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Selective gene expression profiling 
contributes to a better understanding 
of the molecular pathways underlying 
the histological changes observed after RHMVL
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Abstract 

Background: In previous studies, five vasoactive drugs were investigated for their effect on the recovery process 
after extended liver resection without observing relevant improvements. We hypothesized that an analysis of gene 
expression could help to identify potentially druggable pathways and could support the selection of promising drug 
candidates.

Methods: Liver samples obtained from rats after combined 70% partial hepatectomy and right median hepatic vein 
ligation (n = 6/group) sacrificed at 0 h, 24 h, 48 h, and 7days were selected for this study. Liver samples were collected 
from differentially perfused regions of the median lobe (obstruction-zone, border-zone, normal-zone). Gene expres-
sion profiling of marker genes regulating hepatic hemodynamics, vascular remodeling, and liver regeneration was 
performed with microfluidic chips. We used 3 technical replicates from each sample. Raw data were normalized using 
LEMming and differentially expressed genes were identified using LIMMA.

Results: The strongest differences were found in obstruction-zone at 24 h and 48 h postoperatively compared to all 
other groups. mRNA expression of marker genes from hepatic hemodynamics pathways (iNOS,Ptgs2,Edn1) was most 
upregulated.

Conclusion: These upregulated genes suggest a strong vasoconstrictive effect promoting arterial hypoperfusion in 
the obstruction-zone. Reducing iNOS expression using selective iNOS inhibitors seems to be a promising approach to 
promote vasodilation and liver regeneration.
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Introduction
Extended liver resection leads to a reduction of func-
tional liver mass beyond the surgical loss. Extended 
liver resection leads to portal hypertension and arterial 

hypoperfusion of the liver remnant [1, 2]. Furthermore, 
extended liver resection requires transection of the 
middle hepatic vein and leads to focal outflow obstruc-
tion. Together, arterial hypoperfusion and focal outflow 
obstruction compromise the perfusion of the liver rem-
nant. This leads to pericentral necrosis of the undrained 
territories and subsequently to an additional loss of 
functional liver mass [3–5]. The additional loss of func-
tional liver mass after extended liver resection may lead 
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to hepatic insufficiency and ultimately cause the death of 
the patient [6–9].

Portal hypertension after extended liver resection can 
be treated by operative interventions in clinical practice. 
Additional procedures such as splenectomy are per-
formed to reduce the surgically induced portal hyperten-
sion. However, performing an additional procedure may 
increase the overall risk for complications [10–14].

Portal hypertension, especially in chronic cirrhotic liver 
disease, can be treated by drug administration. Drugs 
acting as vasodilators such as non-selective b-block-
ers (propranolol, carvedilol), nitric oxide (NO) donors 
(isosorbide dinitrate, isosorbide-5-mononitrate), or drugs 
to decrease portal venous blood flow (terlipressin, octre-
otide) are administered for the treatment of portal hyper-
tension [15–18]. Pharmacological treatment of portal 
hypertension after extended liver resection may prevent 
the complications induced by additional operative inter-
ventions and should be further investigated.

Liver regeneration after extended liver resection is a 
complex process. The complexity is due to the simulta-
neous activation of interwoven signaling mechanism. On 
one hand, liver resection leads to the activation of liver 
regeneration to restore the functional liver mass. On the 
other hand, the imbalance of hepatic hemodynamics 
leads to the activation of vasoactive mechanisms and vas-
cular remodeling to restore hepatic venous drainage [4, 
19–25].

The interwoven signaling mechanisms can be grouped 
as follows:

Hepatic hemodynamics Regulation of hepatic hemo-
dynamics is controlled by different vasoactive mech-
anisms. Vasoactive mechanisms are activated by 
portal hypertension and arterial hypoperfusion. The 
main mechanisms are the adenosine-based “Hepatic 
arterial buffer response” (HABR), NO pathway, the 
endothelin pathway, and the arachidonic acid path-
way [20, 22, 23].
Vascular remodeling Focal outflow obstruction 
induces a vascular remodeling process. The liver 
restores hepatic venous drainage through the forma-
tion of sinusoidal vascular canals in the border zone 
(BZ) between the outflow obstruction zone (OZ) 
and the normal zone (NZ) [3, 24, 26].
Liver regeneration Liver regeneration is induced 
in both, the drained NZ and the OZ, by the loss 
of liver mass and the resulting portal hyperperfu-
sion and parenchymal necrosis. The essential fac-
tors involved in liver regeneration are encompassed 
by three types: cell cycle-associated marker genes, 
hepatocyte growth factors, and cytokines. The sign-
aling mechanisms of liver regeneration have been 

described in detail, e.g., by Fausto et  al. (2006), 
Michalopoulos (2007), and Riddiough et  al. (2021) 
[19, 21, 25].

First insights into the spontaneous recovery process 
of outflow obstruction after extended liver resection 
were previously obtained in a newly developed surgical 
model in rats combining focal hepatic outflow obstruc-
tion (FHOO) and extended liver resection. Dirsch et  al. 
(2008) and Huang et al. (2014) used this model to inves-
tigate liver recovery after extended liver resection. They 
induced FHOO by right median hepatic vein ligation 
(RMHVL) performed in the same operation as the par-
tial hepatectomy (PHx). They showed that revasculariza-
tion via the formation of sinusoidal canals as well as liver 
mass restoration was completed within a week after the 
surgical intervention. During the postoperative recovery 
and regeneration phase, confluent pericentral necrosis 
was resorbed and replaced by proliferating hepatocytes 
[3, 26].

