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ABSTRACT: Poroperm analysis, mercury injection capillary pressure (MICP), and nuclear magnetic resonance (NMR)
measurements were performed to delineate the pore structures and fractal behaviors of the Eocene low-permeability sandstones in
the Dongying Depression, Bohai Bay Basin, China. Three types of pore structures (I, II, and III) have been classified by applying the
self-organizing map (SOM) clustering model. Comparative analysis of three different fractal models indicates that the MICP tubular
model and NMR model are quite effective for pore structure characterization. The results show that the reservoirs generally exhibit
high fractal dimensions, indicative of complex pore structures. The presence of small pore throats is primarily responsible for the
heterogeneities and complexities in the Eocene low-permeability sandstones. A modified Winland model was established for the
permeability estimation using MICP data. Different from high-permeability reservoirs or unconventional (e.g., shale and tight
formation) reservoirs, r10 is the best parameter for permeability estimation, indicating that the permeability of the Eocene low-
permeability sandstones is largely controlled by the large pore systems. Additionally, a porosity model derived from movable fluids
using NMR data has been established and provided better prediction effect compared with the classic Coates and Schlumberger Doll
Research (SDR) models. Fractal analysis and permeability estimation are shown to be quite effective for investigating microscopic
behaviors and in predicting the reservoir quality of low-permeability sandstone reservoirs.

1. INTRODUCTION

The Eocene low-permeability sandstones (permeability: 0.1−
50 mD) are the most important reservoir type in the Dongying
Depression with great potential for hosting oil and gas.1−3 The
microscopic pore structure features, including the geometric
shape, type, size, distribution, and connectivity, determine the
reservoir petrophysical properties and thus control the fluid
flow in reservoir sandstones. Investigation of microscopic pore
structures is thus vital for refined reservoir characterization and
improving the efficiency of oil/gas development.4,5

The traditional methods such as the Euclidean geometry and
experimental techniques are no longer effective in character-
izing and evaluating complex and heterogeneous pore
structures.6 Numerous studies have demonstrated that pore
structures in porous rocks are self-similar and do not change

with investigation scales.7,8,36 By applying the fractal theory,
complex pore systems can be quantitatively investigated,9−11

and the fractal dimensions obtained can also be applied for
reservoir quality evaluation and estimation of petrophysical
properties.12 Fractal analysis has been shown to be especially
suitable for characterizing low-permeability terrestrial sand-
stones that have undergone complex diagenetic modifica-
tions.48
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Methods applied to analyze the fractal behavior of pore
structures include thin sections and scanning electron
microscopy (SEM),13 MICP,14 NMR,15−17 X-ray computer
tomography,18,19 and gas adsorption measurements.20,21

Fractal models established using data sets obtained from the
above mentioned methods have advantages and limitations due
to their different theoretical principles.22,23 Hence, fractal
characterization of pore structures by an integrated method is
commonly used lately.24,25 Several studies also compared
fractal dimensions determined using different techniques.26,27

Evaluation of different fractal models is helpful to reveal the
limitations and advantages of various models, which is crucial
for promoting the application and development of the fractal
theory in pore structure evaluation. In addition, previous pore
structure identification methods such as the morphological
analysis or regression analysis of MICP/NMR data are no
longer effective and adequate.27,28 In this paper, a multivariate
cluster analysis based on multiple measured variables and
machine learning was performed to identify the microscopic
pore structure types.
Permeability is an essential parameter in reservoir character-

ization and controls the ability of fluid flow. It is closely related
to pores and pore structures. Numerous studies have been
involved in extracting essential attribute parameters from
MICP and NMR data for permeability estimation.29−32

Various empirical permeability models have been established,

including Kozeny−Carman (KC) equation,33,34 PaRiS equa-
tion,35 Winland model,29,36,37 SDR and Coates model,30,31 and
so forth. Previous studies indicated that the optimal pore
throat radius and pore type for permeability estimation are
variable in different types of reservoirs.38 Consequently,
investigation of pore structures and its heterogeneity on
permeability would be conducive to accurately estimate
permeability.
In this study, the fractal behavior of low-permeability

sandstones from the Dongying Depression was investigated
using MICP and NMR data. The SOM model was employed
for pore structure classification using 70 groups of core data.
The petrophysical features of various pore structures were
analyzed by MICP and NMR data. The relationships between
pore structure, petrophysical properties, and fluid mobility
were also investigated. A comparative analysis of fractal
dimensions using three different fractal models was carried
out. Additionally, the effects of pore structures on permeability
were discussed and empirical equations for permeability
estimation have been established based on capillary pressure
curves and NMR T2 spectral parameters. This study attempts
to provide an essential workflow for characterizing fractal
behaviors of pore structures and an effective method for
estimating permeability and evaluating reservoirs with low-
permeability and strong heterogeneities.

