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Purpose: Organic cation transporters (Octs) use cations like endogenous compounds,

toxins, and drugs, such as metformin, as substrates. Therefore, these proteins determine the

pharmacokinetics and -dynamics of metformin and thus its efficacy. Of note, metformin is

today the most commonly used pharmaceutical in the treatment of type 2 diabetes (T2DM)

with nevertheless a great variability in clinical response, which attributes to genetic var-

iances. The aim of this study was to determine the influence of intronic OCT1 SNPs on

prevalence of all-cause and cardiovascular death.

Patients and Methods: Genotypes of 27 intronic SNPs in OCT1 were investigated in the

LURIC study, a prospective cohort of 3316 participants scheduled for coronary angiography.

We investigated whether these variants were associated with all-cause and cardiovascular

death in 73 individuals with T2DM under metformin therapy, in individuals without diabetes,

individuals with T2DM and individuals with T2DM without metformin therapy.

Results: In a multivariate Cox regression analysis adjusted for classical cardiovascular risk

factors, 4 intronic OCT1 SNPs were significantly associated with all-cause and cardiovas-

cular mortality in individuals with T2DM on metformin therapy.

Conclusion: According to their OCT1 genotype, some individuals with T2DM on metfor-

min therapy might be prone to an increased risk of cardiovascular death.
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Introduction
According to WHO data collected in 2014, cardiovascular diseases (CVDs) are

globally the primary cause of death. Data obtained in the year 2016 showed that at

least 17.9 million of people died from CVDs representing 31% of all deaths

worldwide.1 In Europe, more than half of all deaths are caused by CVDs.

Individuals with type 2 diabetes mellitus (T2DM) show significantly

increased cardiovascular morbidity and all-cause mortality compared to subjects

without diabetes.2,3 In T2DM, coronary artery disease (CAD) and stroke

increase 2.4-fold and the risk of heart failure increases 2.8-fold due to diabetic

vascular disease.4

Metformin is the recommended first-line therapy and hence the most frequently

prescribed drug in T2DM treatment. A recent review by Griffin and colleagues

targeted the influence of metformin therapy on cardiovascular diseases and showed

that all outcomes, except the risk of stroke, were improved by the use of metformin;

however, none of these associations achieved statistical significance.5
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Metformin reduces glucose absorption in the gastroin-

testinal tract and suppresses hepatic gluconeogenesis by

inhibiting the mitochondrial respiratory chain complex6,7

I: leading to a decrease in gluconeogenetic enzymes,8

II: via AMPK to an increased fatty acid uptake and beta-

oxidation9 and III: inhibition of mitochondrial glyceropho-

sphate dehydrogenase.10 AMPK activation can also occur

independent of AMP, complex I and mitochondria.11 In the

gastrointestinal tract metformin changes the microbiota

composition.11 As seen in mice, metformin increases the

number of Lactobacillus species, which in turn leads to

a normalization of sodium–glucose cotransporter-1

(SGLT1) expression in the host which is changed in

T2DM. Via the induction of GLP-1 secretion, SGLT1

decreases glucose production.12–14

In addition to its effects on glycemic control, it exerts

favourable effects on surrogate parameters like body mass

index (BMI) and waist circumference and reduces micro-

and macrovascular complications.15 In the last 6 years,

increasing evidence points to the effectiveness of metfor-

min in the treatment of cancer.16 Metformin not only

proved to be useful in the treatment of T2DM but also of

pre-diabetes, type 1 diabetes mellitus, polycystic ovary

syndrome and gestational diabetes. Positive effects of

metformin were also seen in congestive heart failure,

chronic liver and kidney disease, multiple sclerosis, or

non-alcoholic fatty liver disease (reviewed in17). This

drug not only might be used in the future for treatment

of further disorders but also in anti-aging therapy. Current

research to examine the potential of metformin on slowing

the progress of age-related and age-dependent diseases in

elderly individuals is ongoing.18

Metformin needs membrane transporters to penetrate

organs and cross cell membranes due to its low hydrophobi-

city. Since metformin is not metabolized in the body, trans-

port proteins regulating its gastrointestinal and hepatic

uptake and renal elimination are particularly important in

determining metformin pharmacokinetics and -dynamics.

