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and 2Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065,
USA

Received June 02, 2021; Revised January 03, 2022; Editorial Decision January 18, 2022; Accepted February 08, 2022

ABSTRACT

Deep sequencing has become one of the most pop-
ular tools for transcriptome profiling in biomedical
studies. While an abundance of computational meth-
ods exists for ‘normalizing’ sequencing data to re-
move unwanted between-sample variations due to
experimental handling, there is no consensus on
which normalization is the most suitable for a given
data set. To address this problem, we developed
‘DANA’––an approach for assessing the performance
of normalization methods for microRNA sequenc-
ing data based on biology-motivated and data-driven
metrics. Our approach takes advantage of well-
known biological features of microRNAs for their
expression pattern and chromosomal clustering to
simultaneously assess (i) how effectively normaliza-
tion removes handling artifacts and (ii) how aptly nor-
malization preserves biological signals. With DANA,
we confirm that the performance of eight commonly
used normalization methods vary widely across dif-
ferent data sets and provide guidance for selecting
a suitable method for the data at hand. Hence, it
should be adopted as a routine preprocessing step
(preceding normalization) for microRNA sequencing
data analysis. DANA is implemented in R and publicly
available at https://github.com/LXQin/DANA.

INTRODUCTION

Deep sequencing is prone to systematic non-biological arti-
facts that arise from variations in experimental handling,
similar to other genomics technologies such as microar-
rays (1,2). Consequently, a critical first step in the analysis
of transcriptome sequencing data is to ‘normalize’ the data
so that data from different sequencing runs are compara-
ble (3–5). One major source of such handling effects comes
from the depth of coverage –– defined as the average num-
ber of reads per molecule (6).

A plethora of analytic methods for depth normaliza-
tion have been proposed, including methods based on re-
scaling (7–10) and methods based on regression (3,11,12).
Different normalization methods may lead to different
analysis results, and no method has been found to work
systematically best in studies comparing the performance
of these methods (10,13–16). Rather, their performance
strongly depends on the data under study (2,17). Currently,
a method is often chosen by the analyst based on personal
preference and convenience rather than objective criteria
governed by the data.

In this study, we introduce a data-driven and biology-
motivated approach to objectively guide the selection of
depth normalization methods for the data at hand. We call
our novel approach ‘DAta-driven Normalization Assess-
ment’ (DANA). DANA’s goal is to identify a method that max-
imally removes depth variations due to disparate experi-
mental handling (‘handling effects’) while minimally im-
pacting true biological signals (‘biological effects’). Its over-
all three-step strategy is to first define two sets of con-
trol markers for capturing each of the two types of vari-
ations, then compute statistical measures for quantifying
these variations and their change before versus after nor-
malization, and, lastly, use numeric metrics and graphical
tools for summarizing these measures across each set of
control markers.

We apply this concept to the sequencing of microRNAs
(miRNAs), a prevalent class of small RNAs that play an im-
portant regulatory role of gene expression in the cell (18,19).
Two key biological features of miRNAs are that (i) they
tend to be expressed in an on-off manner where only a sub-
set of miRNAs are expressed in a given sample and (ii) a
subset of them can be organized into polycistronic clusters
that tend to be co-regulated and hence co-expressed (20–
23). To exploit these known features, we first define a set of
negative control markers as those miRNAs that are poorly-
expressed (i.e., markers with low mean expression) reflecting
primarily handling effects. When handling effects exist in
the data, they manifest as high positive correlations among
these negative controls, simply due to the shared handling
effects. We further define a set of positive control markers
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as the collection of miRNAs that are well-expressed (i.e.,
markers with high mean expression) and belong to poly-
cistronic clusters. The shared biological effects lead to high
positive correlations among these positive controls regard-
less of handling effects. Our DANA approach does not re-
quire any additional study design (such as balanced sample-
to-sequencing-batch assignment) or reference data (such as
reliable spike-in markers) that is not readily available. To the
best of our knowledge, DANA is the first approach to achieve
a purely data-driven assessment and selection of depth nor-
malization method for miRNA sequencing data. While this
concept can be generalized and applied to other molecules,
such as mRNAs, the definition of control markers may not
be as straightforward as for miRNAs and will be the subject
of future work.