Figure 1. (A) Location of the Dongying Depression in the Bohai Bay Basin, China; (B) cross section showing major structural units and
stratigraphic configurations; and (C) generalized stratigraphic column of the Paleogene formations in the study area. Adapted in part with
permission from ref 39. Copyright 2020 Elsevier.
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2. GEOLOGICAL BACKGROUND
The Dongying Depression is a dustpan-shaped depression
developed in the southwestern Bohai Bay Basin, China.39 It is
composed of five structural units, including the northern steep
slope zone, northern sag zone (Lijin and Minfeng sags), central
anticline zone, southern sag zone (Niuzhuang and Boxing
sags), and southern gentle slope zone (Figure 1A,B).40 The
Dongying Depression comprises a thick Paleogene sediment
sequence, including the Kongdian, Shahejie, and Dongying
formations. The Eocene Shahejie (Es) Formation is composed
of four sedimentary units from bottom to top: Es4, Es3, Es2, and
Es1 (Figure 1C). The upper Es4 (Es4u) unit is considered as the
target interval of the study area, and the burial depth of Es4u
varies from 2160 to 3563 m. The Es4u unit was deposited in
shore-shallow lacustrine environments and consists mainly of
fine-grained sandstone interbedded with thin mudstone
(Figure 1C).1

3. SAMPLING AND METHODOLOGY
3.1. Samples and Analytical Techniques. A total of 70

core plug samples (50 mm long and 25.4 mm in diameter)
from different depths were collected from 38 wells located in
the Dongying Depression. All samples were subjected to
petrophysical property analysis and MICP analysis, among
which 32 samples were selected for optical petrographic
analysis and 21 samples were selected for NMR measurements
(Table 1).

Helium porosity and air permeability were performed to
investigate the petrophysical properties of the sandstone
reservoirs. Pore structure features of 70 samples were detected
by MICP analysis, with the maximum mercury inlet pressure
up to 116 MPa. NMR measurements were conducted to
extract the T2 spectra of 21 samples. First, the NMR T2 spectra
at the 100% water-saturated state were measured, with an echo
interval of 0.21 ms. The experimental temperature was kept in
25 °C. Then, the samples were centrifuged with a rotating
speed of at least 6000 rpm for removing the free water in the
plugs and measured again to obtain NMR T2 spectra under a
centrifuged state. It should be mentioned that Sample Cn371-1
is not well-consolidated; thus, only the T2 spectra at the 100%
water-saturated state were measured.
3.2. Fractal Theory. 3.2.1. Fractal Models for MICP Data.

According to fractal theory, self-similar fractal behavior does
not change with the scale of magnification.10,22,41 Since its
introduction by Mandelbrot in 1977, it has been widely used in
pore structure evaluation and characterization.42,43 The self-
similarity behavior of pore structures can be illustrated by eq
1.7,44

N r r( ) Df∝ − (1)

where r is the pore throat radius; N(r) is the number of pores
with a radius larger than r; and Df is the fractal dimension. The

fractal dimensions calculated using both the tubular model
(model I) and spherical model (model II) are discussed.

3.2.1.1. Fractal Model I. The N(r) can be expressed in eq 2,
when using a tubular model.
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where j = i + 1, Vi is the cumulative mercury intrusion volume
at a certain pore radius ri, and l is the length of a capillary tube.
It should be mentioned that N(r) refers to the equivalent
number of pores when the pore space is filled by bundles of
capillary tubes with radius ri.

45,46 Df can be obtained by the
slope of the curve of lg N(r) − lg ri.
By combining with the Young−Laplace equation (eq 3), the

fractal model I can also be expressed in another form (eq 4).
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where Pc is the capillary pressure (MPa); σ is the surface
tension; θ is the contact angle (°); and SHg is the accumulative
mercury saturation, which can be converted with VHg.

46

3.2.1.2. Fractal Model II. According to the fractal theory, the
saturation of the wetting phase can be expressed as
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where V (<r) is the pore volume with a radius less than r; V is
the total pore volume; and rmax and rmin are the maximum and
minimum pore radius, respectively.
For rmin ≪ r, we get
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By combining eqs 3, 6, and 7 and taking logarithms on both
sides of eq 7, it becomes

S D P D Plg(1 ) ( 3)lg (3 )lgHg f c f cmin− = − + − (8)

D S 3f = + (9)

3.2.2. Fractal Dimensions Based on NMR Experiments. Lai
et al. (2018) proposed a fractal model using NMR data, and it
can reflect the whole pore size distribution.47 The pores
detected by NMR measurement were assumed to be spherical
and then the N(r) can be described by eq 10.
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where Vpi is the cumulative pore volume at a given pore radius
ri, ρ is the surface relaxivity, and T2 is the transverse relaxation
time.
By combining eqs 1 and 11
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Using logarithms for eq 11

Table 1. Information of Samples and Various Measurements

measurements number of wells number of sandstone samples

helium porosity 38 70
air permeability 38 70
thin sections 21 32
MICP 38 70
NMR 12 21
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where ( )log 1
36 3πρ

and lop(3ρ) are constants. The fractal

dimension (Df) can be calculated from the logarithmic

relationships between j
n V
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3.3. SOM Neural Network Algorithm. The SOM neural
network algorithm is a clustering analysis method based on
unsupervised machine learning.48,49 The network structure is
composed of an input layer and a competing layer (Figure 2).
The neuron in the competing layer can automatically compete
for the opportunity to respond to the input pattern and adjust
the weightsWij by competitive learning.50 The neuron with the
strongest response is known as the winning neuron and is also
known as the best matching unit (BMU). After repeated

training and weight adjustment, the derived topological
mapping can be used for assigning the best fitting category
for each input pattern.
The process of weight adjustment is shown as follows

