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ABSTRACT

Background: Tetrabromobisphenol A (TBBPA), one of the most widely used brominated 
flame-retardants, is a representative persistent organic pollutants group. Studies on 
TBBPA toxicity have been conducted using various target cells; however, few studies have 
investigated TBBPA toxicity in bone cells. Therefore, this study investigated the in vitro 
effects of TBBPA on osteoclasts, a cell type involved in bone metabolism.
Methods: RAW264.7 cells were cultured in medium containing 50 ng/mL receptor activator 
of nuclear factor kappa B ligand (RANKL) and varying concentrations of TBBPA. To evaluate 
the effects of TBBPA on the differentiation and function of osteoclasts, osteoclast-specific 
gene expression, tartrate-resistant acid phosphatase (TRAP) activity, bone resorbing activity, 
mitochondrial membrane potential (MMP) and mitochondrial superoxide were measured.
Results: The presence of 20 μM TBBPA significantly increased TRAP activity in RANKL-
stimulated RAW264.7 cells, the bone resorbing activity of osteoclasts, and the gene 
expression of Akt2, nuclear factor of activated T-cells cytoplasmic 1, and chloride channel 
voltage-sensitive 7. However, TBBPA treatment caused no change in the expression of 
carbonic anhydrase II, cathepsin K, osteopetrosis-associated transmembrane protein 
1, Src, extracellular signal-related kinase, GAB2, c-Fos, or matrix metalloproteinase 9. 
Furthermore, 20 μM TBBPA caused a significant decrease in MMP and a significant increase 
in mitochondrial superoxide production.
Conclusion: This study suggests that TBBPA promotes osteoclast differentiation and activity. 
The mechanism of TBBPA-stimulated osteoclastogenesis might include increased expression 
of several genes involved in osteoclast differentiation and reactive oxygen species production.
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INTRODUCTION

Tetrabromobisphenol A (TBBPA) is the most commonly used brominated flame retardant, 
and is either physically added or chemically bonded to flammable products. TBBPA and 
its related compounds can leach into the environment and produce adverse effects on 
human health. Human exposure to TBBPA occurs by inhalation of dust, dermal contact, 
and ingestion.1-3 TBBPA has been found in commercial drinking water stored in reusable 
polycarbonate containers and in seafood.4 Furthermore, it accumulates in biologics, such 
as aquatic life and marine mammals, through the food chain.5 TBBPA commonly enters 
the human body through foods and has been detected in human blood, adipose tissue, and 
breast milk.6 TBBPA disrupts thyroid7 and estrogen hormones,8 and negatively affects the 
immune9 and nervous systems.10 TBBPA has agonistic effects on peroxisome proliferator-
activated receptor γ, which is a key regulator of adipocyte differentiation and lipid and 
carbohydrate metabolism.11 It causes preadipocyte differentiation in TBBPA-treated 3T3-
L1 cells,11 raises total cholesterol levels in blood, increases liver weight in pregnant mice 
exposed to TBBPA,12 and increases abnormal cytokine secretion in mice that ingested 
TBBPA.13 TBBPA and its debrominated congener accumulate at high levels in breast milk, and 
that debrominated congeners promote adipocyte differentiation.14

In our previous study, we showed that TBBPA inhibits osteoblast function and has 
detrimental effects on osteoblasts via a mechanism involving oxidative stress and 
mitochondrial dysfunction.15 Normal bone remodeling requires a homeostatic balance 
between the activities of bone-forming osteoblasts and bone-resorbing osteoclasts.16 
Osteoclasts are responsible for the dissolution and absorption of bone, whereas osteoblasts 
are responsible for the synthesis and mineralization of bone. This homeostasis is 
compromised when osteoclast and osteoblast activities are disturbed.17 Excessive osteoclast 
formation causes pathological bone diseases such as rheumatoid arthritis, periodontal 
disease, and osteoporosis.18 Considering that normal bone remodeling requires tight 
coupling of bone resorption and bone formation, it is important to identify the effects of 
TBBPA on osteoclasts, as well as osteoblasts. However, no reports have investigated the 
effects of TBBPA on osteoclast differentiation. Therefore, this study evaluated the effects of 
TBBPA on receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast 
differentiation in RAW264.7 cells.