Organic cation transporter family members (Oct) are

involved in the transport of small organic cations, including

drugs, endogenous compounds or toxic substances with dis-

tinct molecular structures.19 Metformin is a substrate of the

gastrointestinal and liver expressed Oct1, which is mainly

responsible for the uptake.20,21 Of note, there is

a reproducible heritability of glycemic response to metfor-

min, up to 34%, based on genome-wide complex trait ana-

lyses. This suggests an important influence of genetic

variants on the variance in glycemic response to

metformin.22 The effects of coding SNPs in OCT1 on uptake,

and thus efficacy of metformin, have extensively been inves-

tigated by a variety of studies.23–25 Recent work done in the

field has begun to look more closely onto intronic SNPs in

this region, since, on the one hand, genome-wide association

studies (GWAS) targeting type 1 and type 2 diabetes showed

top hits located in intronic regions of various genes26,27 and,

on the other hand, metformin pharmacokinetics and -

dynamics have been linked to genetic variants in transcrip-

tion factors.28 Thus, coding as well as non-coding SNPs in

OCT 1 play an important role in inter-patient difference of

metformin efficacy.29–34 The investigated SNPs might there-

fore be important for metformin use in a variety of diseases.

The aim of this study is to determine the influence of

intronic SNPs in one of the Oct transporter genes (OCT1),

on critical outcomes in a large European cardiovascular

risk cohort, such as the prevalence of all-cause and cardi-

ovascular death where endpoint data were available. We

investigate, whether this effect is metformin-dependent

and thus relevant to metformin-users only or might be

a more generalized effect.

Patients and Methods
Participants, Study Description, and

Definition of Comorbidities
Data were obtained from the Ludwigshafen Risk and

Cardiovascular Health (LURIC) study, a prospective cohort

study designed to evaluate the determinants of cardiovascular

health.35–37 3316 Caucasian subjects, aged 62.6 ± 10 years,

referred for coronary angiography between July 1997 and

January 2000, were recruited at a coronary care tertiary referral

center (Herzzentrum Ludwigshafen, Germany). Participants

with acute illness (except for acute coronary syndrome), non-

cardiac chronic disease, or malignant neoplasms within the

past 5 years were excluded. Written informed consent from

each participant and the study approval by the institutional

review board at the Ärztekammer Rheinland-Pfalz were

obtained. The study was conducted in accordance with the

Declaration of Helsinki. More detailed information about sub-

jects in the study, examinations, recruitment and comorbidities

have been previously described.35,38

Of note, during the recruitment phase of the LURIC study,

metformin was not the first-line therapy option in type 2

diabetes therapy, due to the occurrence of several cases of

lactic acidosis and consecutive safety concerns, leading to

only 73 metformin users in this study. In the follow-up period

(median 9.9 years), 894 (27%) of the study participants died.
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During follow-up no patient was lost. Local registries were

used to gain information on mortality. Classification of death

due to cardiovascular or non-cardiovascular causes was done

by the use of death certificates. Classification of causes of

death was done by two physicians who reviewed death certi-

ficates and hospital records without knowledge of study par-

ticipants’ baseline characteristics. Cardiovascular deaths

included sudden cardiac death (SCD), fatal myocardial infarc-

tion, deaths due to heart failure, death after intervention to

treat CAD, stroke, and other deaths due to heart disease. SCD

was defined as a sudden unexpected death either within 1 h of

onset of symptoms or within 24 h of having been observed

alive and without symptoms.

The presence of a visible luminal narrowing (>20% ste-

nosis) in at least 1 of 15 coronary segments in coronary

imaging was used to define coronary artery disease (CAD)

according to the classification of the American Heart

Association.35 Hypertension was defined as a systolic and/or

diastolic blood pressure ≥140 and/or ≥90 mmHg or

a significant history of hypertension. The glomerular filtration

rate was estimated by using the 2012 CKD-EPI eGFRcreatcys

equation.39 Pre-diabetes and diabetes were determined accord-

ing to the American Diabetes Association (ADA) criteria.40

Impaired fasting glycemia (IFG) was determined by plasma

glucose concentrations between 5.6 and 6.9 mM, and fasting

type 2 diabetes mellitus was determined by plasma glucose

concentrations ≥7.0 mM or HbA1c levels ≥6.5%. Based on

a 2 h post-oral glucose tolerance test (oGTT), impaired

glucose tolerance (IGT) was diagnosed by plasma glucose

concentrations between 7.8 and 11.0 mM, and 2 h post-load

type 2 diabetes mellitus by plasma glucose concentrations

≥11.1 mM. Individuals who required antidiabetic medication

(ie oral antidiabetic and/or insulin use for control of glycemia)

were also defined as diabetic41. Number of subjects per group

is shown in Figure 1. Individuals included in this analysis

either belonged to the group of individuals without diabetes

(no diabetes: ND) or to the group of individuals with type 2

diabetes mellitus (T2DM), both groups together are referred to

as all individuals (all). The latter was divided into metformin

users (metformin users with type 2 diabetes: MUT) and non-

metformin users (non-metformin users with type 2 diabetes:

NMUT). Number of individuals in each group is described in

the flow chart (Figure 1).