We benchmark the performance of DANA using a unique
pair of miRNA sequencing data sets for the same set of tu-
mor samples, which were previously collected at Memorial
Sloan Kettering Cancer Center (16). The first data set was
sequenced using uniform handling to minimize handling ef-
fects and balanced sample-to-library-assignment to cancel
out any residual handling effects in group comparison. For
the same set of samples, a second data set was collected over
the years in the order of tumor sample collection and ex-
hibited excessive depth variations. We use this pair of data
sets to validate our definition of control markers, choice of
correlation measures and summary metrics, and the perfor-
mance of the overall DANA approach. We further validate
and demonstrate the use of our approach by applying it to
two data sets from The Cancer Genome Atlas (TCGA).

MATERIALS AND METHODS

We first present our three-step DANA approach, next intro-
duce the paired data sets from MSK for its benchmarking,
and then describe two data sets from TCGA for further
validation and demonstration. The DANA method is imple-
mented in R and open source (https://github.com/LXQin/
DANA).

DANA: A data-driven and biology-motivated normalization
selection method

Step I. Definition of negative and positive controls.

Concept. Following the ideas in (24), we define poorly-
expressed markers as those with mean abundance (that is,
read count) in an interval [�−, u−] and well-expressed mark-
ers as those with mean abundance over a cutoff �+. It is
well known that miRNAs tend to be expressed in an on-
off manner where only a subset of miRNAs are expressed
in a given sample (21,25). Hence, poorly-expressed markers
mainly reflect those markers that were expressed with read
counts driven by handling effects. These poorly-expressed
markers serve as negative controls. It is further known that
miRNAs belonging to a shared polycistronic cluster tend
to be co-regulated and, hence, co-expressed (20–23). Due
to this co-expression, we can consequently expect a high,
biology-driven correlation between markers located in a
mutual polycistronic cluster, regardless of handling effects.
Therefore, we use well-expressed markers that belong to

polycistronic clusters with at least two well-expressed mem-
bers as positive controls reflecting shared biological effects.
For simplicity and reproducibility, we define miRNAs to be
in a mutual polycistronic cluster if their hairpins are sepa-
rated by <10 kb on the chromosome. This corresponds to
the cluster definition on miRBase (22).

Cutoff selection. The cutoffs �−, u− and �+ should be cho-
sen based on the empirical distribution of the data. We
set �− such that selected poorly-expressed miRNAs show
at least mild expression based on the mean read count his-
togram. For all data considered in this paper, we observed
that �− = 2 yielded reasonable results and that different cut-
off choices only mildly affect the subsequent analysis. We
choose u− and �+ such that each control group consists of
a sufficient number of markers, where we recommend 75–
150 markers per group for balancing statistical stability and
computational convenience. Note that if the data contains
many subtypes or the number of samples is highly unbal-
anced across subtypes, it might be necessary to take special
care during the selection of negative controls. For example,
if a marker is expressed only in a single subtype but non-
expressed in all others, it may be erroneously classified as a
negative control marker by simply taking the mean expres-
sion. In such cases, we instead recommend selecting nega-
tive control markers based on the maximum across subtype
means.

Henceforth, we denote the number of positive and nega-
tive controls by p+ and p−, respectively. For ease of notation,
we re-index the positive controls by C+ := {1, . . . , p+} and
the negative controls by C− := {1, . . . , p−}. Furthermore,
we denote the set of all pairs of distinct positive control
miRNAs (i, j) that are in a mutual polycistronic cluster by

C+ := {
(i, j ) ∈ (C+)2 | (i < j ) and

(i and j are in a mutual polycistronic cluster)
}
.

Step II. Statistical measures of between-marker correlation.

Concept. To measure the level of correlation for a pair of
control markers, we estimate either their marginal or partial
correlations, depending on the control type. For negative
controls, we quantify the overall strength of inter-marker
correlations, which are primarily due to shared handling
effects, using Pearson marginal correlations. For positive
controls, on the other hand, we capture only the direct co-
expression relation for each pair of markers, upon removing
any spurious correlation due to co-expression with other
positive controls, using partial correlations. Note that for
the computation of empirical correlations, the sample size
n must not be overly small. In our experiments, we have ob-
served that n ≥ 20 is sufficient for typical miRNA sequenc-
ing data.

