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Abstract

Germplasm banks are growing in their importance, number of accessions and amount of

characterization data, with a large emphasis on molecular genetic markers. In this work, we

offer an integrated view of accessions and marker data in an information theory framework.

The basis of this development is the mutual information between accessions and allele fre-

quencies for molecular marker loci, which can be decomposed in allele specificities, as well

as in rarity and divergence of accessions. In this way, formulas are provided to calculate the

specificity of the different marker alleles with reference to their distribution across acces-

sions, accession rarity, defined as the weighted average of the specificity of its alleles, and

divergence, defined by the Kullback-Leibler formula. Albeit being different measures, it is

demonstrated that average rarity and divergence are equal for any collection. These param-

eters can contribute to the knowledge of the structure of a germplasm collection and to

make decisions about the preservation of rare variants. The concepts herein developed

served as the basis for a strategy for core subset selection called HCore, implemented in a

publicly available R script. As a proof of concept, the mathematical view and tools developed

in this research were applied to a large collection of Mexican wheat accessions, widely char-

acterized by SNP markers. The most specific alleles were found to be private of a single

accession, and the distribution of this parameter had its highest frequencies at low levels of

specificity. Accession rarity and divergence had largely symmetrical distributions, and had a

positive, albeit non-strictly linear relationship. Comparison of the HCore approach for core

subset selection, with three state-of-the-art methods, showed it to be superior for average

divergence and rarity, mean genetic distance and diversity. The proposed approach can be

used for knowledge extraction and decision making in germplasm collections of diploid,

inbred or outbred species.
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Introduction

Germplasm banks worldwide contain collections, mainly of cultivated plants and their rela-

tives, to preserve and make available to plant breeders, researchers and general users, their res-

ervoirs of genetic diversity. Those collections are valuable resources to meet the challenges

possed by the growing human population and climatic change. A favorable trend has been wit-

nessed during the last 40 years, with a remarkable progress in the assembly and conservation

of plant genetic resources [1–3]. Also, the objectives of seed banks have been diversified, and

their profiles can be classified as assistentialist, productivist and preservationist [3].

The tools of genome research are helping to unleash the potential of germplasm banks, and

are becoming first hand tools for their management. The use of polymorphic DNA markers is

helping to discover valuable genes for productivity, disease resistance and abiotic stress toler-

ance in the accessions contained in those reservoirs. Furthermore, those markers are helping

to reduce the genetic redundancy among materials, thus helping the optimization of their con-

tents. Molecular technologies have been demonstrated to be efficient in the finding of genes

through linkage maps of genetic markers [1] and more recently by genome-wide association

studies called GWAS [4]. In fact, the availability of high-throughput sequencing and genotyp-

ing has made possible to examine genome-wide patterns of genetic variation, and link them to

phenotypic outcomes. Thus, modern gene banks, empowered by molecular technologies, are

revolutionizing the way scientists document the genetic identity of their accessions, track

genetic groups and their alleles, identify redundancies, and transform the once static collec-

tions into active entities [4].

Rare alleles may be lost due to natural and management-originated bottleneck effects [5],

and the sampling schemes used to provide the accessions conforming a gene bank. Although

the later is an artificial sampling, its effects can be compared to the bottleneck effects due to

population shrinking. Furthermore, rare alleles can be unintentionally left out from collection

subsets. Although rare alleles are not likely to have a major importance in the conservation of

endangered species, they may be important for plant breeding [6]. The qualification of an allele

as rare is usually based on its frequency in a reference population, for example if it is less than

0.1. However, there is still another category of alleles: those that may have a high frequency in

a reference population, but are unique among a set of populations. They may be present or

even fixed in certain populations due to genetic drift or their relationship with fitness in spe-

cific environments. Such uniqueness make them prone to be absent in whole collections and

their subsets, albeit their potential importance as a source of important traits for plant breed-

ing. One of the paradigms of this research is to have a theoretical body and a working defini-

tion to measure uniqueness of alleles. Novel strategies in germplasm management are needed

to preserve those alleles, prone to be lost, which can be potentially useful for plant breeding,

specially in a scenario of rapid climate change that represents serious treats to the worldwide

food production.