Huang et  al. (2011) investigated the role of arterial 
blood supply by comparing the spontaneous recovery 
from hepatic outflow obstruction in a non-arterialized 
versus arterialized partial liver transplantation model. He 
demonstrated that the lack of hepatic arterial perfusion 
determined the extent of hepatic necrosis in OZ [4].

Furthermore, Huang et al. (2014) investigated the effect 
of modulating hepatic arterial perfusion by influencing 
the NO pathway in the surgical model of extended liver 
resection with FHOO [26]. The molecular compound 
NO increases the hepatic arterial flow by arterial vasodi-
lation [26–28]. However, the application of molsidomine, 
a NO donor, did not show the expected beneficial effect. 
In contrast, the application of N(ω)-nitro-L-arginine 
methyl ester (L-NAME), a competitive NO synthase 
(NOS) inhibitor, reduced hepatic arterial flow, increased 
parenchymal necrosis, and delayed spontaneous recov-
ery, as expected [26].

In a subsequent study, five clinically established vasoac-
tive drugs were investigated for their ability to improve 
hepatic perfusion in this situation. The selection was 
guided by a thorough knowledge-based literature work-
up of more than 20 drug classes addressing different 
molecular pathways such as NO pathway, arachidonic 
acid pathway, and endothelin pathway. However, despite 
a modulatory effect on hepatic hemodynamics, no rel-
evant improvement of hepatic damage was observed [9, 
29].

We hypothesized that an analysis of gene expression 
could help to identify potentially druggable pathways 
and could support the selection of promising drug can-
didates. Therefore, this study aimed to identify regulated 
signaling pathways based on selected marker genes.
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Due to the numerous signal transduction pathways 
involved in the complex recovery process, only a selec-
tion of marker genes representing the different mecha-
nisms was analyzed using quantitative high-throughput 
reverse transcription PCR (RT-qPCR). The selected genes 
are involved in regulatory processes underlying the regu-
lation of hepatic hemodynamics, vascular remodeling, 
and liver regeneration. The simultaneous investigation of 
the respective gene expression levels allows for a hypoth-
esis-driven analysis of signaling pathways in contrast to a 
transcriptome analysis.

We compared gene expression in healthy control ani-
mals and animals subjected to extended liver resection 
with RMHVL at different time points and in the three 
different zones. The gene expression analysis revealed 
highly regulated significantly differentially expressed 
potential marker genes and thereby the most affected 
pathways.

Materials and methods
Sample generation
For this gene expression study, we used a set of previously 
generated liver samples [26]. Male inbred Lewis (Lewis/
HanTMHsd) rats (250–350  g, Central Animal Labora-
tory, University Hospital Essen, Germany) had been sub-
jected to RMHVL in combination with 70% PHx. The left 
lateral lobe, the left median lobe, the superior plus infe-
rior caudate lobes, and the right superior plus inferior 
lobes were resected, leading to an estimated 70% reduc-
tion of liver mass. Liver tissue samples were taken from 
the obstructed territory of the RMHV (OZ), normal zone 
(NZ), and border zone between OZ and NZ (BZ) and 
were snap-frozen immediately after surgery and stored in 
liquid nitrogen until used. Samples from 6 animals were 
taken at each observation time (0 h, 24 h, 48 h, 7days).

All procedures, experiments, and housing of the 
animals were carried out according to current Ger-
man regulations and guidelines for animal welfare and 
to international principles of laboratory animal care, 

following the ARRIVE Guidelines Checklist as well. Eth-
ics committee of Thüringer Landesamt für Verbrauch-
erschutz, Thuringia, Germany, approved this animal 
study. The protocols were approved by the Thüringer 
Landesamt für Verbraucherschutz, Thuringia, Germany 
(Approval-Number: 02–023/14).

Selection of marker genes for quantitative 
high‑throughput RT‑qPCR analysis
First, we performed a thorough literature review to 
identify the relevant biological mechanisms involved 
in regulatory processes underlying the regulation of 
hepatic hemodynamics, vascular remodeling, and liver 
regeneration.

Second, we selected 3–7 genes for each pathway, which 
resulted in a total of 37 marker genes. The following 
marker genes from the key signal transduction pathways 
(Table 1) were selected for the analysis:

For regulation of hepatic hemodynamics, we selected 
16 marker genes from four vasoactive mechanisms. The 
selected marker genes of these four mechanisms were as 
follows: The NO pathway was represented by the marker 
genes eNOS, iNOS, nNOS, and Gucy1a2, the arachi-
donic acid pathway by the marker genes Pla2g4a, Ptgs1, 
Ptgs2, Ptgis, Tbxas1, Tbxa2r, the endothelin pathway by 
the marker genes Edn1, ET-RA, and ET-RB, and the aden-
osine-based HABR was represented by the marker genes 
Adora1, Adora2a, and Adora3 (Fig. 1).

