclock Score does
not show a significant correlation with the Beck Depression
Inventory and the Geriatric Depression Scale; the low (close
to zero) correlations indicate that DCTclock is not measuring
indices associated with depression or emotional state, but rather
are specific to cognition.

DISCUSSION

We report on the successful development of sensitive, impactful
cognitive tests leveraging the combination of well-known
clinical science with state-of-the-art AI techniques. We
demonstrate that it is possible to create an easy to use and
patient-friendly test that provides sensitive and clinician-usable
information by combining precise behavior capture on large
well-defined population samples, a first layer of AI algorithms for
understanding behavior (i.e., mapping pen strokes to drawing
symbols), and a second layer that uses more interpretable
machine learning models in conjunction with clinician insights
to create transparent and easily-understood metrics. This
approach, illustrated here with the DCTclock, can be applied to
other cognitive tasks and other cognitive domains, and promises
to be particularly impactful when multi-modal signals are
integrated to provide a more sensitive marker of brain function.

Our approach enables the precise analysis of cognitive
behavioral characteristics that are difficult for clinicians to see and
impossible to measure accurately without advanced technologies.
The CDT has been in clinical use for more than 50 years and has
diverse scoring systems. Yet, comparison of DCTclock metrics
(Table 2) to eight of the most commonly used traditional scoring
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FIGURE 2 | ROC curves with accompanying AUC estimates for DCTclock scores and (A) operationalized clock scoring systems and (B) MMSE.

system reveals negligible overlap in the elements that are scored.
Our approach offers insights into cognition that are simply
not possible using non-digital data and either clinician or AI
approaches alone. A first reason is that the process of solving the
task previously received no formal evaluation, and the time spent
not actively drawing was simply not recorded; in our sample, this
accounts for between 53 and 62% of the testing time (Table 2,
Percent Think Time). Second, a data-driven approach using AI
enables the learning of novel measures of cognition from the
data, and weighting them so as to optimize detection of cognitive
impairment. This is enabled by large sample sizes of well-defined
and precisely characterized subjects for both training and testing
sets; a key strength of the development of DCTclock was the
opportunity to obtain subject data from research projects, such
as the Framingham Heart Study that was integral to this work,
underscoring the importance of data sharing and harmonization
of large data repositories. Finally, instead of using black-box AI
models which would simply produce an overall score from the
raw test data, splitting the analysis into two steps with a focus
on clinical interpretability of the results through hierarchical
construction of scores from clinically meaningful variables can
enable deeper clinical insights and, ideally, assessment of the
source of impairment.

Validation data shows accuracy, as measured by AUC,
sensitivity, and specificity, substantially greater than the standard
CDT and MMSE, as well as the ability to distinguish between
cognitively unimpaired, aMCI, and probable AD. Strong
correlations with standard neuropsychological screening tests,
such as the RBANS and MoCA, underscore the ability of
this methodology to reliably capture cognitive information in
less time.

From a patient perspective, this methodology allows for a
rapid test that is unintimidating and well-tolerated. The median
time for test completion is ∼35 and 25 s for command and
copy clocks, respectively, with those times increasing to 44 and

FIGURE 3 | AUCs of DCTclock and MMSE, subset using minimum MMSE

score.

32 s in our cognitively impaired group (Table 2, Total time).
Combined with the very short test instructions, this enables the
total test time to expect to be below 2min. Beyond the workflow
efficiency, this could enable increased sensitivity in detection
of subtle cognitive change that could otherwise be missed due
to increased stress and fatigue that may be inherent in more
intensive and time-consuming tests. For test administrators,
the testing protocol remains largely unchanged, with use of
standard test administration procedures but complemented
with a fully automated and objective scoring system, obviating
subjective assessment.

Importantly, the results demonstrate potential for DCTclock
in differential diagnosis. The lack of correlation with the
Beck Inventory demonstrates that the DCTclock algorithm is
detecting cognitive issues exclusive of depression. While more
validation will be needed, this could potentially lead to improved
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specialist referrals, especially from the perspective of primary care
providers hesitant between a referral to neurology or psychiatry.

There are some limitations and potential improvements
to our analysis. First, several race and ethnic groups were
under-represented in our samples. DCTclock is designed to
be applicable to diverse populations and refining DCTclock
algorithm performance in widely diverse populations is
important for future studies. Second, although comments from
early adopters have been positive, additional studies are also
needed to assess the feasibility of using DCTclock in diverse
clinical settings and to evaluate impact on efficiency, efficacy,
and patient outcomes. Third, the dataset was collected over
a decade, limiting our definition of AD, and aMCI groups
to an older non-biomarker standard. AD along with other
neurocognitive conditions are moving toward a biomarker-
based definition of disease detection and progression (35).
Current literature suggest that a substantial proportion of
individuals 55 years or older who are not cognitively impaired
as assessed from standard cognitive tests still have evidence of
amyloid and tau deposition on PET or abnormal CSF consistent
with neurodegenerative disease, including AD. Therefore, a
portion of our cognitively unimpaired population may be AD
biomarker positive, contaminating our sample and possibly
reducing sensitivity. Conversely, those in the probable AD/aMCI
groups may not have biomarker positive AD. It is thus important
for future validation of DCTclock to study the detection of
biomarker positive against biomarker negative samples and
to focus on the ability to detect subtle cognitive impairment
associated with known diagnostic biomarker measures. Future
plans include biomarkers studies focusing on measuring the
association of DCTclock metrics with PET amyloid and tau.
In fact, one such validation study comparing DCTclock to
PET global amyloid, PET global tau, and the A4 Preclinical
Alzheimer Cognitive Composite (PACC) has already obtained
interesting results (15), showing that DCTclock performance
was strongly associated with both amyloid and tau deposition in
both unimpaired and subtly impaired individuals as measured
by the PACC, and also correlated well with the PACC. Thus, we
believe that this novel integrative model of clinician, artificial
intelligence, and technology provide exciting opportunities for
scientific advancement in the understanding cognitive change
that may occur in early stage neurodegenerative disorders.
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