The growth of germplasm banks has created management problems. Large collections are

unlikely to be dynamical, with periodic testing and regeneration and field evaluations. Further-

more, duplicates occur very often. Genotyping is contributing to seed bank management by

detecting duplicates and helping to select core collections, i.e. subsets of the whole collections

that best capture their genetic variation. The creation of core collections was proposed by

Frankel [7] to establish a subset with minimum similarity between its entries, chosen to repre-

sent the diversity of a large collection, with a manageable size.

Core subsets are useful for evaluating a broad range of variation; however, they may not

efficiently capture rare traits or alleles that potentially have high potential breeding or adaptive

values [4]. Rare accessions with unique alleles may be neglected because of a lack of obvious
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desirable traits, but which may harbor genetic information worth to be conserved. Their scar-

city and possibility of novel mutations should be considered. The adjective “rare” is well-

known in the context of its application to plant species, and it is even quantified with rarity

parameters in ecology, based on their frequencies [8]. Since an accession forms part of a

genetic continuum in a collection, the frequency-based definition of the rarity of a biological

species, a rather discrete unit in the tree of life, does not apply to the entries of a seed bank. To

the best of our knwledge, only one definition of the rarity of an accession, based on marker

data, has been proposed, in the context of application to SSR maize data [9]. It is basically the

square euclidean distance between the array of allele frequencies in a given accession, and the

average frequencies for the whole collection. The emphasis of this measure is not on the pres-

ence of unique alleles, but on the differences in the allele frequencies of an entry relative to the

average ones. This is a symmetrical metrics, where positive and negative differences between

an accession’s allele frequency and the global one, are equally weighted.

In this work, an information theory view of alleles and accessions is offered, based on the

concept of mutual information, measuring the reduction of uncertainty caused by the knowl-

edge of the distribution of marker alleles across a collection. The field of information theory

was founded by Claude Shannon, and deals with problems of transmission, storage and recov-

ery of information. It has been successfully used in several genetic endeavors [10–13]. We use

this approach to define the specificity of alleles and the rarity and divergence of accessions,

based on information of polymorphic DNA markers.

Methods

Mathematical formulation

Summary. We define the mutual information between marker alleles and accessions as

the average amount of uncertainty removed about the identity of an accession, by the identifi-

cation of a given allele. It is called mutual due to its symmetry, by which it also can be defined

as the average amount of uncertainty about the identity of a given allele, removed by the

knowledge of the accession that contains it. This measure is dependent on the amount of allelic

variation among the members of a collection. The so-defined mutual information equals the

average allele specificity, defined in this context as the information gained about an accession’s

identity, by the random extraction and identification of the allele. The rarity of an accession is

defined as the average specificity of the alleles it contains. Finally, the accession divergence is

defined as the Kulback-Leibler information criterion, between the allele frequencies of a given

entry and the global frequencies for the collection. Both, average rarity and average divergence,

are identical with the mutual information between alleles and accessions.

Basic notation. The basic input are allele frequencies for different accessions in a universe

defined for a given collection. The members can be either autogamous or cross-pollinated spe-

cies, with the only restriction of having a diploid-like type of reproduction. Let N be the num-

ber of accessions in a germplasm collection, and k the number of different alleles at a given

marker locus. The set of accessions will be denoted by X1, X2,. . .,XN and the alleles by M1,

M2,. . .,Mk. The number of alleles is arbitrary for any given locus, thus multiallelic loci are

allowed.

If we extract an Mi allele randomly from the collection, the probability that it belongs to the

j - th accession is obtained by the Bayes theorem:

P½XjjMi� ¼
P½MijXj�P½Xj�

PN
r¼1

P½MijXr�P½Xr�
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If we consider the space of accessions as equiprobable, then the probability of anyone is 1/

N, and the equation is simplified as follows:

P½XjjMi� ¼
P½MijXj�

1

N
PN

r¼1
P½MijXr�

1

N

¼
P½MijXj�

PN
r¼1

P½MijXr�

To simplify the notation, let’s define:

pij ¼ P½MijXj�; ð1Þ

i.e. the allele frequency of Mi within the accession Xj; and:

pi ¼
1

N

XN

j¼1

pij;

i.e. the average frequency of the allele Mi across accessions. Then:

P½XjjMi� ¼
pij

Npi

The input data to perform the calculations through the formulas to be described are allele

frequencies for each accession. A convenient format for the input data is a table with acces-

sions as columns and alleles as rows, with each locus covering as many rows as alleles.