D x w j, 1,2, ... 100j i ij= || − || = (13)

P g P j
D

D
( ) max ( ) max

( )

( )
j

j j1
100

μ

μ
= =

−

∑ −= (14)

W W x W( )ij ij i ij1η= + − (15)

where i and j are neurons in the input layer and the competing
layer, respectively; Dj is the Euclidean distance; xi are the input
variables; g is the winning neuron; P(j) is the winning
probability; μ is a constant; and Wij is the weight between the
neuron i and neuron j.
The advantage of the SOM classifier is that the clustering

results are not affected by incorrect user-defined informa-
tion,51,52 and there are no restrictions on the number of

Figure 2. Typical network structure of SOM (A) and competing layer with neurons (B). Adapted in part with permission from ref 39. Copyright
2020 Elsevier; adapted in part with permission from ref 51. Copyright 2015 Wiley-Blackwell.

Figure 3. Typical capillary pressure curves (A), pore throat size distribution (B), Pittman’s plot (C), and photomicrographs (D) for Es4 sandstones
derived from MICP measurements and petrographic analysis.
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parameters participating in the training process.53,54 Therefore,
the unsupervised neurocomputing algorithm presents an
excellent application in solving pattern recognition problems.
It provides a way for automatic classification of pore structures.

4. RESULTS

4.1. Pore Structure Characterization. 4.1.1. Pore
Structure Characteristics from MICP Analysis. Highly variable
MICP capillary parameters and pore throat size distributions
were derived from 70 core samples in the Es4 sandstones. The
pore structure features were investigated by three typical
sandstone groups (Figure 3). The samples with good physical
properties (Group I) exhibit a high mercury withdrawal
efficiency and a relatively low displacement pressure, which
indicates a good pore throat connectivity. The samples also
display a wide pore throat size distribution with a pore throat
radius mainly in the range of 0.0063−10.0 μm (Figure 3B).
The pore systems of Group I are dominated by dissolution
pores and residual intergranular pores (Figure 3D). In contrast,
the samples with poor physical properties (Group II and
Group III) are characterized by high displacement pressures
and relatively low mercury withdrawal efficiencies, suggesting
that the samples are dominated by small pore throats. The
pore throat sizes in samples of Group II and Group III exhibit
a narrow distribution, with the pore throat radius being mostly
less than 1.0 μm (Figure 3B). The development of small pore
throats is commonly associated with incomplete dissolution of
clay minerals and clastic particles (Figure 3D).
By plotting SHg and SHg/Pc, a sharp apex can be identified,36

and the pore throat radius corresponding to the apex was
defined as rapex by Lai and Wang (2015)14 (Figure 3C). The

pore systems can be separated into large and connected pore
systems and small pore systems based on the value of rapex.

14,55

Pore throats with a radius larger than rapex contribute
significantly to permeability, whereas the contribution of the
small pore throat system (r < rapex) to permeability is small
(Figure 3B). Therefore, rapex can be used as an important index
to evaluate reservoir quality and pore throat connectivity.

4.1.2. Pore Size Distribution Obtained by NMR T2 Spectra.
Previous studies show that the NMR T2 transverse relaxation
time of the hydrogen nucleus is closely related to pore size.43,56

Samples with short transverse relaxation times indicate the
existence of small pores, whereas long transverse relaxation
times are often associated with macropores or fractures. The
signal amplitude of T2 transverse relaxation time is indicative of
the pore volume fraction with different pore sizes. The NMR
T2 spectra can provide more comprehensive pore structure
information compared with the MICP measurements, and the
differences among various samples revealed by NMR are more
distinct.57,58

Figure 4 shows typical NMR T2 spectral distributions of Es4

sandstones, among which three types of NMR T2 spectral
distributions are revealed. Type I T2 spectra exhibit a
continuous unimodal behavior, with T2 times in the range of
0.01−1000 ms (Figure 4A). Type II T2 spectra (bimodal
behavior with a higher right peak) display a coexistence of
large and small pores, and the large pores account for a great
proportion (Figure 4B). The left peak varies from 0.1 to 10 ms,
while the right peak is in the range of 10−1000 ms (Figure
4B). Type III T2 spectra (bimodal behavior with a higher left
peak) show the lack of the long T2 components compared with