SNP Selection and Analysis of Functional

Consequences
Based on a minor allele frequency (MAF) >0.01 in a central

European population, we selected 34 non-coding, intronic

SNPs in the transporter gene OCT1 (gene SLC22A1 and

4 kb upstream of the first translational start site). Linkage

disequilibrium (LD) analysis was performed with the LDlink

tool of the NIH National cancer institute (RRID:

SCR_011403, https://analysistools.nci.nih.gov/LDlink/) and

was additionally checked in HaploReg v4.1 (RRID:

SCR_006796).42,43 The investigated SNPs were not in LD

with any coding SNPs in OCT1.

Individuals with
T1DM
n=9

LURIC participants
n=3316

Metformin users
(MUT)
n=73

Genotyping available
n=3049

Individuals with
T2DM (T2DM)

n=1220

Individuals without
diabetes (ND)

n=1820

Individuals with
diabetes
n=1229

Non-metformin users
(NMUT)
n=1147

Figure 1 Flow chart of subjects per investigated group.

Abbreviations: T2DM, type 2 diabetes mellitus; T1DM, type 1 diabetes mellitus.
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OCT1 genotyping data were available from 3061 indi-

viduals (92.3% of the entire cohort) due to technical rea-

sons. OCT1 SNPs were imputed in pre-existing genotyping

data and an in silico analysis was performed.

Analysis of cis or trans regulation of gene expression

was determined by database search (GTEx Portal V8

(RRID: SCR_001618) or HaploReg v4.1 (RRID:

SCR_006796).42,43 Changes in transcription factor binding

sites and sites of epigenetic modification were determined

via HaploReg v4.1.

The Genotype-Tissue Expression (GTEx) Project was

supported by the Common Fund of the Office of the

Director of the National Institutes of Health, and by NCI,

NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used

for the analyses described in this manuscript were obtained

from the GTEx Portal on 02/05/2020 and/or dbGaP acces-

sion number phs000424.vN.pN on 02/05/2020.

Statistical Analysis
Associations between the non-coding SNPs in OCT1 and

changes in all-cause and cardiovascular mortality were

analyzed using multivariate Cox regression. Hazard ratios

(HR) with 95% CIs for the mortality categories all-cause

death and cardiovascular death were calculated using Cox

proportional hazards regression models, which enabled

adjustment for potential confounding parameters. In these

analyses, an additive model was calculated, the unadjusted

model describes the crude association, the adjusted model

was adjusted for sex, BMI, systolic blood pressure, hyper-

tension, lipid parameters, C-reactive protein (CRP),

sodium levels, cortisol, cystatin c, NT-pro-BNP, arterial

fibrillation, left ventricular hypertrophy, smoking and cor-

onary artery disease stages, respectively.

To determine the impact of glycemic control on the

SNP effects on CVD, we adjusted in a third model addi-

tionally for HbA1c and HOMA-IR. HOMA-IR was calcu-

lated as follows: (fasting glucose [mmol/L] × fasting

insulin [U/L])/22.5. Changes in HR are given per minor

allele present and are referred to the homozygous major

allele of each SNP, respectively.

Associations between investigated SNPs and mortality

categories were determined for all LURIC participants.

Subclassification of individuals with type 2 diabetes in

metformin users, non-metformin users and comparison

with subjects without diabetes should indicate whether

the effect is metformin dependent or not.

Statistical significance was defined as p<0.05. Statistical

analyses were done using the statistical software package

STATA, StataCorp. 2017. Stata Statistical Software:

Release 15. College Station, TX: StataCorp LLC.

Results
Baseline Characteristics of the Study

Cohort
The baseline characteristics of the study cohort are given

in Table 1.

Data on Mortality of the Investigated

Cohort and Subgroups
Data on all-cause and cardiovascular death of all subjects

and the investigated subgroups are given in Table 2. Data

on all-cause and cardiovascular death per genotype in all

subjects and metformin users with T2DM are given in

Table 3.

Minor Allele Frequency of the SNPs
The minor allele frequency of the intronic OCT1 SNPs

rs461473, rs609468, rs622591, rs3777392, rs9295125/

rs3818678 and rs456598 were 0.118, 0.229, 0.228, 0.114,

0.412 and 0.127 respectively in our cohort.