Mutual information and allele specificity. The conditional Shannon entropy [14] or

uncertainty about the identity of an accession, given a random extraction of the allele Mi is:

HðXjMiÞ ¼ �
XN

j¼1

P½XjjMi�log2P½XjjMi�;

which can be demonstrated to be:

HðXjMiÞ ¼ �
XN

j¼1

pij

Npi
log2

pij

pi

� �

þ log2ðNÞ
XN

j¼1

pij

Npi

Now, since
PN

j¼1
pij ¼ Npi, we have:

HðXjMiÞ ¼ log2ðNÞ �
XN

j¼1

pij

Npi
log2

pij

pi

� �

Without marker information, the entropy or uncertainty of a given random accession is

log2(N). Thus, the amount of information [14] about X given that the randomly extracted allele

from the collection is Mi becomes:

IðX; MiÞ ¼ HðXÞ � HðXjMiÞ

¼ log2ðNÞ � log2ðNÞ þ
XN

j¼1

pij

Npi
log2

pij

pi

� �

This is the amount of information that a given marker allele carries about the identity of a

random accession. By algebraic simplification of the last expression, we define the specificity
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of a marker allele Mi as follows:

Si ¼
XN

j¼1

pij

Npi
log2

pij

pi

� �

: ð2Þ

It turns out that Eq (2) is equivalent to the information-based gene specificity in transcrip-

tome analysis [11].

Rarity of an accession. The marker allele specificity in Eq (2), provides a framework to

define the rarity of an accession, with emphasis on the specificity of its alleles. In this sense, we

define the rarity of an accession as the weighted average of the specificity of its alleles, with

the following expression:

Rj ¼
Xk

i¼1

pijSi: ð3Þ

Eq (3) is equivalent to the tissue specialization in transcriptome analysis [11].

For multiple loci data, rarity can be computed through the average of rarities calculated for

each locus. The number of alleles can be variable across loci.

Divergence of an accession. To measure of the genomic departure of an accession from

the whole collection, we apply the Kullback-Leibler divergence between the allele frequency

distribution of the j - th accession and the average allele frequency distribution in the whole set

of accessions, defining the divergence of an accession:

Dj ¼
Xk

i¼1

pijlog2

pij

pi

� �

ð4Þ

This parameter indicates the departure of the distribution of allele frequencies in the j - th

accession, compared with the average allele distribution. In simple terms, the Kullback-Leibler

divergence has been considered as a “measure of surprise” [15]. In the context of allele fre-

quencies, divergence gives an extra weight to the unusual alleles at the whole collection level,

since small values of pi will give large values of log2(pij/pi). This is a fundamental difference

when compared to the use of the euclidean distance, for which only the differences between pij

and pi matter.

In the same way as the rarity case, the divergence scores can be averaged across loci for mul-

tiple locus data.

A global informational interpretation of those parameters. The mutual information

[14] between accessions and marker alleles is:

IðX; MÞ ¼ HðXÞ � HðXjMÞ ð5Þ

The following equality can be proved (see S1 Appendix).

IðX; MÞ ¼
Xk

i¼1

piSi ¼
1

N

XN

j¼1

Rj ¼
1

N

XN

j¼1

Dj ð6Þ

Thus, the ensemble of the allele specificity, accession rarity and accession divergence

parameters, is strictly related to the amount of mutual information between the entries of a

germplasm collection, and the marker alleles used for their characterization. In an extreme

case, a non-polymorphic marker will bear no information about the identity of the accessions

in a collection, with a zero allele specificity and null contribution to rarity and divergence.