For vascular remodeling, we considered the following 8 
genes: CAV1, Vegfa, Vegfb, Icam1, Pecam1, Prdx1, vWF, 
and Lamc2 as marker genes.

For liver regeneration, we selected 13 marker genes 
including cell cycle-associated genes, hepatocyte growth 
factors, and cytokines. Cell cycle-associated marker 
genes were represented by PCNA and Tyms. The fol-
lowing growth factors and receptors were included: 
Egf, Egfr, Egr1, Hgf, and Met. We selected six cytokines 
(IL10, IL1b, IL6, Mif, TGFb1, and Tnf) relevant for liver 
regeneration.

Table 1 List of selected marker genes*

* List of selected marker genes for each mechanism and pathway based on selected references

Mechanisms Pathways Genes References (e.g.)

Vasoactive pathways NO pathway eNOS, iNOS, nNOS, Gucy1a2 [22], [28], [35]

Arachidonic acid pathway PLA2G4A, COX1, COX2, PGIS, TXS, Tbxa2r [27], [36]

Endothelin pathway Edn1, ET-RA, ET-RB [27], [36], [37]

Hepatic arterial buffer response” Adora1, Adora2a, Adora3 [20], [23]

Vascular remodeling CAV1, Icam1, Pecam1 Prdx1, vWF, Lamc2, Vegfa, Vegfb [24], [37–39]

Liver regeneration Liver cell proliferation PCNA, Tyms [40], [41]

Liver cell growth factors Egf, Egfr, Egr1, Hgf, Met [19], [21, 25]

Cytokines IL10, IL1b, IL6, Mif, Tgfb1, Tnf [22], [25], [36], [37]
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The remaining 59 slots were used for other genes which 
were investigated in other studies in our lab.

Determination of gene expression values using 
quantitative high‑throughput RT‑qPCR analysis
The mRNA was isolated from the frozen liver tissue sam-
ples using the Qiagen RNeasy Mini Kit (Valencia, CA). 
The mRNA quantity was measured using Nanodrop 
(Thermo Scientific, Waltham, MA). The RNA integrity 
number (RIN) was checked using Agilent 2100 Bioana-
lyzer (Agilent Technologies, Santa Clara, CA) and was 
above 8.5 for all samples. cDNA synthesis was performed 

with 2µL of 50 ng/µL total RNA, 1µL of 10 × TaqMan RT 
Buffer, 2.2µL 25 mM MgCl2, 2µL of 2.5 nM dNTP-Mix, 
0.5µL of 50 µM random hexamers, 0.2µL of RNase Inhib-
itor, 0.25µL of 50 U/µL Multiscribe reverse transcriptase, 
and 1.85µL RNase-free water. All reagents were pur-
chased from Applied Biosystems (TaqMan Reverse Tran-
scription Reagents: N808-0234). The reaction mixtures 
were mixed with the RNA and incubated at 25  ℃ for 
10 min, at 48 ℃ for 30 min, and then at 95 ℃ for 5 min. 
The generated cDNAs were run on a 96.96 microfluidic 
Dynamic Array™ IFC (Fluidigm Corporation, CA, USA), 
using a BioMark Instrument 76 (GE96X96 Standard 

Fig. 1 Diagram of different vasoactive molecular pathways involved in the regulation of hepatic hemodynamics. List of interactions between 
pathways: blue arrows—enhancing effect, red arrows—inhibitory effect; dark blue tiles: interrelated drug classes; yellow text—drug classes 
with substance investigated in previous studies; orange box—investigated genes, By courtesy of Springer Nature: Modified figure of previously 
published figure in Arlt et al. (2017) [29]. List of abbreviations: Adora, Adenosine receptor;  Ca2+- Calcium; cAMP, cyclic adenosine monophosphate; 
cGMP, cyclic guanosine monophosphate; DAG Diacylglycerol; Edn1-Endothelin 1; Ednra, Endothelin receptor type A; nEdra, Endothelin receptor 
type B 1/2; GTP, Guanosine triphosphate; GucY1a2- Guanylate cyclase soluble subunit alpha-2;  IP3, Inositol 1,4,5-trisphosphate;  K+ -Potassium; 
NO, Nitric oxide; NOS, Nitric oxide synthases; PA- Phosphatidic acid; PGH2, Prostaglandin H2;  PGI2, Prostacyclin; Ptgis -Prostacyclin synthase; 
PIP2, Phosphatidylinositol 4,5-bisphosphate; PKC- Protein kinase C; PLC -Phospholipase C; PLD, Phospholipase D; Ptgs 1/2 -Cyclooxygenase-1/2; 
TXA2- thromboxane A2; Tbxa2r -Thromboxane A2 Receptor; Tbxas1- Thromboxane synthase
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v1.pcl – protocol file) and analyzed with Real-Time PCR 
182 Analysis Software in the BIOMARK instrument 
(Fluidigm Corporation, CA, USA). From the cDNA sam-
ples, 3 technical replicates were used for the amplifica-
tion step. Gene-specific primers were purchased from 
Life Technologies (Darmstadt, Germany). A listing of all 
primers is provided in the Additional file 1: (S1).