Association of OCT1 SNPs with

All-Cause and Cardiovascular Death in

Individuals with Type 2 Diabetes with and

Without Metformin Therapy and

Non-Diabetic Individuals
Only in metformin users with T2DM, SNP rs461473 was

significantly associated with all-cause as well as cardio-

vascular death even after adjustment (see the 'Patients and

Methods’ section). Each copy of the minor A allele was

significantly associated with an increase in HR for all-

cause and cardiovascular death (see Table 4 for details).

No association with either all-cause or cardiovascular

death was seen in non-metformin users with T2DM and

non-diabetic subjects (see Tables 5 and 6 for details).

SNPs rs609468 and rs622591 were borderline asso-

ciated with all-cause death and only after adjustment sig-

nificantly associated with cardiovascular death in

metformin users with T2DM. Each copy of the minor

T allele was associated with an increased HR, respectively.

No associations with either all-cause or cardiovascular

death were seen in non-metformin users with T2DM and

non-diabetic subjects (see Tables 5 and 6 for details).
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SNP rs3777392 was significantly associated with car-

diovascular death in the unadjusted model, the association

was only seen by trend after adjustment in metformin

users with T2DM. None of the mentioned associations

were seen in non-metformin users with T2DM or non-

diabetics (see Tables 4–6 for details).

SNPs rs9295125, rs3818678 and rs456598 showed an

association with all-cause death in metformin users with

T2DM only in the unadjusted model, which disappeared

after adjustment (see Table 4). The minor alleles of SNPs

rs9295125 and rs3818678 showed a by trend association

with all-cause death in the unadjusted model. Each copy of

the minor allele was associated with a decrease in HR for

all-cause death. In individuals with T2DM who were non-

metformin users, both SNPs were by trend associated with

all-cause and cardiovascular death in the unadjusted

model, which was significant only after adjustment (see

Table 5 for details). In this patient subgroup, the minor

Table 1 Baseline Characteristics of the Study Participants

All

(n=3049)

ND

(n=1820)

T2DM

(n=1220)

p-valuesa MUT

(n=73)

NMUT

(n=1147)

p-valuesb

Age (years) 62.7 (10.6) 60.9 (11.2) 65.5 (9.0) <0.001 65.1 (7.2) 65.5 (9.1) 0.718

Male sex (%) 70.0 70.0 70.1 0.973 72.6 69.9 0.621

Body mass index (kg/m2) 27.5 (4.0) 26.9 (3.8) 28.3 (4.2) <0.001 29.2 (4.6) 28.2 (4.1) 0.041

Hypertension (%) 72.6 66.7 81.2 <0.001 83.6 81.1 0.302

Smoking (%) 19.4 21.3 16.7 0.076 19.2 16.6 0.080

Systolic blood pressure (mm Hg) 141 (23) 138 (22) 145 (24) <0.001 153 (23) 144 (23) 0.002

LDL cholesterol (mmol/L) 3.02 (0.89) 3.07 (0.90) 2.95 (0.88) <0.001 2.70 (0.88) 2.97 (0.88) 0.013

HDL cholesterol (mmol/L) 1.00 (0.28) 10.40 (0.29) 0.94 (0.25) <0.001 0.91 (0.21) 0.94 (0.25) 0.243

Triglycerides (mmol/L) 1.94 (1.39) 1.81 (1.39) 2.13 (1.37) <0.001 2.28 (1.25) 2.44 (1.37) 0.318

Total cholesterol (mmol/L) 5.40 (1.14) 5.5 (1.12) 5.3 (1.18) 0.010 5.02 (1.05) 5.4 (1.18) 0.017

HbA1c 6.3 (1.24) 5.7 (0.44) 7.2 (1.48) <0.001 8.0 (1.40) 7.1 (1.46) <0.001

NT-pro-BNP (ng/L) 912 (2069) 735 (1753) 1177 (2450) <0.001 852 (1437) 1198 (2499) 0.246

Cystatin c (mg/L) 1.01 (1.99) 0.96 (0.38) 1.06 (0.43) <0.001 0.95 (0.31) 1.07 (0.44) 0.020

C-reactive protein (mg/L) 10.07 (19.93) 8.44 (17.09) 12.5 (23.38) <0.001 9.13 (16.15) 12.76 (23.75) 0.207

Sodium (mmol/l), 141 (2) 141 (2) 140 (3) <0.001 140 (2) 140 (3) 0.151

Cortisol (nmol/L) 22 (8) 21 (8) 22 (7) 0.003 22 (7) 22 (7) 0.920

Atrial fibrillation (%) 12.11 10.95 13.87 0.016 11.27 14.03 0.514

Left-ventricular hypertrophy (%) 8.17 6.98 10.00 0.004 13.70 9.76 0.268

STA-CAD (%) <0.001c

Class1 47.23 45.16 50.08 50.68 50.04

Class2 19.55 18.08 21.72 24.66 21.53

Class3 12.23 11.43 13.52 13.70 13.51

Notes: Data are given as mean (SD) if not otherwise stated. ap-value stating differences between non-diabetics and individuals with T2DM. bp-value stating differences

between individuals with T2DM with and without metformin therapy. cOnly overall test available.