Information theory for germplasm collections
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Core subset selection. One proposal of this work is to apply the herein developed theory

to select core subsets from a germplasm collection. The optimization criteria is average rarity,

defined by Eq (3), which in turn is equivalent to maximizing the average divergence, defined

by Eq (4) given Eq (6). The rationale is that, by maximizinig those parameters, we obtain a

highly diverse core subset with emphasis on the preservation of rare accessions and specific

alleles. The use of an optimization algorithm is needed to select a core subset with maximum

rarity. The reason is that rarity is a relative measure, defined in the context of set of accessions;

therefore, selection of the rarest accessions of the collection will not provide a subset with max-

imum rarity, because the value of the parameter for the selected accessions will be re-defined

in the context of the universe composed by the core subset. Although several maximization

algorithms can be used, we use a greedy algorithm as a heuristic approach [16]. The starting

point is the rarest accession, and then consecutively accessions are added under the criterion

of causing the maximum average of accession divergence in the growing subset, until a prede-

termined core size is reached. We use Dj in the optimization iterations, because its expression

is simpler than Rj, and provides faster calculations.

Example data sets

A simple artificial data set. A small artificial data set is presented in Table 1. It comprises

four accessions, A1, A2, A3 and A4, marked with three biallelic loci numbered consecutively

from 1 to 3. The numbers in the cells are allele frequencies within accessions, corresponding to

pij, defined by Eq 1. A quick inspection reveals that the Allele 1 of Locus 2 is present only in the

accession A4, which gives a maximum specificity score for that allele. The Allele 1 of Locus 3 is

a candidate for a higher than average specificity, because it is present in two of the four acces-

sions, but only in A4 has a high frequency. Alleles 1 and 2 of Locus 1 seem to have an average

specificity, because they are present in two of the four accessions, with a maximum frequency.

The Allele 2 of Locus 2 is present, at its maximum frequency, in two of the three accessions,

thus being candidate to low specialization. Accession A4 stands up for having a private allele

(Allele 1 of Locus 2), and the highest frequency in another allele (Allele 1 of Locus 3). Thus, a

high rarity score is expected for this accession. Although it is not easy to be intuitively per-

ceived by visual inspection, the set of allele frequencies for A4 look different from the average

frequencies for all accessions, thus being candidate for a high divergence score. The results of

the informational analysis of this data set are described in Results and Discussion.

Application to a large wheat landrace collection. Landraces introduced into Mexico

from Europe for nearly 5 centuries, also known as Creole wheats, are adapted to different areas

in terms of climate, altitude and soil characteristics. From these, 9,811 accessions collected dur-

ing the 1990s are maintained in the CIMMYT wheat germplasm bank in Mexico. From these

entries, 8,416 have been characterized by DArTseq technology, with availability of 20,526

Table 1. An artificial data set with four accessions, A1 to A4, marked with three biallelic loci.

Marker Allele A1 A2 A3 A4

1 1 1.0 0.0 1.0 0.0

1 2 0.0 1.0 0.0 1.0

2 1 0.0 0.0 0.0 1.0

2 2 1.0 1.0 1.0 0.0

3 1 0.5 0.0 0.0 1.0

3 2 0.5 1.0 1.0 0.0

https://doi.org/10.1371/journal.pone.0193346.t001
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quality SNPs, from the CIMMYT Seeds of Discovery initiative [17]. Data are publicly available

in the CIMMYT web page [18].

From the genotyped collection, only the 7,986 hexaploid accessions were used for this

study. To score all the alleles in the dataset for their specificities, the whole table of 41,052

alleles x 7,986 accessions was used. However, to obtain reliable scores of rarity and divergence,

loci were filtered to have a set with the nearly 10% lowest missing data rates, comprising 4,126

alleles (2,063 SNP loci). With the filtered data, a core subset of 800 lines, representing nearly

10% of the collection, and one representing the 20%, were built by a heuristic maximization of

average rarity. Four criteria: mean accession divergence, mean Modified Rogers distance [19],

Shannon diversity [20, 21] and alle richness, were used to compare these core subsets with

other generated by the state-of-the-arte methods called replica exchange Monte Carlo (REMC)

[22], parallel mixed replica exchange (MixRep) and MSTRAT [23]. Although the method

employed in [17] for a core subset selection from the same wheat collection is not a direct opti-

mization, but a stratified sampling strategy [24], an additional subset of 1,133 lines was selected

with the herein proposed method, to make a basic criteria comparison with the published

core. Calculations were performed in the R environment for statistical computing [25], by a

script developed to calculate the herein proposed parameters and optimization, which is pub-

licly available in the GitHub site https://github.com/mathgenome/SeedBankInfo. This site

contains the data sets used through this research. They can also be retrieved from the CIM-

MYT repository https://data.cimmyt.org/dataset.xhtml?persistentId=hdl:11529/10547952.