Statistical definition of partial correlation. For estimating
partial correlations in positive controls, we assume a para-
metric distribution for the log2-transformed read counts,
where by ‘log2-transformation’, we generally refer to the
log2(· +1) function so that zero counts are assigned a value
of zero after the transformation. More specifically, we use
a multivariate normal distribution as it is widely used for
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modeling (log2-transformed) sequencing data (26), and as
it is a standard distribution in statistics with many tools
readily available. Our pipeline also allows for other distri-
butions, such as Poisson or negative binomial for the count
data, but the estimation would be much more challeng-
ing (27). Under the assumption of normal-distributed data,
the Hammersley–Clifford theorem (see for instance (28)) es-
tablishes a direct link of partial correlations of p variables
to the entries of their precision matrix � = �−1 ∈ R

p×p, the
inverse of the covariance matrix � ∈ R

p×p of the data. For
any two variables indexed by i and j, respectively, their par-
tial correlation � i, j follows the relation

ρi, j = − θi, j√
θi,iθ j, j

,

where �i, j is the (i, j)th entry of the precision matrix �
= (�i, j)1 ≤ i, j ≤ p. Thus, the partial correlation structure can
be estimated using well-established statistical methods for
precision matrix estimation such as neighborhood selec-
tion (29), graphical lasso (30), or FastGGM (31). In this
study, we use the popular neighborhood selection method
proposed by Meinshausen and Bühlmann (29) and calibrate
its tuning parameter using Bayesian Information Criterion.
We, furthermore, compare the results of the chosen method
to all aforementioned methods for precision estimation.

Estimation of correlations before and after normaliza-
tion. We estimate partial correlations in positive con-
trols and Pearson correlations in negative controls us-
ing un-normalized log-counts as well as normalized
log-counts for each normalization method under study.
We denote the estimated partial correlations in pos-
itive controls for un-normalized log-counts by ρ+ :=
(ρ+

i, j )1≤i, j≤p+ , and for an arbitrary normalization method
by ρnorm,+ := (ρnorm,+

i, j )1≤i, j≤p+ . In parallel, we denote Pear-
son correlations in negative controls by ρ− := (ρ−

i, j )1≤i, j≤p− ,

and ρnorm,− := (ρnorm,−
i, j )1≤i, j≤p− , respectively.

Step III. Numerical metrics for summarizing correlation
across markers. The performance of a normalization
method is evaluated through a comparison of the estimated
correlations before versus after normalization in positive
controls (ρ+ with ρnorm,+) and in negative controls (ρ−
with ρnorm,−). We introduce two numeric metrics, one for
each control type.

A numeric metric for the reduction of handling effects. An
effective normalization method should maximally remove
marginal correlations among negative controls, which are
most likely caused by shared handling effects. Ideally, cor-
relations in the normalized data should be centered around
zero with low variance. Therefore, we propose to compute
the mean-squared discrepancy of correlations from zero

v0 := 1
p−(p− − 1)

p−∑

i=1

p−∑

j=1
j �=i

(ρ−
i, j − 0)2,

for un-normalized and, analogously, vnorm
0 for normalized

data. We use the metric

mscr− := v0 − vnorm
0

v0
, (1)

i.e., the relative difference of the variance of correlations
among negative controls before and after normalization to
quantify the reduction of handling effects through normal-
ization. We call this metric the ‘mean-squared correlation
reduction in negative controls,’ where a high mscr− indi-
cates an effective removal of handling effects in the data.