METHODS

Osteoclast differentiation of RAW264.7 cells
The RAW264.7 mouse macrophage cell line, a well-known in vitro model of 
osteoclastogenesis, maintains the capability to differentiate into mature osteoclast-like 
cells.19 RANKL-treated RAW264.7 cells produce high levels of osteoclast-specific markers, 
such as tartrate-resistant acid phosphatase (TRAP), which is commonly used to evaluate 
bone resorption.20

As in our previous study with RAW264.7 cell line, the RAW264.7 cell line was obtained from 
American Type Culture Collection (Manassas, VA, USA). Cells were cultured in Dulbecco's 
Modified Eagle Medium (DMEM; Gibco BRL, Grand Island, NY, USA) supplemented with 
antibiotics (100 U/mL penicillin A and 100 U/mL streptomycin) and 10% heat inactivated 
fetal bovine serum (FBS), and maintained at 37°C in 5% CO2 humidified air. The cells (2 × 
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104 cells/well) were seeded in 24-well plates and incubated to up to 70% confluence. For 
differentiation into osteoclasts, RAW264.7 cells were cultured in DMEM, containing 50 
and 100 ng/mL RANKL (R&D Systems, Minneapolis, MN, USA) for 3 days.21 To examine 
the effects of TBBPA on osteoclast differentiation and activity, RAW264.7 cells were treated 
with varying concentrations of TBBPA (10, 20, and 40 µM), in the presence of RANKL for an 
additional 3 days.

TRAP activity assay
To investigate RAW264.7 cell osteoclastogenesis via RANK-RANKL signaling, TRAP 
activity was measured in RAW264.7 cells stimulated with 0, 50, and 100 ng/mL RANKL 
using the Acid Phosphatase Assay kit (BioVision Inc., Milpitas, CA, USA). The kit uses 
p-nitrophenyl phosphate as a phosphatase substrate, which turns yellow (λmax = 405 nm) 
when dephosphorylated by acid phosphatase. After removing the medium, the cultured cells 
were gently washed twice with cold phosphate-buffered saline (PBS) and lysed with 0.05% 
Triton-X100 at 4°C. The total protein content in the cell lysates was measured using Bio-
Rad protein assay reagents (Bio-Rad Laboratories, Hercules, CA, USA), and TRAP activity 
was expressed according to the protein level. To confirm the generation of multinucleated 
osteoclasts, cells were fixed with 3.7% formalin (Sigma, St. Louis, MO, USA), permeablized 
with 0.1% Triton X-100 and finally stained for TRAP with the leukocyte acid phosphatase kit 
(Sigma) as in our previous study.22 The images of TRAP-positive cells were captured under 
the inverted microscope (Olympus, Tokyo, Japan).

Cytotoxicity analyses
To examine the effects of TBBPA treatment on cell viability during RANKL stimulation, 
RAW264.7 cells were treated with 10, 20, and 40 µM TBBPA in the presence of 50 ng/
mL RANKL. The cytotoxic effects of TBBPA were detected using the WST-1 assay (Roche 
Diagnostics, Mannheim, Germany). The WST-1 cell assay is a colorimetric assay, based on the 
cleavage of a tetrazolium salt WST-1 to formazan, by cellular mitochondrial dehydrogenases 
in viable cells. The larger the number of viable cells, the greater the amount of formazan 
product produced, following the addition of WST-1. RAW 264.7 cells were cultured in DMEM 
containing antibiotics and 10% heat-inactivated FBS, and maintained at 37°C in 5% CO2 
humidified air. Next, the cells were cultured in DMEM containing 50 ng/mL RANKL and 
varying concentrations of TBBPA (10, 20, and 40 µM), WST-1 solution (10%) was added to 
each well and mixed gently. After a 3 hours incubation at 37°C in an atmosphere containing 
5% CO2, the absorbance at 450 nm was measured using a microplate reader versus a 650 nm 
reference as in our previous study.22