Normalization of gene expression values using the linear 
(L) error (E) model (M)—ming method ( LEMming)
The analysis of qPCR raw data was performed using the 
LEMming method for the Fluidigm platform [30]. The 
Fluidigm platform with its parallel qPCR measurements 
implicates an experimental design that allows the esti-
mation and exclusion of technical errors and thus a data 
normalization independent from reference genes. Thus, 
normalization using LEMming is based on a linear model 
including a number of effect variables that are estimated 
in the following order:

1. Probe error per array (εP:A).
2. Systematic batch effects ( ‘ε).
3. Treatment/tissue effect (ΔT).
4. Sample error (εS).
5. Treatment effect per gene (ΔT:G).

According to the linear model shown in Eq.  1, each 
measurement Y of a gene is a composition of these 
effects.

The variable ε is called residual and describes biological 
variance and non-systematic technical errors. The sum of 
ΔT + ΔT:G is used to calculate the fold change in compari-
son to a control condition.

Pre-processed LEMming cycle threshold (CT)-values 
were then transformed into  2ΔCT expression values and 
normalized to the untreated control samples. The nor-
malization using LEMming and further computational 
analyzes were performed using R [31]. The list of all gene 
expression data is included in the Additional file 2: (S2).

Clustering of sample groups based on gene expression 
data
The time-dependent expression of genes across tissue 
zones was analyzed using hierarchical clustering and 
principal component analysis (PCA). The hierarchical 
clustering was used to group samples according to gene 
expression profiles over time and all three zones (NZ, BZ, 
and OZ). The gene expression values were graphically 
represented in the heatmap. The samples were sorted 
according to the correlations of their gene expression 
profiles and their clustering presented in a dendrogram. 

(1)Y = εP:A + εS +�T +�T :G + ε

The hierarchical clustering was visualized using the 
“gplots” package for R [32] (Fig. 2).

Additionally, PCA was used to visually group samples 
based on gene expression profiles in a scatter plot. PCA 
is a multivariate technique that reduces the high dimen-
sionality of the data. A multivariate dataset is visualized 
as a set of coordinates in high-dimensional data space 
(1 axis per gene corresponding to 37 dimensions in this 
study). Using this method, a smaller set of coordinates 
was determined in a retransformed multi-dimensional 
space. The reduction of coordinates was done by deter-
mining a new eigenvector that captures maximum vari-
ance in the original high-dimensional data. Based on the 
reduction of dimensions and the visualization of data 
with the highest variance, patterns within the data were 
recognized [33] (Fig. 3A).

Identification and clustering of differentially expressed 
genes (DEGs) using linear models for microarray data 
(LIMMA)
LIMMA was used for the identification of DEGs [34]. 
Identification of DEGs over time (0, 24, 48, and 168  h 
post-op) compared to control (untreated) was performed 
for each of the tissue zones (NZ, BZ, and OZ) indepen-
dently. Differential expression was assessed based on a 
Benjamini–Hochberg corrected p-value < 0.05 in com-
bination with a threefold change in expression. The list 
of all gene expression data is included in the Additional 
file 2: (S2).

Clustering of DEGs
The zonal distribution of DEGs was investigated using a 
Venn diagram. The Venn diagram visualized the numeric 
distribution of DEGs within the three tissue zones (NZ, 
BZ, and OZ).

The three tissue zones were visualized using circles. 
The numbers indicated in the circles correspond to the 
number of DEGs in the respective tissue zones. The num-
ber of DEGs that were differentially expressed in more 
than one tissue zone was indicated in the overlapping cir-
cles (Fig. 3B).

Results
Bioinformatic analysis
Clustering of data using hierarchical clustering and PCA
Two independent clustering algorithms revealed the 
same grouping of samples.

Hierarchical clustering with dendrogram grouped the 
samples based on the similarity of their gene expression 
profile (Fig. 2). As shown in the dendrogram, the analysis 
resulted in two main clusters (A1 and A2). The separa-
tion of the samples in the main clusters A1 and A2 visu-
alized the strong differences in gene expression profiles 



Page 6 of 14Arlt et al. BMC Medical Genomics          (2022) 15:211 

between OZ samples at 24 h and 48 h (C1) and all other 
groups (A2). In contrast to A1 containing the only C1, 
cluster A2 was further divided into 2 large sub-clusters. 
Subcluster B1 contained all remaining samples, except 
the samples obtained at the end of the observation period 
of 168 h (C2), which formed a separate cluster (B2—C3).

By performing PCA, we found the first two principal 
components (PCs) to account for 70, 7% of the original 
biological variability in the dataset (PC1: 42,88%, PC2: 
27,77%) (Fig. 3A) and three clearly separated clusters cor-
responding to the dendrogram. Cluster 1 (C1) enclosed 
the 24 h and 48 h samples from the OZ, C2 contained all 

Fig. 2 Heat-map with dendrogram. Heat map showing two-way hierarchical clustering of expression levels of 37 genes (rows) in each sample 
group (columns). Red cells indicate high expression, green low, black intermediate. There are four groups of samples—black sample labels represent 
0 h post-OP, green labels represent 24 h post-OP, blue labels represent 48 h post-OP and red labels represent 168 h post-OP. The dendrogram shows 
three clusters of sample groups (C1-red, C2—blue, and C3-yellow)
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0 h samples as well as 24 h and 48 h samples from NZ and 
BZ and last but not least, C3 included all 168 h samples.