A numeric metric for the preservation of biological effects.
For each pair of positive control miRNAs that are located
in a mutual polycistronic cluster, an ideal normalization
method should minimally affect their co-expression. Math-
ematically speaking, this means that the relationship be-
tween ρ+

i, j and ρ
norm,+
i, j for all same-cluster positive con-

trols (i, j ) ∈ C+ should be linear with slope 1. As such, we
measure this agreement by the concordance correlation co-
efficient (32). We denote the vector of correlations in C+ by
(ρ+)C+ for un-normalized data, and by (ρnorm,+)C+ for nor-
malized data. We further denote the concordance correla-
tions coefficient of two covariates x1, x2 by CCC[x1, x2]. We
use the metric

cc+ := CCC[(ρ+)C+, (ρnorm,+)C+ ], (2)

that is, the ‘concordance correlation coefficient of the
within-cluster partial correlations among positive controls
before and after normalization,’ to quantify the preserva-
tion of biological signals. A close-to-1 cc+ indicates an apt
preservation of biological signals in the data.

Guidelines for method selection. An optimal normaliza-
tion maximally removes handling effects (high mscr−)
while keeping biological signals intact (cc+ close to 1).
However, in most cases, there is no clear ‘best’ method with
maximal mscr−and maximal cc+. Therefore, one should
aim for the best possible trade-off between the proposed
statistics for negative and positive controls with an empha-
sis on keeping biological signals intact (cc+ close to 1). The
two metrics can be easily assessed by plotting the metrics in
a scatter plot for each normalization method under study,
where a preferable method should be located towards the
top-right quadrant of the plot.

Graphical tools

We introduce several graphical tools for examining the def-
inition of positive and negative controls, providing empir-
ical evidence that supports the choice of DANA’s correla-
tion measures and summary metrics, and comparing the
two metrics among the normalization methods for their per-
formance assessment. First, a mean count histogram and
mean-standard deviation plot should be used to visually ex-
amine the un-normalized data and define positive and neg-
ative control markers based on the observed count versus
variation distribution. Second, we use marginal correlation
histograms, partial correlation heatmaps, and partial corre-
lation scatter plots for (i) visually examining the estimated
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correlations and (ii) further justifying the choice of the sum-
mary metricscc+ andmscr−. Lastly, we use scatter plots of
DANA’s two metrics for comparing the normalization meth-
ods under assessment for guiding the method selection.

Mean-standard deviation plot. Mean-standard devia-
tion plots are scatter plots of marker-specific standard
deviations versus marker-specific means after log2-
transformation. For miRNA sequencing data, we typically
observe close-to-zero standard deviation for non-expressed
markers. For increasing marker-specific mean, the standard
deviation typically increases and ‘fans out.’ We recommend
that for negative controls, the lower bound �− is tuned such
that selected miRNAs reflect a non-zero and heterogeneous
distribution of standard deviations capturing miRNAs that
reflect handling effects.

Mean count histogram. After a log2-transformation of the
read count data, we compute the mean read count for each
miRNA across all samples. The distribution and range of
reads in the data are then visualized using a histogram plot
for the mean read abundance. This way, miRNAs that are
essentially non-expressed can be excluded, and poorly- or
well-expressed miRNAs can be easily identified.

Marginal correlation histogram. We compare the fre-
quency of Pearson correlations among negative controls be-
fore versus after normalization using a histogram. The dis-
tribution of ρ− and ρnorm,− is shown by binning correla-
tion strengths and counting the number of observations in
each bin. Moreover, we use the correlation histogram for
comparing correlation strengths between different data sets,
both before and after normalization. An effective normal-
ization method should center the correlations around zero
with small variance.

Partial correlation heatmap. The partial correlation
heatmap shows the matrix of pairwise partial correlations
for positive controls C+ alongside the polycistronic clus-
tering. Its upper triangular part shows the strength of the
partial correlation, while the lower part indicates whether
the pair of miRNAs is located in a mutual polycistronic
cluster. Using partial correlation heatmaps, we visually
identify within-cluster correlations in the data and com-
pare them before and after normalization. The heatmap
also allows the comparison of within-cluster correlations
with between-cluster correlations, both before and after
normalization.

Partial correlation scatter plot. The concordance of par-
tial correlations in positive controls before normaliza-
tion ρ+versus after normalization ρnorm,+ is shown us-
ing a scatter plot. For each pair of distinct, clustered,
positive control miRNAs (i, j ) ∈ C+, their partial correla-
tion (ρ+

i, j , ρ
norm,+
i, j ) is plotted in a scatter plot. An ideal nor-

malization method should minimally affect ρ+
i, j , and hence,

each (ρ+
i, j , ρ

norm,+
i, j ) should ideally lay on a diagonal with

slope 1. Combined for all (i, j ) ∈ C+, this concordance is
quantified by our metric cc+.