RNA extraction and quantitative polymerase chain reaction (qPCR)
Gene expression was detected by quantitative real-time polymerase chain reaction (PCR). 
The expressions of Akt2, nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), chloride 
channel voltage-sensitive 7 (CLCN7), carbonic anhydrase II (CAII), cathepsin K (CTK), 
osteopetrosis-associated transmembrane protein 1 (OSTM1), Src, extracellular signal-related 
kinase (ERK), Grb-2-associated binder 2 (GAB2), c-Fos, and matrix metalloproteinases 
(MMP9) genes were measured. Akt2, NFATc1, Src, extracellular-related kinase (ERK), GAB2, 
and c-Fos genes are associated with osteoclastogenesis. CLCN7, CAII, CTK, OSTM1, and MMP9 
genes are associated with enzymes involved in bone resorption by mature osteoclasts. Total 
RNA was isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). After 
isolation, RNA integrity was assessed using the Agilent 2100 Bioanalyzer (Agilent, Palo 
Alto, CA, USA). Complementary DNAs (cDNAs) were synthesized using the Transcriptor 
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First Strand cDNA Synthesis Kit (Roche Diagnostics) and stored at −70°C until further 
processing. All procedures were followed according to the manufacturer's instructions. 
The qPCR was performed to verify the differential expression of selected genes using the 
Roche LightCycler 480 system (Roche Diagnostics) and the Taqman method using the Roche 
Universal ProbeLibrary (UPL) kit. Relative gene expression was determined by employing the 
comparative CT method. All reactions were performed in a total volume of 20 µL containing 
10.0 µL 2× UPL master mix, 1.0 µL 5′ primer (10 pmol/μL), 1.0 µL 3′ primer (10 pmol/mL), 
0.2 µL UPL probe, 1.0 µL cDNA, and 6.8 µL sterile water. The thermal cycling conditions for 
PCR were initial denaturation for 10 min at 95°C, followed by 40 cycles of 94°C for 10 seconds 
and 60°C for 30 seconds. The primers summarized in Table 1 were designed using the Roche 
ProbeFinder assay tool. For the qPCR analyses, duplicate PCR reactions were performed 
for each cDNA. Negative controls (without template) were included in the PCR reaction 
to ensure specific amplification as in a previous study.23 Then qPCR was conducted using 
the Roche LightCycler 480 system (Roche Diagnostics) with 1.0 μg RNA with A260:A280 
ratios > 1.8, as confirmed by the 2100 Bioanalyzer (Agilent). The values obtained from each 
sample were normalized to hypoxanthine guanine phosphoribosyl transferase expression. 
Expression levels of each gene in all experimental groups were compared to the expression 
levels of the control group.

Osteoclast bone-resorbing activity
The OsteoLyse™ Assay Kit (Lonza, Walkersville, MD, USA) was used to further examine 
whether TBBPA affected the ability of mature osteoclasts to resorb bone. This kit, which was 
used in a previous study,22 provides an easy-to-use protocol for quantitatively measuring in 
vitro osteoclast-mediated bone resorption in a high-throughput format. The assay directly 
measures the release of europium-labeled collagen fragments in osteoclast cell culture 
supernatant via time-resolved fluorescence, which indicates their resorption activity levels. 
Osteoclasts were seeded onto OsteoLyse™ plates and incubated until they reached up to 70% 
confluence. Next, the cells were cultured in DMEM containing 50 ng/mL RANKL with various 
concentrations of TBBPA for 3 days, followed by RANKL treatment for an additional 3 days. 
Quantification of bone resorption by osteoclasts in vitro was measured using the OsteoLyse™ 
Assay Kit (Lonza) according to the manufacturer's instructions.24