Computation of allele specificity and accession rarity has been implemented in Bio-R [26].

For this case study, where markers are biallelic and the data set is large, the algorithm pro-

ceeds as follows (i) the table of allele frequencies, with alleles as rows and accessions as col-

umns, is reduced to have only one row for each SNP locus with the frequency of one allele, the

other one being complementary, (ii) the rarity of each accession is calculated, (iii) the core sub-

set starts with the rarest accession, (iv) each accession is added to the growing core subset, and

the average divergence is calculated in the context of that subset, (v) the accession that gives

the maximum average divergence to the subset is kept in the growing core, (vi) the process

returns to the step iv, until the desired core size is attained. In order to have fast calculations

for very large data sets, divergence is calculated exactly as in (4) until the 30th accession is

added. After that, p̂i is used insted of pi, with p̂i being an estimation based on the growing core

before adding the accession being tested. To compare with other approaches fore core subset

selection we used the Core Hunter 2.0 software [27].

Results and discussion

Analysis of the artificial data set

The analysis of the data set in Table 1, through the application of Eq 2 to the allele frequencies

pij in the cells of the table, and their row averages pi, with N = 4, gave the highest specificity to

the Allele 1 of Locus 2, with a value of 2. This is the theoretical maximum for this data set, i.e.

log2(N). This score of two bits means that identification of that allele leads to unequivocal iden-

tification of the accession bearing it among the set of four. Allele 2 of Locus 2 had the mini-

mum specificity among the whole set of alleles, expected by the visual analysis, with a score of

0.415. The second lowest specificity was found for Allele 2 of Locus 3, with a value of 0.478,

being present in three of the four accessions, although with a frequency of only 0.5 in one of

them. All other alleles had a rather average specificity close to 1. Rarity of accessions, calculated

through Eq 3 as the average of allele specificities weighted by allele frequencies, had its maxi-

mum for A4. This accession bears a private allele and another one that is present in two acces-

sions, but with a frequency of only 0.5 in one of them, with a rarity score of 1.361, which is not

Information theory for germplasm collections
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the theoretical maximum. To reach the theoretical maximum, in this case 2, all of its alleles

should be private. The remaining three accessions had rarity scores around 0.63. The maxi-

mum divergence was also attained by A4, with a score of 1.472. The minimum divergence was

attained by A1, with a value of 0.487. Interestingly, this accession did not have the lowest rarity,

but the second highest one, with a score of 0.732. In fact, albeit rarities and divergences have

equal overall average values, and are positively related, they do not measure exactly the same

phenomenon. Whereas divergence measures the departure from global averages, rarity

emphasizes the presence of unusual alleles and takes into account not only the global allele fre-

quency averages, but the particular ones across accessions.

Analysis of the wheat data set

The average allele specificity from the total of 41,052 alleles had a mean of 2.1695 and a median

of 0.7794, showing a right-skewed distribution (Fig 1A), with 55% having values less than 1,

and 0.6% having values greater than 12, the maximum theoretical specificity being 12.96326,

i.e. the log base 2 of the number of accessions. None of the alleles reached the theoretical maxi-

mum, attained when an allele is private of a unique accession; however, three alleles had an

specificity of 12.9629. The specificity parameter was successful, because each one of those three

alleles was in fact present in only one accession. The theoretical maximum was not attained

because of the presence of two missing data points in each one of those three alleles. These

alleles were among the cleanest ones, bearing a very low incidence of missing data. The imple-

mentation of the specificity estimation has an integrated quality control, in which selection for

maximum specificity involves inherently the criteria of searching alleles with a low rate of

missing data. The upper bound value of specificity is limited by the number of frequency

scores effectively available for the given allele in the data set. This happens because only avail-

able values of allele frequency are used, ignoring the cases with missing data. The impact of

missing data points on the scores for allele specificity could be reverted using a relative speci-

ficity, dividing Eq (3) by the log base 2 of the number of available data for the given marker.