Hierarchical clustering and PCA showed that the 
greatest differences in gene expression occur at the time 
points 24 h and 48 h. For this reason, we concentrated on 
these two time points with the greatest changes for fur-
ther evaluation.

Visualization of data using a venn diagram
Using the LIMMA analysis, we identified significantly 
DEGs (adjusted p-value < 0,05 and fold change ≤ 0,33 
or ≥ 3) at 24 h and 48 h postoperatively compared to con-
trol (untreated). Using this cutoff, we identified 11 DEGs 
(Table 2). Complete results are shown in Additional file 2: 
data (S2).

We visualized the number of differentially expressed 
marker genes according to the distribution in the differ-
ent tissue zones in a Venn diagram (Fig. 3B). However, we 
observed a striking imbalance between the numbers of 
DEGs in OZ compared to the other two zones. The dia-
gram depicts that five DEGs were found only in the OZ, 
whereas in the NZ and BZ only one gene and no gene 
was differentially expressed respectively. This pattern of 
distribution correlates well with the patterns revealed by 
the dendrogram and PCA, in which the OZ also differed 
significantly from the other zones.

Analysis of DEGs in respect to the three perfusion zones (OZ, 
BZ, NZ) in the liver
OZ The gene analysis showed that 7 genes were upregu-
lated, and 2 genes were downregulated in OZ at 24 h and 
48  h post-OP compared to control (untreated). Among 
the DEGs, iNOS (73-fold), Lamc2 (15-fold), Ptgs2 (ten-
fold), and Edn1 (eightfold) emerged as the most upregu-
lated genes at 24 h postoperatively (Table 2). These genes 
are involved in three hepatic hemodynamic regulatory 
mechanisms: NO pathway (iNOS), arachidonic acid 
pathway (Ptgs2), and endothelin pathway (Edn1). These 
upregulated genes are also known to be involved in pro-
inflammatory responses [42, 43]. In particular, iNOS was 
strikingly more upregulated (70-fold) than the marker 
genes of other hepatic hemodynamic pathways. This find-
ing suggests that the NO pathway could potentially be tar-
geted for the reduction of damage from outflow obstruc-
tion after extended liver resection.

Another highly upregulated gene in OZ was Lamc2 
(15-fold), a marker gene for vascular remodeling and a 
component of the basal lamina.

The following genes: iNOS (11-fold), Ptgs2 (threefold), 
and Lamc2 (threefold) were also over-expressed in BZ 
(Table 2).

In OZ, the most downregulated genes were EGF 
(0,twofold) and HGF (0,threefold) (Table 2). These genes 
encode growth factors relevant for liver regeneration. 

Fig. 3 Clustering by gene expression: A Principle component analysis (PCA). Principle component analysis (PC1 versus PC2) based on 
transcriptome data of 37 genes in 12 sample groups (NZ- normal Zone (green); OZ—obstruction Zone (red); BZ- border Zone (blue)) and the 
observation time (0 h, 24 h, 48 h, and 168 h post-OP). The sample groups could be grouped into three clusters (C1-red, C2-blue, and C3-yellow). B 
Venn diagram. Venn diagram grouped 11 DEGs (adjusted p-value < 0,05 and fold change ≤ 0,33 or ≥ 3) within the three tissue zones (NZ, BZ, and 
OZ). Numbers represent the numbers of genes detected in tissue zones or their various overlapping subsets
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Downregulation of gene expression corresponded to the 
inhibition of proliferation observed in histology at this 
observation time point [26].

NZ In contrast, our analysis revealed that only 3 genes, 
nNOS, Tyms and HGF, were moderately upregulated in 
NZ at 24 h and 48 h post-OP (3- to sixfold) compared to 
control (untreated) (Table  2). Overexpression of nNOS 
suggests an effect on vasodilatation which corresponded 
to the obvious sinusoidal dilatation occurring in the NZ 
at this time point. Overexpression of HGF and Tyms did 
fit well to the regenerative response of hepatocytes in 
the NZ. The cell cycle-associated marker Tyms was also 
moderately overexpressed (fourfold) in the BZ, also corre-
sponding to the observed proliferative response (Table 2).

Discussion
Justification of selective gene expression profiling
In this study, we used selective gene expression profil-
ing analysis to investigate a complex biological process. 
Quantitative high-throughput RT-qPCR by 96.96 micro-
fluidic Dynamic Array™ from Fluidigm enables the inves-
tigation of many samples. In our study, we examined 6 
rats (biological replicates) at each observation time point 
0  h, 24  h, 48  h, and 7days. We analyzed three perfused 
regions (NZ, BZ, OZ) per rat liver. We applied 3 tech-
nical replicates of all samples to the "Dynamic Array™ 
IFC" Fluidigm chip. This resulted in a total number of 
216 samples. Hence, differential gene expression analysis 
which is used for whole-genome gene expression profil-
ing is far too expensive for that many samples. Based on 
well-known signaling mechanisms interwoven in hepatic 

hemodynamics, vascular remodeling, and liver regenera-
tion we focused our analysis on 37 genes with specific 
interest for this scientific question.