Resorption pit assay
The resorptive function of mature osteoclast cells was analyzed on Osteologic Plates (BD 
BioCoat Osteologic Bone Cell Culture System, BD Biosciences, San Jose, CA, USA). The cells 
were cultured in DMEM containing 50ng/mL RANKL with TBBPA for 3 days, followed by 
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Table 1. Primer sequences
Genes Forward primer Reverse primer
Akt2 5′-CGA CCC AAC ACC TTT GTC A-3′ 5′-GAT AGC CCG CAT CCA CTC T-3′
CAII 5′-GGG GAT ACA GCA AGC ACA AC-3′ 5′-GAC TGC CGG TCT CCA TTG-3′
Cathepsin K 5′-CGA AAA GAG CCT AGC GAA CA-3′ 5′-TGG GTA GCA GCA GAA ACT TG-3′
c-Fos 5′-CAG CCT TTC CTA CTA CCA TTC C-3′ 5′-ACA GAT CTG CGC AAA AGT CC-3′
CLCN7 5′-TCG GAC AGA TGA ACA ACG TG-3′ 5′-GGT GTG AGG AGG ATC GAC TT-3′
ERK1 5′-TGG AAG CCA TGA GAG ATG TTT-3′ 5′-GCT CAG CTG CTG GCT TTT A-3′
GAB2 5′-AGA TCT GCG GCT TCA ATC AG-3′ 5′-GAC TGG CTG AAG AAA GGT TCC-3′
HPRT 5′-TCC TCC TCA GAC CGC TTT T-3′ 5′-CCT GGT TCA TCA TCG CTA ATC-3′
MMP9 5′-ACG ACA TAG ACG GCA TCC A-3′ 5′-GCT GTG GTT CAG TTG TGG TG-3′
NFATc1 5′-TCC AAA GTC ATT TTC GTG GA-3′ 5′-CTT TGC TTC CAT CTC CCA GA-3′
OSTM1 5′-GGT CTC TGA GTT TTT CAA CAG CA-3′ 5′-CCT CAC CAT TGT TTG TTA GGC-3′
Src 5′-CTT CGG AGA GGT GTG GAT G-3′ 5′-GTG CCT GGG TTC AGA GTT TT-3′
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RANKL treatment for an additional 3 days. After the culture, osteoclasts were removed with 
1 N NaOH for 20 minutes, and the slices were washed twice with PBS and resorption pits 
were stained with Mayer's haematoxylin (Sigma) for 30 seconds. Finally, bovine bone slices 
were transferred onto glass slides, mounted with glycerol, covered with glass cover slips and 
observed under the light microscope (Olympus).

Determination of mitochondrial membrane potential (MMP)
To test whether mitochondrial dysfunction was involved in the TBBPA-induced increase in 
osteoclastogenesis in RAW264.7 cells, MMP was analyzed in cells treated with TBBPA (10 and 
20 µM). The JC-1 MMP Assay Kit (Cayman Chemical Co., Ann Arbor, MI, USA) was used to 
assess the changes in MMP in cells as in our previous study.24 JC-1 is a lipophilic and cationic 
dye that permeates plasma and mitochondrial membranes. The dye fluoresces red when it 
aggregates in healthy mitochondria with a high membrane potential, whereas it appears 
in a monomeric form and fluoresces green in mitochondria with a diminished membrane 
potential. Cells treated with 50 ng/mL RANKL and TBBPA (10 and 20 µM) were incubated 
with MMP-sensitive fluorescent dye JC-1 for 20 min at 37°C and washed twice in PBS; red 
(excitation, 550 nm; emission, 600 nm) and green (excitation, 485 nm; emission, 535 nm) 
fluorescence were measured using a fluorescence microplate reader (Molecular Devices, 
Downingtown, PA, USA). Mitochondrial depolarization (i.e., loss of MMP) manifests as a 
decrease in the red/green fluorescence ratio.22,24