MSK sarcoma data

A pair of data sets for soft tissue sarcoma. We have pre-
viously collected two data sets for the same set of tumor
samples at MSK. The tumor samples were 27 myxofibrosar-
coma (MXF) samples and 27 pleomorphic malignant fi-
brous histiocytoma (PMFH) samples, which were all from
newly diagnosed, previously untreated, primary tumors col-
lected at MSK between 2000 and 2012. The first data set
was collected using uniform handling to minimize data ar-
tifacts and balanced sample-to-library-assignment (via the
use of blocking and randomization) to balance any residual
artifacts with the tumor groups under comparison. For ex-
tra quality assurance, we added two pooled samples shared
across all libraries and 10 calibrators spiked-in at fixed con-
centrations. For the same set of samples, a second data set
was collected without making use of such a careful study
design, resulting in unwanted depth variations. The num-
ber of observed miRNAs is 1033 and a detailed descrip-
tion of the data was previously reported in (16). Through-
out this paper, we refer to the uniformly-handled data set
as the ‘benchmark’ data set and the non-uniformly-handled
data set as the ‘test’ data set, following the notation used
in (16). The collection of both data sets is called the ‘MSK
data sets.’ The benchmark data set serves a two-fold pur-
pose: (i) it provides a baseline reference for assessing the
choice of the control markers and their correlation mea-
sures, and (ii) it offers a gold standard of differential ex-
pression identification (comparing MXF and PMFH) for
checking whether the chosen normalization method, which
our approach deems optimal for the test data, leads to the
closest differential expression assessment.

Normalization methods assessed in the test data set.
Our data-driven normalization selection method gener-
ally works for any between-sample normalization method
that generates non-negative normalized data. As proof
of concept, we examined eight commonly used normal-
ization methods that were studied in (16), including six
scaling-based methods and two regression-based meth-
ods. A scaling-based method calculates a scaling factor
based on the data for each sample and divides its counts
by this factor. A regression-based method can be non-
parametric or parametric: non-parametric methods are
based on, for example, a quantile-quantile plot; paramet-
ric methods are based on a linear regression, which typ-
ically adopts a covariate representing depth variation (by
using a known batch variable or deriving a surrogate
batch variable from the data) and including this covari-
ate in a regression framework for the analysis of differ-
ential expression. In this paper, we examined the follow-
ing popular methods: Total Count (TC) (10), Upper Quar-
tile (UQ) (13), Median (Med) (10), Trimmed Mean of M-
values (TMM) (8), DEseq (9), PoissonSeq (33), Quantile
Normalization (QN) (34), and Remove Unwanted Varia-
tion (RUV) (3) with its three variants RUVg, RUVs, and
RUVr. For a description of these methods, we refer read-
ers to (16). The DANA approach is applied to the test
data set to compare the performance of these normal-
ization methods and guide the choice of a most suitable
one.
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Differential expression assessment in both data sets. Simi-
lar to (16), we first assessed evidence of differential expres-
sion in the benchmark data (without normalization) using
the voom method (26,35) with a P-value cutoff of 0.01, serv-
ing as a ‘gold standard.’ We then assessed differential ex-
pression in the test data before and after normalization and
compared it with the gold standard. This comparison was
summarized numerically using the sensitivity (true positive
rate) and the positive predictive value (1 − false discov-
ery rate), at the risk of abusing the terminology.

TCGA-UCEC data

We further support and validate our approach with
two data sets that are partially paired from the TCGA
Uterine Corpus Endometrial Carcinoma (TCGA-UCEC)
project (36). We constructed the two data sets so that they
each contain 48 samples, 22 of which were of endometri-
oid subtype (END) and 26 of serous subtype (SER), and
so that both data sets have 24 samples in common. The
48 samples of the first data set were processed in a single
batch (batch number 228.63.0), which we will refer to as
the ‘single-batch’ data. The second data set is composed of
24 samples (11 END and 13 SER) from the first data set
and 24 samples (11 END and 13 SER) from other batches,
which we will refer to as the ‘mixed-batch’ data. Sequencing
counts are available for 1848 miRNAs in each sample. A de-
tailed description of these data sets is deferred to Section 2.1
of the Supplementary Material.