Figure 4. Typical NMR T2 spectra with unimodal (A) and bimodal behavior [samples with higher right (B) and left peak (C)].
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the second type. The T2 time is mainly concentrated in 0.1−
100 ms (Figure 4C).
4.2. Fractal Analysis. 4.2.1. Fractal Dimensions Ob-

tained from MICP Data. The lg(N(r)) and lg(r) plots based
on the MICP data were constructed for all 70 typical sandstone
samples (Figure 5), and the plots show good fits (R2 > 0.90)
(Figure 5). The results indicate that the pore structure derived
from the MICP data is characteristic of fractal dimensions and
can be characterized using the MICP tubular model. In order

to determine the fractal dimensions of small pore systems and
large pore systems, the lg(N(r)) and lg(r) plots were separated
into two linear segments using the same segment threshold
values (r = 0.1 μm), and the double-fractal characteristics can
be approximated by piecewise regression (Figure 5B,D). The
fractal dimensions of the left segments (DT1) correspond to the
fractal behavior of the small pore systems (r < 0.1 μm), ranging
from 2.01 to 2.98 (averaging 2.23). For the right segments, the
calculated fractal dimensions (DT2) are characteristic of the

Figure 5. Calculated fractal dimensions using the MICP tubular model. (A,C) Total fractal dimensions (DT); (B,D) fractal dimensions of small
pore systems (DT1) and large pore systems (DT2), respectively.

Figure 6. Fractal dimensions obtained using a spherical model. (A,C) Characteristics of total fractal dimensions (DS); (B,D) fractal dimensions of
small pore systems (DS1) and large pore systems (DS2), respectively.
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large pore systems (r > 0.1 μm). DT2 may be greater than 3.0
and shows a broad distribution between 2.32 and 6.54
(averaging 3.53). The presence of microfractures, the use of
an oversimplified tubular model, and the skin effect may result
in the phenomenon that some samples at the right segments
(DT2 are greater than 3.0) may not possess fractal character-
istics.59,60

The log−log plots of 1 − SHg and pc based on the spherical
model are shown in Figure 6, and the double-fractal
characteristics are investigated using the inflection points

corresponding to r = 0.1 μm. The detailed fractal dimensions
of small pore systems (DS1), large pore systems (DS2), and full
range of pore systems (DS) calculated using a spherical model
are shown in Figure 6. The results indicate that the fractal
dimensions DS1 of some samples appeared to be less than 2.0,
which does not conform to the Euclidean dimension and has
no significance for pore structure evaluation. For the large pore
throats, DS2 is in the range of 2.16−2.82 (averaging 2.53),
showing strong fractal characteristics.

Figure 7. NMR fractal dimensions calculated from the cross-plots of lg N(r) and lg T2, showing the fractal behavior of the entire pores. (A) Sample
L752-1; (B) sample F119-1; (C) sample C276-2; and (D) sample F119-2.

Table 2. NMR T2 Spectral Parameters and Fractal Dimensions Derived from NMR Data

T2 > T2cutoff

sample no BVI (%) FFI (%) Smov (%) T2cutoff (ms) Dmov R2 DNMR RNMR
2

C276-1 7.30 3.35 31.47 34.36 2.88 0.99 2.40 0.98
C276-2 12.28 4.14 25.21 43.45 2.89 0.99 2.20 0.97
G351-1 2.97 0.73 19.76 2.83 2.96 1.00 2.30 0.96
G351-2 9.31 0.98 9.52 8.96 2.97 1.00 2.32 0.98
G890-1 11.45 7.41 39.29 84.02 2.71 0.99 2.15 0.98
G890-2 2.93 0.44 13.06 5.09 2.97 1.00 2.54 0.98
F151-1-1 8.12 0.57 6.56 12.82 2.93 0.99 2.31 0.98
F153-1 7.94 5.09 39.06 91.99 2.82 0.99 2.40 0.98
C141-1 8.17 3.76 31.52 4.72 2.90 0.99 2.22 0.96
C141-2 6.07 5.48 47.45 41.49 2.84 0.99 2.41 0.97
C406-1 9.44 5.42 36.47 7.97 2.90 0.99 2.14 0.93
F143-1 6.90 3.74 35.15 46.93 2.76 0.99 2.38 0.99
L218-3 9.07 5.61 38.22 76.98 2.73 0.99 2.40 0.99
L218-1 9.59 7.52 43.99 85.61 2.67 0.99 2.16 0.99
L218-2 9.27 6.60 41.59 64.88 2.73 0.99 2.30 0.99
F119-1 7.36 2.76 27.27 150.41 2.84 0.99 2.37 0.98
F119-2 5.11 0.13 2.48 3.95 2.99 1.00 2.51 0.98
G351-1 8.53 1.67 16.37 63.97 2.88 0.99 2.36 0.98
L752-2 6.70 3.09 31.56 5.53 2.92 0.99 2.60 0.99
L752-3 7.33 0.26 3.43 9.88 2.99 1.00 2.31 0.96
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4.2.2. Fractal Dimensions Derived from NMR Analysis.
The log−log plots of V and T2 are widely used in
characterizing the fractal behavior of pore systems.20,45

However, almost all the researchers indicate that the slope of
the linear fitting line in the log−log plot of V and T2 is not a
constant for sandstone samples.12,23 The slope is steeper when
approaching the shorter T2 times and becomes gentler at
longer T2 times (Figure 7A−D). Previously, it has been a
common practice to use the inflection point to segment the
curves of lg V and lg T2 and to define multifractal models.20,45

However, the criteria for selecting inflection points are not
consistent among various published studies, including the
T2cutoff,