Identification of molecular pathways underlying 
the histological findings
One of the factors decisive for the outcome is the pre-
vention of arterial hypoperfusion and subsequently the 
prevention of hepatic necrosis. Since, as reported before, 
all previously selected drugs: molsidomine, isosorbide-
5-mononitrate, sildenafil, carvedilol, terlipressin, and 
octreotide, did not affect hepatic hemodynamics, we 
wanted to identify key regulatory mechanisms using 
selective gene profiling.

First, we confirmed the suitability of our strategy. 
Therefore, we first compared the expression of selected 
marker genes with the expected corresponding histo-
logical findings in terms of liver regeneration and vas-
cular remodeling. Second, we analyzed the results of the 
expression level of the marker genes governing hepatic 
hemodynamics.

The bioinformatic analysis (hierarchical clustering and 
PCA) revealed that differences in gene expression were 
most prominent at 24 h and 48 h and occurred predomi-
nantly in the OZ (Venn diagram) compared to the other 
time points and zones (Fig.  2, 3). These findings corre-
sponded to the previous histological observations show-
ing that the most obvious changes occurred indeed in the 
OZ at this time point [26].

Gene expression analysis showed that the liver regen-
eration marker (Tyms) was the most upregulated gene in 
NZ and BZ, corresponding to the pronounced hepatocyte 

Table 2 Differentially expressed genes (expressed as fold-change) compared to the control group

* adjusted p-value < 0,05; color code to highlight fold change ≤ 0,33 (blue) or ≥ 3 (light red), ≥ 5 (red), ≥ 10 (bright red), compared to control (untreated)
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proliferation. In contrast, other markers of liver regen-
eration (HGF and EGF) were markedly downregulated in 
OZ at 24 h corresponding to the absence of hepatocyte 
proliferation in this region. Similarly, we observed that 
upregulation of the vascular remodeling marker Lamc2 
corresponded well with the formation of vascular canals 
in OZ and BZ of these animals as previously described by 
Huang et al. (2014) [26]. These findings suggest that the 
selected marker genes were indeed indicative of the his-
tological alterations.

Regulation of hepatic hemodynamics is based on four 
intermingled key signaling pathways: Adenosine-based 
HABR, NO pathway, arachidonic acid pathway, and 
endothelin pathway.

Adenosine‑based HABR
HABR leads to vasodilatation via the regulation of the 
adenosine concentration in the "Space of Mall". The 
adenosine in the "Space of Mall" binds to the adenosine 
receptors of the hepatic arterial vessel wall. If the adeno-
sine receptors are activated, arterial vascular dilatation 
occurs.

We investigated the expression of adenosine receptor 
genes: Adora1, Adora2a, and Adora3 (Fig. 1).

All three adenosine receptor genes were not differ-
entially expressed at 24  h or 48  h after the operation. 
This result corresponds to the observations of the stud-
ies by Dold et  al. (2015) and Audebert et  al. (2017) [44, 
45]. Dold et  al. (2015) observed that portal hyperperfu-
sion after 70% and 90% hepatectomy did not induce a 
HABR [44]. Audebert et  al. (2017) investigated hemo-
dynamic changes during partial liver resection and cre-
ated a computational model of hepatic hemodynamics. 
They observed a 75% decrease in hepatic arterial blood 
flow during surgery [45]. Based on their simulation, they 
showed that this 75% decrease in hepatic arterial flow can 
be explained by the increase in resistance induced by the 
surgical procedure itself.

These and our studies suggest that the HABR is not 
necessarily required for the regulation of liver perfusion 
in this situation. Thus, targeting the HABR does not seem 
to be a suitable strategy to influence liver perfusion after 
extended liver resection.

NO pathway
NO pathway leads to vasodilatation via conversion of 
L-arginine by activation of guanylate cyclase (Gucy1a2) 
(Fig.  1). NOS catalyzes the production of NO from 
L-arginine. eNOS, iNOS, and nNOS are three isoforms 
of NOS. NO increases the activity of guanylate cyclase, 
thereby increasing the concentration of cyclic guano-
sine monophosphate (cGMP), which in return leads to 
vasodilatation.

We selected 4 genes as marker genes from the NO 
pathway: eNOS, iNOS, nNOS, and Gucy1a2 (Fig. 1).

Both eNOS and Gucy1a2 were not differen-
tially expressed, neither at 24  h nor at 48  h after the 
operation.