It is reasonable to assume that the mixed-batch data set
contains significantly higher variation due to handling ef-
fects compared to the single-batch data set. At the same
time, due to the sample overlap and identical sample size,
biological differences between the two subtypes should be
similar between the two data sets. In other words, the single-
batch data can provide a ‘silver standard’ for the differential
expression status, and the mixed-batch data can serve as a
test data set for normalization methods and their selection.
We follow the same steps for normalizing the mixed-batch
data and performing differential expression analysis in each
data set as for the MSK data.

Combined TCGA-BRCA and TCGA-UCS data

We lastly demonstrate the necessity and effectiveness of
our DANA approach in a TCGA data set without an avail-
able benchmark. We combined all 166 stage III/IV sam-
ples from the TCGA Breast Invasive Carcinoma (TCGA-
BRCA) project (37) with all 57 samples from the Uterine
Carcinosarcoma (TCGA-UCS) project (38). The total sam-
ple size (n = 223) is an order of magnitude greater than that
for the MSK and TCGA-UCEC data, and 1848 miRNAs
were observed. Normalization assessment was applied anal-
ogously to the MSK test data and the TCGA-UCEC mixed-
batch data using the DANA approach.

RESULTS

In this section, we present the results of our proposed
DANA approach for the MSK data and TCGA data. We
show that (i) using the suggested statistical tools handling

Figure 1. Mean count histogram (top) and mean-standard deviation plot
(bottom) for the MSK test data. The ranges [�−, u−] = [2, 10] for negative
controls and [�+, ∞) = [128, ∞) for positive controls are indicated by blue
and red vertical lines, respectively.

effects can be identified in the data, (ii) normalization
is needed, (iii) the relative performance of normalization
methods is data-dependent, and (iv) our approach guides
the choice for a most suitable method. All results were gen-
erated in R version 4.0.2, and the code and data are avail-
able on GitHub (https://github.com/LXQin/DANA-paper-
supplementary-materials).

Normalization assessment for the MSK data sets

Definition of positive and negative controls and their empiri-
cal validation. We selected the ranges [�+, ∞) and [�−, u−]
for positive and negative controls, respectively, based on the
observed mean count distribution and mean-standard devi-
ation plots for the test data set (Figure 1). We set the thresh-
old �− to 2 such that (i) non-expressed miRNAs are ex-
cluded, (ii) selected miRNAs show at least mild expression,
and (iii) selected miRNAs have a heterogeneous distribu-
tion of their standard deviation. We selected the thresholds
u− = 10 leading to p− = 102 negative controls, and �+ = 128
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Figure 2. Density curves for Pearson correlations in negative con-
trols. Comparison between the un-normalized, RUVr-normalized, and
QN-normalized MSK benchmark data, and the un-normalized, RUVr-
normalized and QN-normalized MSK test data. The density curves for all
normalization methods are shown in Supplementary Figures S7 and S8.

resulting in p+ = 115 positive controls. The results of the
subsequent analyses are robust with respect to the selected
ranges, which we show in Section 1.1 of the Supplementary
Material, including Supplementary Figure S1.

Empirical justification of the correlation measures and sum-
mary metrics. We provide empirical evidence that sup-
ports the choice of correlation measures and the use of the
numeric metrics mscr− and cc+ for quantifying the reduc-
tion of handling effects and preservation of biological sig-
nals, respectively.

For negative controls, we assess the level of their inter-
marker correlation in the test data before and after nor-
malization, and compare these with that in the benchmark
data (Figure 2). On one hand, we observe that the cor-
relations of the un-normalized data sets are not centered
around zero, and the mean correlation strength is about
0.21. This was expected in both data sets due to the nature
of high-throughput data, where markers in the same sam-
ple are profiled in the same experimental unit. On the other
hand, the variation of correlation strengths in the test data
is much higher, and, in particular, stronger positive correla-
tions are much more abundant compared to the benchmark
data. This finding accords with our assumption that han-
dling effects manifest themselves as excessive positive cor-
relations and reflects the higher quality of the benchmark
data.