Measurement of mitochondrial superoxide
To determine whether TBBPA regulates mitochondrial reactive oxygen species (ROS) 
accumulation in osteoclasts, mitochondrial superoxide levels were measured using the 
MitoSOX™ Red mitochondrial superoxide indicator (Invitrogen Molecular Probes, Eugene, 
OR, USA). MitoSOX™ Red (Ex/Em = 510/580 nm) is a fluorogenic dye used for the highly 
selective detection of superoxide in the mitochondria of cells. Cells were incubated with 2 μM 
MitoSOX™ Red at 37°C for 20 minutes according to the manufacturer's instructions. After 
the cells had been washed, MitoSOX™ Red fluorescence was detected.21

Statistical analyses
Results were expressed as the mean ± standard error of the mean. Statistical significance 
was determined by analysis of variance, and Dunnett's t-test was used as post-hoc analysis 
because homogeneity of variance was not assumed. Statistical analyses were carried out using 
PASW software, version 20.0 (IBM Co., Armonk, NY, USA). A P < 0.05 was considered to 
indicate statistical significance.

RESULTS

Effects of TBBPA on RANKL-induced osteoclast differentiation
Incubation with RANKL (50 and 100 ng/mL) for 3 days significantly increased TRAP activity 
compared to control, indicating osteoclastogenesis of RAW264.7 cells (Fig. 1A). As shown 
in Fig. 1B, TBBPA at ≤ 20 µM had no effect on cell viability after 3 days. But, cell viability 
was significantly decreased by 40 µM TBBPA, compared to the control. This suggests that 
TBBPA could induce RAW264.7 cellular toxicity at concentrations ≥ 40 µM TBBPA. Therefore, 
further experiments were conducted at non-toxic TBBPA concentrations (≤ 20 µM). In 50 
ng/mL RANKL-stimulated RAW264.7 cells, TRAP activity was measured at 0, 10, and 20 µM 
TBBPA. There was no difference in TRAP activity between differentiated control cells and 
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10 µM TBBPA treated cells. But, TRAP activity was increased significantly at a concentration 
of 20 µM TBBPA, compared to differentiated control cells (Fig. 1C), suggesting that 20 µM 
TBBPA treatment could promote the osteoclastogenesis by RANK-RANKL signaling. The 
microscopic photographs are shown in Fig. 1D, and it is evident that RANKL-stimulated 
RAW264.7 cells differentiated into mature TRAP-positive multinucleated cells. The treatment 
with 20 μM TBBPA increased RANKL-induced formation of TRAP-positive cells.

Effects of TBBPA on osteoclast-specific gene expression
As shown in Fig. 2, the expression of Akt2, NFATc1, and CLCN7 genes were significantly 
increased by 20 µM TBBPA. Meanwhile, 20 µM TBBPA had no effect on the expression of 
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up to 70% confluence. Then, the cells were cultured in Dulbecco's Modified Eagle Medium containing 50 ng/mL RANKL and various concentrations of TBBPA for 3 
days. (A, C) TRAP activity, (B) cell viability. (D) Photograph of TRAP staining (100×) (a, Vehicle; b, RANKL [50 ng/mL]; c, RANKL [50 ng/mL] + 20 μM TBBPA). 
TBBPA = tetrabromobisphenol A, RANKL = receptor activator of nuclear factor kappa B ligand, TRAP = tartrate-resistant acid phosphatase. 
*P < 0.05 vs. differentiated control cells; **P < 0.05 vs. undifferentiated cells.
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CAII, CTK, OSTM1, Src, ERK, GAB2, c-Fos, and MMP9 genes. These results revealed increased 
expression of several genes involved in osteoclast differentiation and function.

The effects of TBBPA on the bone-resorbing activity of RANKL-induced 
osteoclasts
There was no difference in bone-resorbing activity of RANKL-induced osteoclasts between 
control and 10 µM TBBPA treated cells. But, treatment with 20 μM TBBPA significantly 
increased bone-resorbing activity of RANKL-induced osteoclasts, compared to control, 
suggesting that 20 µM TBBPA affected the ability of mature osteoclasts to resorb bone (Fig. 3A). 
Fig. 3B demonstrated that the area of resorption pit formed by RANKL-stimulated RAW264.7 
cells was increased in the presence of 20 μM TBBPA.