Abbreviations: All, all individuals; ND, non-diabetic individuals; T2DM, individuals with type 2 diabetes mellitus; MUT, metformin users with T2DM; NMUT, non-metformin

users with T2DM; SD, standard deviation; LDL, low-density lipoprotein; HDL, high-density lipoprotein; HbA1c, haemoglobin A1c; NT-pro-BNP, N-terminal prohormone of

brain natriuretic peptide; STA-CAD, coronary artery disease stage.

Table 2 Mortality Data of the Investigated Subgroups

All ND MUT NMUT p-valuea

n % Male n % Male n % Male n % Male

ACD 891 73.4 399 73.4 24 83.3 463 73.0 0.201

CVD 555 72.8 226 73.9 18 77.8 307 71.7 0.683

Non CVD 336 74.4 173 72.8 6 100 156 75.6 0.189

Survival 2158 68.63 1421 69.0 49 67.4 684 67.8

Note: aThe given p-value states the difference of individuals with T2DM with and without metformin therapy.

Abbreviations: All, all individuals; ND, non-diabetic individuals; MUT, metformin users with T2DM; NMUT, non-metformin users with T2DM; T2DM, type 2 diabetes

mellitus; ACD, all-cause death; CVD, cardiovascular death; Non CVD, death other than cardiovascular death.
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allele was associated with an increase in HR. In non-

diabetic subjects, both SNPs showed an association with

all-cause death only in the adjusted model. As in non-

metformin users with T2DM, the minor allele of both

SNPs was associated with an increased HR for all-cause

death (see Table 5 for details). An overview of the influ-

ence of each minor allele of the investigated SNPs on the

hazard ratio of cardiovascular risk is given in Figure 2.

Table 3 Mortality Data per Genotype in All Individuals and Individuals with T2DM Using Metformin

SNPs Alleles n All n=3049 n MUT n=73

ACD CVD % of

ACD/n

ACD CVD % of

ACD/n

rs461473 GG 2385 691 431 62/18 60 18 14 78/23

G/A GA/AA 664 200 124 62/19 13 6 4 67/31

rs609468 CC 1811 521 331 64/18 48 12 9 75/19

C/T CT/TT 1238 370 224 61/18 25 12 9 75/36

rs622591 CC 1813 521 331 64/18 48 12 9 75/19

C/T CT/TT 1236 370 224 61/18 25 12 9 75/36

rs3777392 CC 2403 702 435 62/18 57 17 12 71/21

C/T CT/TT 646 189 120 63/19 16 7 6 80/38

rs9295125 G/T GG 1049 295 188 64/18 26 11 8 73/31

rs3818678 G/C GT/TT GC/CC 2000 596 367 62/18 47 13 10 77/21

rs456598 GG 2326 686 419 61/18 60 17 13 76/27

G/A GA/AA 723 205 136 66/19 13 8 6 75/46

Abbreviations: All, all individuals; SNPs, single-nucleotide polymorphisms; MUT, metformin users with T2DM; T2DM, type 2 diabetes mellitus; ACD, all-cause death; CVD,

cardiovascular death.

Table 4 Association of Intronic OCT1 SNPs with All-Cause and Cardiovascular Death in Metformin Users with T2DM (MUT)