16 T2a (the lowest connection point between the first
and the second peak of NMR T2 spectra) and T2b (nine times
of T2a), and T2 values calibrated by mercury intrusion porosity
(MIP).61

In this study, the fractal model introduced by Lai et al.
(2018)47 was adopted to describe the fractal behavior of the
entire pores. Figure 7 shows a linear relationship between the
lg N(r) and lg T2i, and the total fractal dimensions can be
derived by the slope of the best fitting line. In addition, the
fractal behavior of the pores with a movable fluid can also be
determined by the inflection points of T2cutoff. The fractal
dimensions of the entire pores (DNMR) and pores with a
movable fluid (Dmov) are summarized in Table 2, and good
determination coefficients are identified (Figure 7A−D; Table

2). DNMR and Dmax are in the range of 2.14−2.60 and 2.67−
2.99, respectively (Table 2), indicating that the entire pores
and large pores hosting a movable fluid are typical of fractal
behavior.

4.3. Pore Structure Identification Based on SOM and
Fractal Dimensions. 4.3.1. Preparation of Data. Various
pore structures and petrophysical parameters were selected to
characterize the microscopic pore structures. The parameters
include porosity (Φ), permeability (k), reservoir quality index
(RQI), maximum pore throat radius (rmax), median pore throat
radius (r50), rapex, displacement pressure (Pd), mercury
withdrawal efficiency (WE), sorting coefficient (σ), T2
geometric mean value (T2gm), median T2 relaxation time
(T2mid), T2 time corresponding to the highest peak of T2
spectra (T2peak), free fluid index (FFI), and irreducible water
saturation (Swi). In addition, fractal dimensions were also
selected to identify the pore structures. Due to insufficient
NMR data, only the petrophysical parameters and parameters
derived from MICP measurements were used as the input of
the SOM model, and the NMR T2 spectral parameters were
used as auxiliary validation. In order to eliminate the
dimensional differences, the selected parameters were stand-
ardized prior to feeding into the SOM classifier.

4.3.2. Pore Structure Classification. An unsupervised
learning strategy was used in pore structure classification,
and a 10 × 10 symmetric network was defined. The initial

Figure 8. Topological mapping (left) and the related 3D Sammon mapping (right).

Figure 9. Cluster dendrogram based on the SOM neural network algorithm [2D dimension (left) and 3D dimension (right)], showing the process
of pore structure classification.
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learning rate was set to 0.5 and the learning process can repeat
until the learning rate reduced to 0.0001. The maximum
number of iterations was set to 120,000. By assuming three
reservoir types, the 70 groups of sandstone samples were
clustered into three categories (I, II, and III) by the
competitive learning process (Figures 8 and 9). Figure 8
shows the topological self-organized map, showing the
clustering result of all sandstone samples. Each neuron
represents a specific response of pore structure, and one
hundred pore structure features were automatically clustered in
the topological map. The rose diagram in each neuron displays
a combination of the pore structure and petrophysical
parameters (Figure 8). The data points located in the same
grid reveal similar pore structure characteristics, whereas the

differences among various types of pore structures are
significant (Figure 9).

4.3.3. Petrophysical Features of Various Pore Structures.
The clustering results show that the Type I pore structure
exhibits a good pore throat connectivity and the strongest
microheterogeneity (Figure 10 and Table 3). The sandstones
dominated by the Type I pore structure are abundant in
residual intergranular pores and dissolution pores (Figure
11A,B). Long T2 components are well-developed in the Type I
pore structure, and the r50 and rapex are mainly in the range of
0.05−2.36 μm and 0.40−2.50 μm, respectively (Table 3). The
Type II pore structure shows a relatively good pore throat
connectivity and a strong microheterogeneity. The displace-
ment pressure is relatively high in comparison with those in the
type I pore structure (Figure 10 and Table 3). The pore

Figure 10. Rider chart showing the characteristics of three types of pore structures.
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systems of the Type II pore structure are dominated by
dissolution pores and intergranular pores (Figure 11C,D).
Moreover, the micropores (<0.1 μm) and mesopores (0.1 < r
< 1.0 μm) account for a great proportion in the Type II pore
structure (Table 3). The Type III pore structure is
characterized by the highest displacement pressure and the
lowest FFI (Figure 10 and Table 3), which indicates a poor
pore throat connectivity and fluid mobility. The sandstones
dominated by the Type III pore structure are characterized by
extensive carbonate cementation, with no visible pores under a
petrographic microscope (Figure 11E,F). In addition, the Type
II and Type III pore structures with a high proportion of small
pores tend to have larger fractal dimensions compared with the
Type I pore structures (Figure 10 and Table 3), indicating a
more complex and heterogeneous pore structure.