Effects of TBBPA on mitochondrial function and ROS production in osteoclasts
MMP was decreased in cells treated with TBBPA at concentrations of 10 and 20 µM compared 
to the control group (Fig. 4). The difference was statistically significant only at 20 µM TBBPA. 
Cells treated with 20 µM TBBPA demonstrated significantly higher levels of MitoSOX Red 
fluorescence, indicating that TBBPA increased the superoxide accumulation in osteoclast 
mitochondria. There was no difference of mitochondrial superoxide between 10 µM TBBPA 
and control. These results suggest that TBBPA could induce mitochondrial dysfunction and 
ROS production in osteoclast and osteoclast precursors (Fig. 5).
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DISCUSSION

To investigate the effects of TBBPA on osteoclast differentiation, we examined TBBPA-treated 
osteoclast-like cells by measuring the activity of TRAP, a marker enzyme of osteoclasts. 
TBBPA promoted TRAP activity in RANKL-stimulated RAW264.7 cells. Bone resorption 
activity was also increased in the presence of TBBPA. These results indicate that TBBPA 
promotes both osteoclast differentiation and function.

The activation of osteoclasts is regulated by various molecular signals.25 RANKL-RANK 
signaling is critical in osteoclastogenesis. RANKL to RANK signaling activates three 
pathways via TRAF6: mitogen activated protein kinase (MAPKs) family members, the NF-κB 
pathway, and the Src kinase pathway. MAPKs pathway involves p38-MAPKα, β, γ and δ, c-JUN 
N-terminal kinases (JNK1, 2 and 3), and extracellular signal-regulated kinases (ERK1 and 
ERK2).26 c-Fos, AP-1 transcription factors, and MITF were activated in osteoclast precursors 
by MAPKs pathway, to stimulate osteoclast differentiation.27 NF-κB pathway induces NFATc1 
transcription, a key factor in osteoclastogenesis.28 RANKL to RANK signaling also activates 
the PI3K/Akt pathway through TRAF6 and Src kinase.29 Furthermore, RANKL-RANK 
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Fig. 4. Effects of TBBPA on MMP in osteoclasts. RAW264.7 cells were seeded in black 96-well plates and 
incubated until reaching up to 70% confluence. Next, the cells were cultured in Dulbecco's Modified Eagle 
Medium containing 50 ng/mL receptor activator of nuclear factor kappa B ligand and TBBPA (10 and 20 μM) for 3 
days. The MMP was analyzed using an established method involving fluorescence staining with JC-1. 
TBBPA = tetrabromobisphenol A, MMP = mitochondrial membrane potential. 
*P < 0.05 vs. control.
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Fig. 5. Effects of TBBPA on mitochondrial superoxide production in osteoclasts. RAW264.7 cells were seeded 
in black 96-well plate and incubated until reaching up to 70% confluence. Then, the cells were cultured in 
Dulbecco's Modified Eagle Medium containing 50 ng/mL receptor activator of nuclear factor kappa B ligand 
and TBBPA (10 and 20 μM) for 3 days. The mitochondrial superoxide was analyzed using an established method 
involving fluorescence staining with MitoSOXTM Red. 
TBBPA = tetrabromobisphenol A. 
*P < 0.05 vs. control.
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signaling induces activation of NFATc1 in osteoclast precursor cells, and NFATc1 activation is 
achieved by calcium signaling and costimulatory signaling.30 RANK does not seem to initiate 
calcium signaling directly.

In this study, the gene expressions of Akt2, NFATc1, CLCN7, CAII, CTK, OSTM1, Src, ERK1, GAB2, 
c-Fos, and MM9 were evaluated. This study analyzed osteoclastogenesis through RANKL-
RANK signaling, and ERK1 and c-Fos expressions involved in the MAPKs pathway. NFATc1 
expression is involved in the NF-κB pathway, whereas Akt2, Src, and GAB2 expressions are 
involved in Src kinase pathway. CLCN7, CAII, CTK, and MM9 expressions are associated with 
enzymes secreted from mature osteoclast. OSTM1 is required for osteoclast differentiation.31 
This study revealed that TBBPA increased the expression of Akt2, NFATc1, and CLCN7.