rs Number All-Cause Death Cardiovascular Death

Major/Minor Unadjusted Adjusted Unadjusted Adjusted

Allele n 73 73 73 73

rs461473 p-value 0.006 0.006 0.021 0.018

G/A HR 3.31 11.46 3.16 28.86

CI 1.41–7.78 1.99–66.06 1.19–8.39 1.76–473.31

rs609468 p-value 0.053 0.057 0.118 0.031

C/T HR 1.65 2.27 0.16 4.43

CI 0.99–2.75 0.98–5.25 0.88–2.98 1.15–17.11

rs622591 p-value 0.053 0.057 0.118 0.031

C/T HR 1.65 2.27 0.16 4.43

CI 0.99–2.75 0.98–5.25 0.88–2.98 1.15–17.11

rs3777392 p-value 0.147 0.698 0.047 0.066

C/T HR 1.65 1.32 2.08 8.67

CI 0.84–3.25 0.32–5.37 1.01–4.28 0.86–87.05

rs9295125 p-value 0.082 0.290 0.204 0.183

G/T HR 0.57 0.62 0.63 0.47

rs3818678 G/C CI 0.31–1.07 0.25–1.51 0.31–1.29 0.16–1.43

rs456598 p-value 0.095 0.308 0.157 0.867

G/A HR 2.12 2.30 2.17 0.84

CI 0.88–5.13 0.46–11.41 0.74–6.35 0.12–5.99

Note: The statistically tested allele is the minor allele.

Abbreviations: HR, hazard ratio; CI, 95% confidence interval.
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Impact of Glycemic Control on the

Influence of Intronic OCT1 SNPs on

All-Cause and Cardiovascular Death
To determine whether glycemic control may affect the

described influence of intronic OCT1 SNPs on all-cause and

cardiovascular death in metformin users with T2DM we

included HbA1c and HOMA-IR in our analysis. Rs461473,

rs609468 and rs622591 were still significantly associated with

an increased risk of all-cause death per minor allele. An

association with an increased risk of cardiovascular death per

minor allele was still seen for rs609468 and rs622591 (both

p=0.012) and rs461473 (p=0.061), rs1777392 (p=0.070) and

rs9295125/rs3818678 (p=0.077). For details see Table 7.

Prediction of Functional Consequences
Functional consequences of SNPs were determined by

database search in HaploReg v4.1 and GETx Portal V8.

QTL Results

Rs461473, rs609468, rs622591, rs9295125, rs3818678 and

rs456598 correlate with SLC22A1 expression. Rs9295125

correlates with expression of RP3-393E18.2, a large inter-

genic non-coding RNA locus, rs456598 with SOD2

expression and the presence of metabolites of the trypto-

phan and acylcarnitine metabolism.

Epigenomic Information

According to the chromatin 25-states model using 12

imputed marks, rs461473 creates a poised promoter in fat

tissue, a primary H3K27ac possible enhancer in rectal

mucosa and pancreatic islets and an active transcription

start site in liver. It creates an active enhancer in the right

atrium, duodenum mucosa, liver pancreas and an active

promoter in the liver. In the liver it inactivates an enhancer

and a promoter. Rs609468 creates an active enhancer in

aorta, liver and an active promoter in the spleen. Rs622591

creates an active enhancer in the liver. Rs9295125 creates an

active enhancer in fat, aorta and liver and rs3818678 in aorta,

stomach smooth muscle, placenta and liver. Rs465698 gen-

erates an active enhancer in the right ventricle and lung and

an active promoter in liver and spleen, whereas an inactive

enhancer in the right ventricle is generated.

Table 5 Association of Intronic OCT1 SNPs with All-Cause and Cardiovascular Death in Non-Metformin Users with T2DM

(NMUT)

rs Number All-Cause Death Cardiovascular Death

Major/Minor Unadjusted Adjusted Unadjusted Adjusted

Allele n 1147 1147 1147 1147

rs461473 p-value 0.866 0.973 0.467 0.635

G/A HR 0.98 1.00 0.91 0.94

CI 0.80–1.21 0.82–1.24 0.70–1.18 0.72–1.22

rs609468 p-value 0.898 0.793 0.440 0.246

C/T HR 1.01 0.98 0.93 0.89

CI 0.87–1.18 0.84–1.15 0.76–1.12 0.73–1.08

rs622591 p-value 0.869 0.805 0.459 0.252

C/T HR 1.01 0.98 0.93 0.89

CI 0.87–1.18 0.84–1.15 0.77–1.13 0.73–1.09

rs3777392 p-value 0.796 0.922 0.457 0.673

C/T HR 0.97 1.01 0.91 0.95

CI 0.80–1.18 0.83–1.23 0.71–1.17 0.73–1.22

rs9295125 p-value 0.094 0.039 0.068 0.038

G/T HR 1.12 1.15 1.16 1.19

rs3818678 G/C CI 0.98–1.28 1.01–1.32 0.99–1.36 1.01–1.41

rs456598 p-value 0.637 0.496 0.843 0.780

G/A HR 0.95 0.93 0.98 0.97

CI 0.79–1.16 0.76–1.14 0.77–1.24 0.76–1.23

Note: The statistically tested allele is the minor allele.