However, if some loci are technically susceptible to missing data, we recommend using the

absolute specificity to select a reliable set of specific alleles. On the other hand, if the missing

data pattern is not random, obeying to missing genome, absolute and relative specificity can

be used, with an inspection of their relationship. For the case of alleles that had a specificity of

zero, a total of 1,528, they were non-polymorphic, being uniformly present in all accessions.

The allele specificity can be valuable to mine rare alleles that could be associated with specific

adaptations and has the potential to be used in the screening of accessions for plant breeding.

The rarity of accessions had a mean value of 0.403, with a distribution largely symmetrical,

but with extension towards very rare accessions (Fig 1B), with 99.45% of accessions being con-

centrated in rarity values between 0.3 and 0.5. A group of six accession was found in the right

side of the distribution, with values greater than 1. Divergence had a very similar distribution

(Fig 1C), with the most divergent accession being the same as the rarest ones. The association

between rarity and divergence was mainly linear, but with notorious deviations in which rarity

exceeds divergence, attributable to the presence of very specific alleles in those accessions (Fig

2). Nonetheless, as predicted by the theory, the average accession rarity was exactly equal to

the average accession divergence. The use of rarity, defined by Eq (3), has a fundamental differ-

ence with divergence, defined by Eq (4): while rarity considers the allele distribution across all

accessions, divergence is only based on the allele frequencies of the given accession and the

average of the collection, which is the same case of the use of the square euclidean distance [9].

In Table 2, the six wheat accession with maximum rarity are listed, along with their rarity

and divergence scores, as well as their geographic data. Coincidentally, four of the six
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Fig 1. Histograms for the different parameters estimated in the landrace wheat collection. A: Distribution of

specificity in 41,052 alleles. B: Distribution of rarity in 7,986 accessions. C: Distribution of divergence in 7,986

accessions.

https://doi.org/10.1371/journal.pone.0193346.g001
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accessions were collected in the same region, in the state of Michoacán, while the other two are

registered for the states of México and Chihuahua. Fig 3 depicts a heat map, with the six rarest

accessions and the 30 less rare, based on random sample of 500 alleles. The six rarest accessions

appear at the bottom of the plot, forming a cluster clearly separated of the remaining acces-

sions. The four accessions of Michoacàn appear forming a sub-tree, while the accessions from

the México and Chihuahua states appear very close to each other. In fact, both accessions are

mutually nearest neighbors in the SNP marker landscape. The same kind of plot was assayed

against larger sets of common (less rare) accessions, and the rarest ones still appeared as a sin-

gle cluster. The rarity parameter in Eq (3) can effectively be used to make decisions about the

conservation of a given accession. A set of very rare materials is worth to be preserved, even

when a practical use of it is not immediately known, just for the fact that its loss can mean the

Fig 2. Scatter plot of rarity against diversity in 7,986 wheat accessions.

https://doi.org/10.1371/journal.pone.0193346.g002

Table 2. The six wheat accessions with maximum rarity, along with their scores of Kullback-Leibler divergence based on the information of 4,126 SNP alleles, and

geographic locations in Mexico.

Accession Rarity Divergence Region State Locality Longitude Latitude Elevation (m)

SEEDDIV16096 1.161 1.201 North Chihuahua Jicamorachi -108.308 27.916 1746

SEEDDIV15322 1.142 1.177 Central México Rı́o Frı́o -98.833 19.317 2233

SEEDDIV7458 1.037 1.000 Central Michoacán La Zarzamora -101.500 19.183 2200

SEEDDIV5394 1.030 1.047 Central Michoacán La Zarzamora -101.500 19.183 2200

SEEDDIV7464 1.025 1.030 Central Michoacán La Zarzamora -101.500 19.183 2200

SEEDDIV12776 1.023 1.026 Central Michoacán Toquara -101.500 19.183 2000

https://doi.org/10.1371/journal.pone.0193346.t002
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loss of very rare or specific alleles. A table with all accession names, rarity and divergence is

provided in S1 File.