In contrast, nNOS mRNA-expression increased by six-
fold, but only in NZ. nNOS is constitutively expressed 
and leads to the generation of only small amounts of NO 
[46]. nNOS increases vascular cGMP production and 
promotes vasodilatation [47] (Fig.  4). However, NO is a 
double-edged sword. Low levels of NO lead to vasodila-
tion such as the NO release by nNOS [48]. In contrast, 
high levels of NO promote vasoconstriction, which might 
contribute to microvascular dysfunction and hepatic 
injury [49, 50] (Fig. 4). iNOS is the inducible isoform of 
NOS and generates 1000-fold larger quantities of NO 
than nNOS [27]. In our study, iNOS was the highest up-
regulated gene (73-fold) in OZ. One of the reasons for 
the microvascular dysfunction and hepatic injury after 
upregulation of iNOS might be due to the reaction of NO 
with  O2

− to form cytotoxic peroxynitrite and other reac-
tive oxygen species [27, 51]. Peroxynitrite reduces the 
NO bioavailability for vasodilation [52, 53]. Furthermore, 
peroxynitrite can modify cellular macromolecules and 
may aggravate adenosine triphosphate depletion, lead-
ing to hepatocyte and endothelial cell necrosis [54, 55] 
(Fig. 4). McNaughton et al. (2002) showed that in human 
cirrhotic livers, there was a significant increase in iNOS 
in the cirrhotic areas [56]. Li and Billiar (1999) reported 
that suppression of iNOS could represent a therapeutic 
strategy to prevent liver damage, as upregulation of iNOS 
expression appears to involve the coproduction of reac-
tive oxygen species [57]. Therefore, selective inhibition 
of iNOS could be a possible strategy to reduce vasocon-
striction and the resulting tissue damage and formation 
of necrosis, as observed in the OZ.

This strategy may not only be promising for hepatic 
outflow obstruction, but also also in other liver dis-
eases. Hazam et  al. observed a significant positive cor-
relation between iNOS and eNOS levels compared with 
the severity of disease parameters of HEV-related acute 
hepatitis in a study population. In addition, they found 
that high levels of iNOS and eNOS were associated with 
an increased risk of HEV-related acute hepatitis and liver 
failure [58]. Tache et al. showed that infection with hepa-
titis B and C viruses induces iNOS expression in hepato-
cytes, suggesting that NO overproduction might have an 
important role in progression of chronic viral hepatitis 
to cirrhosis [59]. Based on the evaluation of 168 publica-
tions, Iwakiri and Kim describe in their review the signif-
icance of nitric oxide in various clinical liver diseases as 
fatty liver disease, viral hepatitis and hepatic fibrosis [60]. 
Thus, the investigation of iNOS seems to be important 
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not only for our model, but also for various other clinical 
liver diseases.

Arachidonic acid pathway
Activation of the arachidonic acid pathway can cause 
either vasodilatation or vasoconstriction. Upon acti-
vation of the arachidonic acid pathway, arachidonic 
acid is released from the cell membrane by the enzyme 
phospholipase A2 (Pla2g4a). The free arachidonic acid 
undergoes oxidation by Ptgs1 or Ptgs2 to prostaglan-
din  G2 and further to prostaglandin H2. In endothelial 
cells, prostaglandin H2 is converted into prostacyclin by 
Ptgis and acts as a vasodilator. In contrast, prostaglan-
din H2 is metabolized into thromboxane by Tbxas1 in 
Kupffer cells. Thromboxane binds to Tbxa2r and acts as 
a vasoconstrictor.

We selected 6 genes as marker genes: Pla2g4a, Ptgs1, 
Ptgs2, Ptgis, Tbxas1, and Tbxa2r (Fig. 1).

In this study, the genes associated with vasoconstric-
tion such as Ptgs2 and Tbxas1 were upregulated in BZ 
and OZ at 24  h and 48  h post-op. Ptgs2 was the sec-
ond highest upregulated vasoactive gene in OZ at 24  h 
post-op. This upregulation of Ptgs2 mRNA expression 

corresponds to the observations published by Moham-
med et  al. (2004) and Schmedtje et  al. (1997) [61, 62]. 
They also reported that the gene expression of Ptgs2 was 
induced after hepatic injury. Ptgs2 and thromboxane 
upregulation promote vasoconstriction in the presence 
of peroxynitrite, which is produced depending on NO-
levels [62, 63] (Fig. 4).

Therefore, inhibition of iNOS could be an interest-
ing strategy to reduce the detrimental vasoconstriction 
mediated by Ptgs2 and thromboxane.

Endothelin pathway
Activation of the endothelin pathway can also result 
in both: vasodilatation and vasoconstriction. Endothe-
lin is synthesized and released by smooth muscle cells, 
endothelial cells, and Ito cells. The isoforms ET-1, ET-2, 
and ET-3 can bind to the ET receptors type A or B (1/2). 
In the liver, ET causes vasoconstriction by binding to 
ET-A receptors on perisinusoidal Ito cells or by bind-
ing to ET-B2 receptors on endothelial cells and Kupffer 
cells. In contrast, the binding of ET to the ETB1 recep-
tor stimulates the endothelium to produce and release 

Fig. 4 Regulation of hepatic hemodynamics in NZ and OZ. Diagram of the possible interactions regulating hepatic hemodynamics in NZ and OZ 
based on our results and the literature data. (light green box—NO pathway, blue box—genes of the arachidonic acid pathway, violet box—genes 
of the endothelin pathway, yellow box—formation of oxygen species, dark green box—effect of vasodilatation, red box—effect of vasoconstriction, 
blue arrows—enhancing effect, red arrows—inhibitory effect)
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prostacyclin. It also activates eNOS and causes vasodila-
tation by releasing NO [65–67].

We selected 3 genes as marker genes: Edn1, ET-RA, and 
ET-RB (Fig. 1).