5. DISCUSSION

5.1. Comparison of Fractal Dimensions from MICP
and NMR Data. As can be seen from Section 4.2, the MICP
tubular model is effective for fractal characterization. Never-
theless, for large pore systems, the calculated fractal dimension
DT2 is not in conformance to the Euclidean dimension.14,62

The MICP spherical model is only effective when rmin ≪ r.45,61

The model works well for the samples with large pore throats,
but it is not suitable for fractal analysis of small pore systems
(DS1 < 2.0). Moreover, the spherical model is more suitable for
wetting phase intrusion measurements. It is effective for fractal
analysis based on NMR data because water is a wetting phase
commonly used in NMR experiments.
The comparative results also indicate that fractal dimensions

determined from NMR and MICP data are different for given
samples. The discrepancy may be caused by differences in
theoretical principles and computation models of the two

Table 3. Capillary Parameters and Petrophysical Properties for Three Types of Pore Structures

PS-I PS-II PS-III

pore structure type range average range average range average

porosity (%) 10.85−24.06 16.26 9.33−14.74 11.63 2.72−13.80 8.47
k (mD) 0.76−54.30 9.81 0.14−1.26 0.53 0.01−0.38 0.10
RQI (μm) 0.24−1.77 0.67 0.11−0.30 0.20 0.04−0.22 0.10
rmax (μm) 1.0−8.23 3.39 0.25−3.56 1.31 0.03−0.63 0.20
r50 (μm) 0.05−2.36 0.83 0.02−0.67 0.27 0.01−0.15 0.04
rapex (μm) 0.40−2.50 1.42 0.1−1.17 0.54 0.01−0.25 0.08
σ MSE 0.25−1.73 0.91 0.06−0.65 0.28 0.01−0.23 0.06
Pd (MPa) 0.1−0.6 0.23 0.21−10.23 0.73 0.7−20 4.63
WE (%) 22.54−58.91 39.05 18.84−50.25 30.96 14.83−46.79 31.17
T2gm (ms) 6.56−48.74 26.85 7.57−28.62 15.79 1.00−2.99 2.03
T2peak (ms) 3.65−155.52 93.29 6.37−155.22 57.67 1.12−3.65 2.05
T2mid (ms) 4.83−71.80 41.37 7.49−48.32 21.38 0.99−3.07 1.89
Swi (%) 52.55−63.53 59.13 64.85−83.63 72.91 68.44−97.52 87.66
FFI (%) 5.09−7.52 6.16 1.67−4.14 3.13 0.13−3.09 0.89
DT 2.15−2.62 2.36 2.35−2.83 2.56 2.47−2.98 2.77
pore volume fraction (%) macropores 2.62−64.43 39.58 0−20.55 5.64 0−0 0

mesopores 12.81−60.69 31.30 9.65−80.11 49.79 0−47.33 9.51
micropores 9.06−64.01 29.12 11.51−90.35 44.57 52.67−100 90.49

Figure 11. Microscopic characteristics for various types of pore structures. Type I: (A,B) Sandstones with abundant residual intergranular pores
and dissolution pores, Well C371, 2691.95 m, and Well G890, 2597.7 m; Type II: (C,D) Sandstones with intergranular pores and dissolution pores,
Well F119, 3292.55 m, and Well F153, 2818.4 m; Type III: (E,F) Extensive carbonate cementation, Well G351, 2464.79 m, and Well G890, 2621.1
m.
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different methods.22,62 MICP fractal models are based on the
pore throat sizes but cannot account for large pore throats.
Due to the limitation of the maximum mercury injection

pressure, the smallest part of the pore throat cannot be
detected by the MICP measurements.63 In contrast, NMR
fractal dimensions can reflect the fractal behavior of entire
pores (pore body sizes).24 In addition, our investigations
suggest that the sandstone samples with a high proportion of
small pore throats often show larger fractal dimensions than
those with abundant large pore throats (Figure 12). Therefore,
the content of small pore throats may significantly control the
pore throat heterogeneity.

5.2. Relationships between Pore Structure and
Petrophysical Properties. 5.2.1. Analysis of Fractal
Dimension and Reservoir Parameters. Data from conven-
tional core analysis of 70 samples reveal a positive correlation
between porosity and permeability (R2 = 0.71; Figure 13A).
However, sandstone samples with similar porosities show wide
variations in permeability (Figure 13A), suggesting that
permeability of the low-permeability sandstones is not only
determined by porosity but also influenced by their micro-
scopic behaviors or other factors.
The relationships between petrophysical parameters, pore

structure parameters, and fractal dimensions (e.g., porosity,
permeability, RQI, rmax, r50, sorting coefficient, T2gm, T2peak, and
Swi) were analyzed to illustrate the effect of fractal dimension
on pore structure and reservoir quality evaluation. DT exhibits
a weak negative exponential correlation with helium porosity

Figure 12. Relationships between fractal dimensions (DT) and pore
volume fraction of small pore throats (r < 0.1 μm).

Figure 13. Relationships between fractal dimensions and petrophysical parameters. (A) Porosity vs permeability; (B) DT vs helium porosity; (C)
DT vs air permeability; and (D) DT vs RQI.
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(R2 = 0.45; Figure 13B), suggesting that higher DT is often
associated with lower porosity. In addition, regression analysis
suggests that the DT shows a relatively strong negative
correlation with permeability (R2 = 0.65; Figure 13C) and
RQI (R2 = 0.64; Figure 13D), implying an overall poor
reservoir quality for reservoir sandstones with complex and
heterogeneous pore structures.