Abbreviations: HR, hazard ratio; CI, 95% confidence interval.
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Changes in Transcription Factor Binding Motifs

Rs461473 and rs609468 do not lead to changes in

transcription factor binding sites. All other SNPs

change various transcription factor binding sites:

rs622591 changes Dbx1, Hoxa4, Ifr, Mef2, Zfp105,

rs9295125 Foxo, Pax-8, Pou1f1 and Rox11, rs3818678

DMRT5, Foxo and TCF4 and rs456598 AIRE binding

sites.

Table 6 Association of Intronic OCT1 SNPs with All-Cause and Cardiovascular Death in Non-Diabetic Patients (ND)

rs Number All-Cause Death Cardiovascular Death

Major/Minor Unadjusted Adjusted Unadjusted Adjusted

Allele n 1820 1820 1820 1820

rs461473 p-value 0.991 0.813 0.539 0.534

G/A HR 1.00 1.03 1.09 1.09

CI 0.82–1.22 0.83–1.26 0.84–1.40 0.83–1.42

rs609468 p-value 0.458 0.715 0.861 0.935

C/T HR 0.94 0.97 0.98 1.01

CI 0.79–1.11 0.82–1.15 0.79–1.22 0.81–1.26

rs622591 p-value 0.379 0.612 0.794 0.908

C/T HR 0.93 0.96 0.97 1.00

CI 0.78–1.10 0.81–1.14 0.78–1.21 0.80–1.25

rs3777392 p-value 0.180 0.376 0.660 0.975

C/T HR 0.85 0.90 0.94 1.00

CI 0.68–1.08 0.71–1.14 0.70–1.26 0.75–1.35

rs9295125 p-value 0.118 0.074 0.876 0.837

G/T HR 1.12 1.14 1.01 1.02

rs3818678 G/C CI 0.97–1.28 0.99–1.31 0.84–1.22 0.85–1.23

rs456598 p-value 0.303 0.595 0.669 0.413

G/A HR 0.89 0.94 1.06 1.13

CI 0.71–1.11 0.75–1.18 0.80–1.41 0.85–1.50

Note: The statistically tested allele is the minor allele.

Abbreviations: HR, hazard ratio; CI, 95% confidence interval.

Figure 2 Hazard ratios for cardiovascular death per OCT1 genotype in diabetic metformin users. Squares: hazard ratios calculated with an additive cox proportional

hazards regression model adjusted for confounders, error bars: 95% confidence interval, different shades of grey represent different intronic OCT1 SNPs or SNP

combinations. Homozygosity for the major allele is set as 1.
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Discussion
In this study, we investigated the effect of intronic OCT1

SNPs on all-cause and cardiovascular death in 3040

Caucasians with increased cardiovascular risk. We identi-

fied 4 SNPs (rs461473, rs609468, rs622591, rs3777392),

which were significantly associated with an increased risk

per minor allele for all-cause and/or cardiovascular death

in 73 individuals with T2DM on metformin therapy. This

effect varied between 4.4 and 28.9 fold increased risk of

cardiovascular death per minor allele in metformin users

with T2DM. After adjustment for parameters of glycemic

control, rs609468 and rs622591 were still significantly

associated with an increased risk per minor allele for

cardiovascular death, implicating that glycemic control

does not impact their influence on CVD risk. Rs461473,

rs3777392 and rs9295125 showed an association by trend

with cardiovascular death after adjustment for parameters

HbA1c and HOMA-IR, suggesting that poor glycemic

control in our cohort is partly, but not completely, respon-

sible for the association detected.

Intronic OCT1 SNPs might be influencing gene expres-

sion by either acting in cis (on the OCT gene cluster), in

trans or even by modification of enhancers (influencing

other “metformin” transporters or proteins determining

metformin efficacy). The alteration of OCT gene expres-

sion in “cis” by changing transcription factor binding sites

(as predicted for rs622591, rs3777392, rs9295125,

rs3818678 and rs456598) would not only directly impact

the transport of metformin but also the transport of phy-

siological substrates. The transport of metformin deter-

mines its concentrations in blood, hence in end organs,

and in the gastrointestinal tract. The first determines the

capacity of metformin to inhibit hepatic gluconeogenesis

by inhibition of the mitochondrial respiratory chain

complex.6,7 The second changes the microbiota composi-

tion in the gastrointestinal tract which might be achieved

via inhibition of bacterial complex I homologues.44

Alterations in microbiota on the one hand decrease gut

permeability45 and alter on the other hand the profile of

bacterial products generated. Bacterial products per se

might contribute to the effects of metformin on glucose

metabolism11 or have direct effects on inflammation like

indole,46 butyrate47 and small chain fatty acids.48 Since

inflammation-mediated processes might be one of the

main mechanisms the gut microbiota influences T2DM

development and progression as well as CVD risk, met-

formin acts on both by decreasing systemic inflammation.