A core subset of 800 wheat lines was selected by heuristic maximization of the average

divergence, which in turns maximizes average rarity. The selected accessions are marked in S1

File. In Table 3 a comparison of methods is presented, based on four criteria: average diver-

gence, mean modified Roger’s distance (MR), Shannon diversity (SH) and allele richness (AR)

as the fraction of the number of alleles relative to the whole collection. The number of lost

alleles (LA) is derived directly from allele richness and cannot be considered as an additional

criterion, but it can be illustrative for comparison. The reference methods are REMC, MixRep,

and MSTRAT [23], with a random sample as a comparison control. The method herein pro-

posed for core selection is called HCore, due to the inherent use of Shannon entropy, com-

monly represented by H. Mean Rogers’s distance (MR) and Shannon diversity (SH) were the

components of the objective function for the other three methods, with default weights of 70%

and 30% respectivelly in the Core Hunter 2.0 software [27]. For average accession divergence,

Fig 3. Heat map for 30 common and six rare accessions, genotyped with a sample of 500 alleles. The dendrogram on the

X axis represents the 500 alleles, whereas the one on the Y access represents the 36 accessions. Allele absence is shown in

turquoise, allele presence in violet, and missing data in white.

https://doi.org/10.1371/journal.pone.0193346.g003
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HCore outperformed all other methods, which is not surprising because our maximization

was aimed to that parameter. The superiority of the mean divergence over the random sample

for HCore is close to 10 times that of the worst performing method: MSTRAT, although only

1.2 times superior to MixRep.

For MR, the HCore method outperformed MixRep, REMC and MSTRAT. The same

behavior ocurred with SH, where HCore had higher scores than MixRep, REMC and

MSTRAT. For allele richness (AR) the best score was for MixRep, followed by HCore. The

number of lost alleles in HCore was only six above MixRep. It is notorious that REMC gener-

ated a core with more lost alleles than the random sample. The fairly good behavior of HCore

for MR, SH and AR, even when they were not components of the objective function, can be

considered a collateral effect of maximizing the Kullback-Leibler divergence. Very small differ-

ences in MR, SH and AR are typically observedl when comparing core selection methods [27].

On the other hand, the composition of different cores subsets can be more contrasting than

the small differences between criteria may suggest.

An additional test result is presented in Table 4, with a 20% core subset selection. HCore

had the same comparative behavior as with the approximate 10% core subset. It outperformed

the remaining four approaches in Divergence, MR and SH, ranking in second place for AR,

after MixRep. The only differences occurred in the ranking among the remaining four

approaches. For Divergence, MR and SH, random selection outperformed REMC and

MSTRAT. For AR, the ranking was the same as with the 10% core subset, with MixRep having

the maximum score and random selection the minimum. This additional test reinforces the

usefulness of the informational parameters herein proposed, in their application to core subset

selection.

The core subset of 1,133 lines generated by HCore with the low missing data genetic mark-

ers, had the following values for the evaluated criteria: Divergence, 0.438; MR, 0.436; SH,

7.951; AR, 0.987; and LA, 52. The subset published by [17] had the following scores for the

Table 3. Comparison between HCore and other three approaches for an approximate 10% core subset selection through several criteria.

Method Divergence MR SH AR LA

HCore 0.442 0.438 7.954 0.985 59

MixRep 0.435 0.435 7.950 0.986 53

REMC 0.408 0.419 7.932 0.975 98

MSTRAT 0.406 0.417 7.931 0.983 67

Random 0.402 0.416 7.929 0.976 95

Divergence is the average Kullback-Leibler divergence, MR is the average modified Roger’s distance, SH is the Shannon diversity, AR is the allele richness, as a

percentage of the alleles present in the whole collection, and LA (lost alleles) refers to the number of alleles of the whole collection that are not present in the core subset.

The last row presents the values of the criteria in a random sample.

https://doi.org/10.1371/journal.pone.0193346.t003

Table 4. Comparison between HCore and other three approaches for a 20% core subset selection through several criteria.