There are three Akt family members: Akt1, Akt2, and Akt3. Akt1 and Akt2, but not Akt3, 
are abundantly expressed in both osteoblasts and osteoclasts.32 Several studies were 
reported that knockdown of Akt1 and Akt2 inhibited osteoclast differentiation and bone 
development.33,34 In this study, TBBPA did not increase Src and GAB2 expression, but 
increased Akt2 expression in RANKL-RANK mediated Src kinase pathways. This result 
suggests that TBBPA affected the downstream of PI3K and increased Akt2 expression. But, 
additional proteomics studies are needed to determine whether increased Akt expression 
leads to activity. The increased NFATc1 expression suggests that TBBPA could activate 
NF-κB pathways in RANKL-RANK signaling. NFATc1-deficient embryonic stem cells fail 
to differentiate into osteoclasts in response to RANKL.35 CLCN7 is a chloride channel 
localized to late endosomes, lysosomes, and the ruffled border in osteoclasts where it acts 
with the vacuolar H+-ATPase to acidify the resorptive space. CLCN7 is necessary for bone 
mineral solubilization and digestion of the organic bone matrix by acid proteases.36 The 
loss or inactivation of CLCN7 causes osteopetrosis as well as neurodegeneration and severe 
lysosomal storage disease.37 Increased CLCN7 expression may be linked to bone resorption 
activity. TBBPA stimulated both differentiation and activity of osteoclasts in this study.

This study showed that TBBPA decreased MMP and increased mitochondrial superoxide 
production. In a previous study, ROS-mediated signaling pathways induced NFATc1 activation 
through the NF-κB pathway in early osteoclast differentiation.38 This result is supported 
by evidence that antioxidants decrease NF-κB protein expression when bone marrow 
macrophages were treated with RANKL.39 ROS activate MAPKs pathways (JNK, ERK, and 
p38) and the NF-κB pathway in a dose-dependent manner.40 ROS increases intracellular 
calcium levels from endoplasmic reticulum, and maintains calcium oscillations and 
downstream signaling pathways. Furthermore, ROS induce NFATc1 auto-amplification and 
increase transcription and osteoclast-specific genes in late osteoclast differentiation.38 Thus, 
TBBPA potentially stimulates early and late osteoclast differentiation by production of intra-
mitochondrial ROS, such as superoxide anions. Intra-mitochondrial ROS could lower the 
MMP to induce a retrograde signaling pathway, resulting in osteoclastogenesis in addition to 
mitochondrial dysfunction.41

These experimental results have limited application to humans. First, a one-time exposure to 
high-dose TBBPA rarely occurs. TBBPA induces toxicity in humans after long-term exposure 
to small amounts and its subsequent accumulation in the body.42 Thus, it is difficult to 
generalize the changes caused by a one-time TBBPA exposure to cells in vitro. Second, it 
has been suggested recently that persistent organic pollutants (POPs) are toxic to various 
tissues through multiple cellular responses in the form of a mixture rather than alone.43,44 
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However, as basic experiments investigating the effect of POPs on bone metabolism have 
yet to be conducted at the cellular level, this study potentially provides a basis for analyzing 
those effects in osteoporosis and several metabolic bone diseases in the future. A study 
of proteomics should be conducted to determine whether the increased gene expression 
identified in this study actually results in functional proteins.

In conclusion, this study showed that TBBPA could promote osteoclast differentiation 
and activity. TBBPA increased the expression of several genes involved in osteoclast 
differentiation. Furthermore, TBBPA induced mitochondrial dysfunction and ROS 
production in osteoclasts. These results possibly explain the mechanism by which TBBPA 
contributes to increased osteoclastogenesis.
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