Introducing normalization to the data sets, the corre-
lation means are shifted towards zero. While the correla-
tion variance in the benchmark data remains approximately
equal, it strongly varied for the test data depending on the
applied normalization. For example, RUVr normalization
leads to a strong variance reduction of inter-marker corre-
lations in the test data and a correlation distribution simi-
lar to that of the benchmark data. On the other hand, QN,
for example, centers the distribution but considerably in-

creases variance. The mscr− metric jointly captures both
desired normalization effects––centering around zero and
variance reduction––and, hence, offers a simple and easy-
to-interpret metric to assess the reduction of handling ef-
fects in the data. For the sake of clarity, only two exemplary
methods are shown in Figure 2; for all methods, see Supple-
mentary Figures S7 and S8.

For positive controls, there is a high abundance of within-
cluster correlations in the benchmark, and all of these corre-
lations are strictly positive (Figure 3A). This aligns well with
the biological evidence of co-expression of miRNAs in poly-
cistronic clusters (20–23). Compared to the benchmark, the
test data has fewer positive within-cluster correlations and
more positive off-cluster correlations, both of which likely
resulted from excessive handling effects. Normalization, re-
gardless of the method, alleviated the off-cluster correla-
tions in terms of both the number and strength. Depend-
ing on the method, normalization can either retain or re-
duce within-cluster correlations, which is signified by their
before-versus-after-normalization concordance. The con-
cordance is high for TMM (cc+: 0.955) and low for RUVr
(cc+: 0.812) (Figure 3B). Hence, for the MSK test data set,
TMM better preserves biological effects in positive controls
than RUVr. Note that while RUVr offers the highest reduc-
tion of handling effects in negative controls, it over-corrects
and fails to preserve biological signals in positive controls.
Hence, it is crucial to assess normalization based on both
metrics in tandem.

DANA selection of a suitable normalization method for the
MSK test data. We computed the DANA correlation mea-
sures for all eight normalization methods applied to the
test data (Figure 4). RUVr (cc+: 81.2%; mscr−: 72.5%)
achieved the highest reduction of handling effects, as mea-
sured by mscr−, but only moderately preserved biological
signals, as measured by cc+. RUVg (96.0%; 47.9%) offers
the best compromise between a very high cc+ and a high
mscr−. DESeq (95.2%; 44.4%), TMM (95.5%; 43.3%), and
TC (96.1%; 43.1%) all performed well with high cc+ and
relatively high mscr−, indicating a good reduction of han-
dling effects and good preservation of biological signals.
They were followed closely by PoissonSeq (96.0%; 34.1%)
and RUVs (92.0%; 34.2%). While QN (93.8%; 25.9%) kept
biological signals mostly intact, it reduced handling effects
much less than the aforementioned methods. The method
with the worst mscr− was QN (93.8%; 25.9%). Finally,
UQ (70.1%; 34.4%) and Med (68.2%; 34.1%) performed
poorly with a mild reduction of handling effects and the
overall worst preservation of biological signals. Hence, for
the MSK test data, our findings suggest choosing RUVg,
TMM, TC, or DESeq for depth normalization and strongly
discourage the use of Med, UQ, QN, or RUVr normaliza-
tion.

The results of our normalization assessment for this data
set are in accordance with our prior findings as published
in (16); across both studies, the same methods were selected
among the best and worst performers, respectively.

Comparison of partial correlation estimation methods.
Computation of the cc+ metric requires the estimation of
partial correlations among positive controls. While we used
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Figure 3. (A) Partial correlation heatmaps for a subset of positive controls in the un-normalized MSK benchmark (left), TMM-normalized test (center), and
un-normalized test (right) MSK data. Polycistronic clusters are indicated on the lower triangular part. (B) Partial correlation scatter plots for within-cluster
correlations using TMM normalization (left) and RUVr normalization (right), each in comparison with the un-normalized test data. The concordance
correlation (cc) of within-cluster correlations before versus after normalization is shown in the bottom right. See Supplementary Figures S5 and S6 for
the partial correlation heatmaps and scatter plots, respectively, for all methods.