In this study, ET-RA and Edn1 promoting vasoconstric-
tion were upregulated in OZ. Edn1 was the third highest 
upregulated vasoactive gene in OZ. The upregulation of 
Edn1 corresponds to the findings of Earley et al. (2002), 
who observed that NO also causes an increased release 
of Edn1. Other studies have shown that Edn1 leads to a 
decrease in sinusoidal volumetric flow by vasoconstric-
tion [68–70]. In addition, Edn1 increases the production 
of peroxynitrite [71] (Fig. 4).

Altogether, this suggests that inhibition of iNOS-
expression could also lead to a reduction of vasoconstric-
tion by Edn1.

Druggable signal transduction pathways
Overproduction of vasoconstrictors and impair-
ment of vasodilatation may lead to an imbalance in 
hepatic hemodynamics. The study of Liang et  al. (2003) 
reported that microcirculatory injury in small-for-size 
liver grafts resulted in upregulation of mRNA expres-
sion of Edn1 (2.5- to sixfold) and iNOS (6.4- to 24-fold) 
[72]. Furthermore, they showed that the upregulation of 
Edn1 and iNOS leads to a deterioration of intracellular 
homeostasis.

Imbalance in hepatic hemodynamics may promote 
hepatic damage. The imbalances between vasocon-
strictors (mainly induced by upregulation of Edn1 and 
cyclooxygenase-derived prostaglandins) and impaired 
vasodilation (mainly NO) are responsible for the 
increased vascular tone in the sinusoidal and postsinusoi-
dal space, vasoconstriction and narrowing of the sinusoi-
dal lumen, compromising blood flow, tissue oxygenation, 
and cell trafficking. Also, these imbalances together with 

the increased intrahepatic resistance are important for 
the pathophysiology of portal hypertension in cirrhotic 
livers [23, 73].

As mentioned before, modulation of NO pathway 
by the non-specific NOS-inhibitor L-NAME impaired 
hepatic microcirculation and aggravated parenchymal 
damage after extended liver resection [26]. L-NAME 
leads to feedback regulation of NO expression and an 
increase of iNOS. The feedback regulation is followed by 
inhibition of eNOS and nNOS mediated by L-NAME. 
By inhibiting the eNOS and nNOS, the NO level may 
decrease. The decrease in NO level leads to transcription 
factor nuclear factor kB (NF-kB) activation. NF-kB, a key 
factor in iNOS expression, increased iNOS expression 
[55, 74, 75]. This could possibly explain that L-NAME 
impaired hepatic microcirculation and aggravated paren-
chymal damage after extensive liver resection. Therefore, 
modulation of iNOS should be investigated instead of 
using a non-specific modulation of the NO pathway as 
pursued before.

These considerations suggest in particular that the spe-
cific inhibition of iNOS expression could be a promis-
ing strategy to reduce liver damage after extensive liver 
resection. It appears that high NO levels due to the ele-
vated iNOS expression lead to vasoregulatory imbalance 
and an increase of hepatic damage. This has already been 
investigated in other studies (Table  3). The administra-
tion of specific iNOS inhibitors such as Aminoguanidine, 
ONO-1714, Sivelestat, and 1400  W showed improve-
ments in liver injury in experimental studies of ischemia–
reperfusion and PHx [76–83]. Other strategies to 
modulate iNOS include expression control methods, e.g., 
using microRNAs or antisense RNA. There are interest-
ing studies on the application of microRNAs or antisense 
RNA for instance in inflammatory livers or hepatocytes 
[84, 85]. In view of these publications, we speculate that 

Table 3 Examples of studies on the regulation of iNOS in the liver

asRNAs Antisense RNA; HC Hepatocytes cells, I/R Ischemia–reperfusion,  Phx Partial hepatectomy, ICC Intrahepatic cholangiocarcinoma

Drug Treatment Species Result References

Aminoguanidine Phx rat Decreased iNOS protein level [75]

LPS rat Attenuated LPS-induced hepatotoxicity [76]

ONO-1714 Phx pig Reduced liver damage [77]

I/R pig Reduced liver ischemia–reperfusion damage [78]

I/R pig Reduced liver damage & stabilized hemodynamics [79]

Sivelestat I/R rat Prevented hepatic I/R injury [80]

1400 W transplantation rat Effective therapy for primary nonfunction of fatty liver grafts [81]

I/R rat Decreased NO metabolites level in serum [82]

ICC tissue / cell Suppressed cell proliferation, invasion, and migration in ICC [83]

microRNA149 LPS mice Reduced inflammation in liver [84]

asRNA – HC rat Reduced iNOS mRNA levels [85]
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modulation of the NO signaling pathway by specific 
inhibition of iNOS expression could be a possible signal 
transduction pathway to also reduce liver damage due to 
outflow obstruction after extended liver resection. In the 
next study, we will further investigate the effect of iNOS 
and the downregulation of iNOS in our model.

Conclusion
In our study, the NO pathway turned out to be the most 
affected pathway from the four investigated vasoactive 
pathways. Due to the central role of iNOS in the inter-
mingled vasoactive pathways, selective downregulation 
of iNOS-expression seems to be the most promising 
approach to reduce the risk of post-operative liver failure.
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