As shown in Figure 14A,B, fractal dimension DT is negatively
correlated with rmax and r50 (R

2 > 0.70), suggesting that large
pore throats and a concentrated pore throat size distribution
would be helpful to reduce the complexity and heterogeneity
of the pore structure.14 This is also evident on Figure 14C,D,
where both the T2gm and T2peak exhibit negative correlations
with Dmov. Good correlations among sorting coefficients and
fractal dimensions DT are also observed (R2 = 0.74; Figure

Figure 14. Cross-plots of fractal dimensions vs pore structure parameters. (A) DT vs rmax; (B) DT vs r50; (C) Dmov vs T2gm; (D) Dmov vs T2peak; (E)
DT vs sorting coefficient; and (F) Dmov vs Swi.
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14E), indicating the effectiveness of fractal dimensions in
describing pore throat size distribution. Dmov shows positive
correlations with Swi with R2 being 0.67 (Figure 14F). The
larger the fractal dimension, the more complex the pore
structure would be, leading to a poor pore throat connectivity
and high irreducible water saturation.
The correlation analysis between the fractal dimensions (DT

and Dmov) and the reservoir parameters confirms a link
between complex pore structure and petrophysical properties
(Figures 13 and 14). Generally speaking, fractal dimensions

can be used as important indicators for pore structure and
reservoir heterogeneity evaluation. The complex process of
pore structure characterization can therefore be simplified
using fractal dimensions.27,64 Furthermore, our studies have
found that the fractal dimension DS calculated using the MICP
spherical model has no correlation with reservoir petrophysical
properties and cannot reflect the complex and heterogeneous
characteristics of the Es4 low-permeability sandstone reservoir.

5.2.2. Effect of the Pore Structure on Permeability. As
shown in Figure 15A, there is a strong correlation between
permeability and pore volume fraction with a pore throat
radius larger than 0.1 and 1.0 μm. A negative correlation
between permeability and pore volume fraction of micropores
(r < 0.1 μm) is also observed in Figure 15B, indicating that
micropores are generally disconnected or poorly connected in
the pore network, consistent with the finding of Lai and Wang
(2015).14 The analytical results indicate that the large pore
systems have significant contribution to permeability of the Es4
sandstone reservoirs (Figure 15A). Therefore, micropores have
little contribution to reservoir permeability. Consequently,
reservoir microscopic characteristics, especially the pore
volume of large pores, can exert more significant effect on
the permeability of the low-permeability sandstone reservoir.
As shown in Figures 16 and 17, the contribution of pore

throats with different sizes to permeability has also been
investigated. The result indicates that the large pore throats
have great contribution to permeability, even though those
pore throats usually account for a small proportion (Figure
16). The permeability contribution is significantly different in
samples with different pore throat size distribution and
permeability levels. The absolute permeability contribution
increases with increasing pore throat radius (Figure 17), which

Figure 15. Relationships between permeability and pore volume fraction with different pore throat sizes. (A) permeability vs pore volume fraction
for macropores and mesopores and (B) permeability vs pore volume for micropores.

Figure 16. Pore throat size distribution and the corresponding permeability contribution for two typical samples from the Es4 sandstone reservoirs.
(A) Sample F119-1, φ = 12.30%, k = 0.77 mD and (B) sample F153-1, φ = 10.85%, k = 4.40 mD.

Figure 17. Cross-plot of pore throat radius and absolute permeability
contribution obtained by MICP measurement, showing that the large
pore systems contribute significantly to permeability.
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is the main reason for strong positive correlation between large
pore systems and permeability (Figure 15A). As shown in
Figure 17, the sandstone samples with higher permeability
(>10 mD) always developed the pore throats with a radius
greater than 2 μm. For samples with relatively low permeability
(<0.1 mD), the rmax is commonly less than 1 μm.
5.2.3. Effect of the Pore Structure on Fluid Mobility. The

fractal dimensions of movable fluid pores (Dmov) show positive
correlations with porosity for a movable fluid (φm), saturation
for movable fluids (Smov), and permeability, with R2 being 0.77,

0.64, and 0.75, respectively (Figure 18A−C). The larger the
fractal dimension, the more complex the geometry of movable
fluid pores, resulting in a poor pore throat connectivity and
fluid mobility. In addition, permeability as the macroscopic
performance of microscopic pore structures also show positive
correlations with saturation for movable fluids (R2 = 0.75;
Figure 18D), indicating that with the improvement of
petrophysical properties, the fluid mobility becomes better.
Strong positive correlations were also observed between r50,
permeability, and saturation for a movable fluid (Figure

Figure 18. Relationship between pore structures and fluid mobility. (A) Dmov vs porosity for movable fluids; (B) Dmov vs saturation for movable
fluids; (C) Dmov vs permeability; (D) permeability vs saturation for movable fluids; (E) r50 vs permeability; and (F) r50 vs saturation for movable
fluids.
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18E,F), confirming that the strong correlations between
petrophysical properties and fluid mobility are greatly
controlled by the large pore throats. The pore throat size
distribution and pore connectivity have great influences on the
permeability and fluid mobility in the pore network.