This might be one of the mechanism rs622591 influences

the risk of CVD, since Becker and colleagues could not

see any effect of its genotypes on HbA1c levels.32

An alteration of OCT gene expression also affects the

transport of their natural substrates like neurotransmitters,

polyamines, prostaglandins and thiamine. All these sub-

stances are linked to glucose and lipid metabolism as well

as cardiovascular disease either in humans or animal

models49–62 and might thus be responsible for the observed

increased cardiovascular risk. Christensen and colleagues

could not detect any change of plasma metformin concentra-

tions in individuals with different rs461473 alleles rather

implicating a mechanism other than cis-regulation.22 This

might include trans-regulatory processes like creating or

destroying enhancers or via non-coding RNAs. Trans regula-

tion may affect other transport proteins using metformin as

a substrate63 like the plasma monoamine transporter

(PMAT), the multidrug toxin and extrusion (MATE 1), and

MATE 2, again influencing the metformin concentration in

gut and thus the gut microbiota Trans regulation may also

affect the expression of mediators of metformin action or

efficacy like AMPK,64 LBK1,65 SRR and BDNF. Another

Table 7 Association of Intronic OCT1 SNPs with All-Cause and Cardiovascular Death in Metformin Users with T2DM (MUT) After

Adjustment for Glycemic Control

rs Number Major/Minor All-Cause Death Cardiovascular Death

Allele p-value HR CI p-value HR CI

rs461473 G/A 0.009 14.38 1.94–106.78 0.061 11.25 0.89–141.61

rs609468 C/T 0.046 2.59 1.02–6.61 0.012 13.17 1.78–97.63

rs622591 C/T 0.046 2.59 1.02–6.61 0.012 13.17 1.78–97.63

rs3777392 C/T 0.781 1.23 0.29–5.11 0.070 9.90 0.83–118.41

rs9295125 rs3818678 G/T G/C 0.171 0.49 0.18–1.36 0.077 0.30 0.08–1.14

rs456598 G/A 0.264 2.85 0.45–17.94 0.845 0.80 0.08–17.68

Note: The statistically tested allele is the minor allele. n = 73.

Abbreviations: HR, hazard ratio; CI, 95% confidence interval.
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candidate gene is SLC2A2, encoding the metformin target

GLUT2 transporter.66 Rs456598 and rs3777392, ie affect

SOD2 gene expression, which is associated with microvas-

cular complications of diabetic ischemia.67 Intronic SNPs

might also influence epigenetic regulation and thus the acces-

sibility of chromatin as predicted for some of the SNPs.

Based on the results of this study, it might be of interest

to monitor several individuals with T2DM currently using

metformin, which might have an increased risk of cardio-

vascular incidents according to their OCT1 genotype.

Since metformin is also used for a number of other indica-

tions than type 2 diabetes therapy, these findings might

also concern other disease groups.

Major limitations of this study are the relatively small

sample size of metformin users with T2DM due to lack of

safety data for metformin ahead and during the recruitment

period and the fact that we performed the analysis without

direct access to sample material to measure additional para-

meters to the given ones. We did not select functional var-

iants in this study, because their effect on metformin efficacy

in our patient groups has already been widely investigated.

Furthermore, statistical power to investigate some of these

functional OCT1 SNPs known to be associated with

decreased metformin efficacy was too low due to a very

low allele frequency in our cohort. The selection of intronic

SNPs might be another limitation of this study. In contrast to

coding SNPs, which directly affect transporter efficacy by

changing the protein sequence and thus the ability to trans-

port its substrates, intronic SNPs may change the expression

on the genes in their vicinity, or far from their location,

enhancing further the complexity of possible ways of action.

Since these data were generated in a cohort with

a small number of metformin users it is necessary to

replicate our findings in a cohort reflecting presently

usage of metformin as first-line therapy in type 2 diabetes

treatment and to further include coding SNPs in OCT1 for

the analysis of complex intertwining between metformin,

glycemic control and thereafter cardiovascular outcomes.

Conclusion
We were able to show in a small number of persons

with type 2 diabetes mellitus on metformin therapy

a susceptibility to an increased risk of cardiovascular death

according to their OCT1 genotype. This unexpected effect

was only partly due to impaired glycemic control implicating

other pleiotropic effects of metformin. This finding might

also be interesting for potential metformin users in other

indications than diabetes mellitus.
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