Method Divergence MR SH AR LA

HCore 0.434 0.434 7.948 0.988 46

MixRep 0.428 0.431 7.945 0.990 40

REMC 0.402 0.416 7.929 0.986 53

MSTRAT 0.402 0.416 7.929 0.987 51

Random 0.404 0.417 7.930 0.985 60

https://doi.org/10.1371/journal.pone.0193346.t004
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same marker set: Divergence, 0.404; MR, 0.417; SH, 7.930; AR, 0.983; and LA, 66. To do a

more objective comparison for allele richnes (AR), an independent calculation was performed

by considering the 20,526 loci of the dataset, comprising the 2,063 SNP loci used for optimiza-

tion with HCore plus the remaining 18,463 loci. With this information, the HCore subset had

an AR value of 0.989, whereas the published core had a value of 0.978. Thus, the superiority of

allele richness for the subset generated by HCore was preserved. Although the HCore criteria

values outperformed those of the published core subset, we must consider that both cores were

selected under different criteria. Furthermore, in [17] phenotypic information was employed,

and the SNP information was not used directly, but reduced to 2,000 principal components,

with the six principal axes of a hierarchical multiple-factor analysis being selected to represent

genotypic and phenotypic variances.

Core subsets are selected for diverse objectives, and in the case of our method, it is aimed to

conserve the genetic diversity of the collection, while preserving rare accessions and uncom-

mon alleles. Furthermore, as it happens with the other methods, this approach can be used in

combination with phenotype based hierarchical clustering, aiming to preserve genetic diversity

within groups. On conceptual grounds, the theoretical underpinning of this approach for core

subsets is a rather solid one: the subset of accessions with maximum average divergence is the

one that has the maximum mutual information between genotypes and accessions.

The herein proposed definitions of specificity of alleles and rareness of accessions, represent

an advance in analytical tools to preserve diversity in plants, with special impact on those of

interest in agriculture. Common alleles tend to be ubiquitous in crop collections; however, the

unique ones are in danger to be neglected and lost. Thus, objective criteria to make decisions

for conservation are highly valuable. Rare populations and specific alleles grow in importance

for mainly two reasons: climate change and the availability of novel breeding tools. In the first

case, despite much uncertainty derived from different assumptions for climate change projec-

tions, exhaustive analyses point towards a scenario where food security is clearly threatened by

climate change in the near-term [28]. In the second case, useful genetic variants can be mined

and used in plant breeding through the available genomic tools, to produce adapted cultivars

to face the diverse climate change scenarios and their direct and indirect implications for food

production [29].

Conclusions

We provide a novel view of a collection in a germplasm bank tied to marker data. It can be

considered as a digital view, in the sense that genomes are binarily coded through molecular

markers, providing the elements for an informational landscape, where allele specificities are

defined in terms of their information about the identities of the accessions, and accession rari-

ties are defined by the average specificity of their alleles. Furthermore, it was found that the

average rarity in a collection equals the average Kullback-Leibler divergence of each accession

from the global allele frequencies of a germplasm collection. This view can be used to make

decisions for conservation of genetic diversity, while avoiding to neglect rare variants. Applica-

tion of this approach to a large collection of wheat landraces allowed us to rank the alleles

according to their specificities, detecting those that are largely private of a few accessions. Fur-

thermore, by ranking the accessions by their rarity and divergence, we could detect a group of

rare accessions, which may have unique genetic potentials. This informational view, used as a

tool for core subset selection in a large wheat collection, produced favorable results, with an

ensemble of accessions with higher average Kullback-Leibler divergence, average Modified

Roger’s distance and Shannon diversity than those produced by three state-of-the-art methods,

and with fairly good results for allele richness. This does not imply that the application of our
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method to select core subset is better than all others, but it effectively aims to obtain core col-

lections with a high average Kullback-Leibler divergence, with positive collateral effects in

other criteria. Although the methods were applied to largely homozygous lines, definitions are

based on allele frequencies and can be equally applied to collections of outbred crops or wild

species with diploid-like meiotic segregation.
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