5.3. Permeability Estimation. 5.3.1. Permeability Esti-
mation Based on the Modified Winland Model. Due to the
intrinsic strong correlation between permeability and pore
throat size distribution, the permeability estimation models
based on the pore throat radius usually show a better
prediction effect.65,66 The Winland model described the
relationship between permeability, pore throat radius, and
porosity.30 The model indicates that permeability of high-
permeability reservoirs is mainly controlled by the r35 pore
throat value. Several authors further extended the concept and
found that the optimal pore throat radius for permeability
estimation varies for different types of reservoirs.37,67,68

Through the multiple regression analysis of permeability,
porosity, and pore throat radius (r5−r50), we demonstrated
that the r10 is the best value for permeability estimation of the
Es4 low-permeability sandstone reservoirs (Figure 19). The r10
parameter was selected for permeability estimation, which was
dominated by the pore throat size mainly concentrated
between 0.1 and 5.0 μm, corresponding to the large pore
systems. The empirical equation (eq 16) is shown as follows

k rlog 1.306 1.238 log 0.982 log 10φ= − + × + × (16)

where k is the measured permeability (mD); φ is the helium
porosity (%); and r10 is the pore throat radius corresponding to
10% of the cumulative mercury saturation (μm).
As shown in Figure 20, the predicted permeability (k-

predicted) is in good correlation with the measured
permeability (k-measured) (R2 = 0.87), indicating the
effectiveness of the permeability estimation model. Moreover,
the pore throat radius can also be predicted by permeability
and porosity based on the established empirical equation.

5.3.2. Permeability Estimation Based on the Porosity
Model Derived from Movable Fluids. As shown in Section
5.2.2, the disconnected or poorly connected pores in sandstone
have little contribution to permeability. Hence, the porosity for
movable fluids (φm) is recommended for permeability
estimation rather than the total porosity,16,23 and φm can be
calculated using eq 17. Regression analysis shows that the φm
exhibits a strong exponential correlation with permeability (R2

= 0.90; Figure 21). The permeability estimation model based
on φm is shown in eq 18.

FFI/(BVI FFI)m Nφ φ= × + (17)

k e0.0311 0.848 m= × φ× (18)

where φN is the NMR porosity and FFI and BVI are the free
fluid index and bulk volume of the immovable fluid,
respectively.
The predicted permeability of the sandstone samples is

calculated using eq 18. As shown in Figure 22B, the predicted
values are in good agreement with measured values with little
difference (Figure 22B). We also shed light on the permeability
estimation using the classic (Coates and SDR) models (Figure
22A). The porosity model derived from movable fluids
provides a better estimation effect compared with the classic
models (Table 4; Figure 22), implying the effectiveness and
applicability of the new model for permeability estimation.

6. CONCLUSIONS
The microscopic pore structure of the Eocene low-perme-
ability sandstones was investigated based on NMR and MICP
data in combination with fractal theory and self-organizing
map (SOM) neural network algorithm. Two permeability

Figure 19. Determination coefficients corresponding to different pore
throat radii (r5−r50). Note that r10 is strongly correlated with
measured air permeability.

Figure 20. Cross-plot of k-measured vs k-predicted (R2 = 0.87). The
black solid line is the 1:1 line, while the red-dashed line marks the best
fitting line between the k-measured and k-predicted.

Figure 21. Relationship between porosity for movable fluids and
measured permeability, showing an excellent fitting (R2 = 0.90).
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estimation models were established based on the pore
structure information obtained from MICP and NMR
measurements. Some key findings are as follows:

(1) SOM, an unsupervised neural network clustering
algorithm, was adopted to investigate the pore
structures. Three types of pore structures had been
identified using an established SOM clustering model.
Type I and II pore structures are dominated by large
pore throats with good pore throat connectivity and
contribute significantly to the permeability. Type III
pore structures are characterized by abundant small pore
throats and a poor pore throat connectivity and are
unfavorable for the fluid flow.

(2) The MICP tubular model is effective for fractal
characterization, and the fractal dimensions calculated
using the tubular model exhibit strong correlations with
petrophysical parameters and pore structure parameters.
The fractal dimensions derived from the MICP spherical
model are not recommended for pore structure and
reservoir quality evaluation. The spherical model is more
suitable for fractal analysis based on NMR data because
water is a wetting phase commonly used in NMR
experiments.

(3) The fractal dimensions of the reservoirs investigated, DT
and DNMR, are in the range of 2.15−2.98 and 2.14−2.60,
respectively. The discrepancy may be caused by the
difference in theoretical principles and calculation
models of the two different types of measurements.
Samples with high proportions of small pore throats
often show larger fractal dimensions, indicating that the
pore volume of the small pore throats significantly

controls the pore throat connectivity and heterogeneity
of the sandstone reservoirs.

(4) Regression analysis indicates that r10 is the best
parameter for permeability estimation, which has a
concentrated distribution of 0.1−5.0 μm, indicating that
the large pore systems have a significant control on the
fluid flow in the Eocene low-permeability sandstones.
Another permeability estimation model based on φm has
also been established, which provides a better prediction
effect than the classic models. These findings are vital for
investigating the fluid flow mechanism and predicting
the reservoir quality of the Eocene sandstone reservoirs.
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