Figure 4. DANA summary metrics mscr− and cc+ for the MSK test data.

the popular neighborhood selection method (29) and cali-
brated its tuning parameter using Bayesian information cri-
terion in this study, we further examined our findings for
other partial correlation estimation methods. We compared
the DANA results for the test data using (i) neighborhood
selection with different tuning parameter calibration meth-

ods, (ii) the glasso method (30) using various tuning param-
eter selection methods, and (iii) the FastGGM method (31).
In summary, we found that the DANA assessment is robust
with respect to the chosen precision estimation method and
observed a high correlation of the metric cc+ across most
methods (Supplementary Figures S3 and S4). We defer a
detailed comparison to Section 1.2 of the Supplementary
Material.

Normalization assessment for the TCGA-UCEC data

For the TCGA-UCEC mixed-batch data set, we selected the
ranges [�−, u−] = [2, 5] for the definition of negative controls
and [�+, ∞) = [64, ∞) for positive controls. This selection
was based on the same reasoning we used for the MSK data
and facilitated by the same graphical tools (Figures 5A, B).
The number of positive and negative controls for the mixed-
batch data is p+ = 110 and p− = 112, respectively.

All considered normalization methods achieved a very
high preservation of biological signals (cc+ > 94%) ex-
cept RUVs (cc+: 86.6%; mscr−: 44.1%) (Figure 5 C).
However, different methods led to different reduction of
handling effects. TMM (98.5%; 47.4%) and PoissonSeq
(98.7%; 47.6%) offer a very high cc+combined with a high
mscr−, whereas TC (98.0%; 7.3%), UQ (99.3%; 24.6%),
and Med (98.8%; 27.6%) performed very poorly in terms
of handling effects reduction. QN (94.6%; 48.3%) and
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Figure 5. Cutoff selection and normalization assessment for the TCGA-UCEC endometrial cancer data. (A) Mean count histogram plot and (B) mean-
standard deviation plot for log2-transformed TCGA-UCEC data. The selected ranges [�−, u−] = [2, 5] for negative controls and [�+, ∞) = [64, ∞) for
positive controls are indicated by blue and red vertical lines, respectively. (C) Normalization assessment using DANA in the TGCA-UCEC mixed-batch
data for all normalization methods considered in this study. (D) Normalization assessment based on differential expression analysis between the subtypes
END and SER. The differential expression statuses in the mixed-batch data (before and after normalization) are compared to those in the single-batch
data as an assumed truth and their agreement is summarized using the positive predictive value and the sensitivity.

RUVr (97.0%; 48.7%) have the highest mscr− but sub-
optimal cc+. Hence, TMM and PoissonSeq are most suit-
able for normalizing the TCGA-UCEC mixed-batch data
with DESeq (98.8%; 43.4%), RUVg (98.0%; 42.2%), and
RUVr as runners-up. On the other hand, we discourage us-
ing TC, UQ, Med, or RUVs normalization for this data
set. The corresponding marginal correlation histograms,
partial correlation heatmaps, and partial correlation scat-
ter plots (Supplementary Figures S9–S11) further con-
firmed these results, see Section 2.2 of the Supplementary
Material.

Among the 1848 miRNAs in the data, differential ex-
pression analysis identified 75 to be differentially expressed
(DE) in the single-batch data and 48 in the un-normalized

mixed-batch data, with a significance cutoff of P-value
<0.01. We summarized the agreement of the DE statuses in
the single-batch data as an assumed truth to the DE statuses
in the normalized and un-normalized mixed-batch data us-
ing the positive predictive value (PPV, 1 − false discov-
ery rate) and the sensitivity (true positive rate) (Figure 5D).
Compared to the un-normalized mixed-batch (number of
DE genes: 48; PPV: 27%; sensitivity: 42%), three methods
decreased the PPV: Med (33; 18%; 12%), UQ (38; 26%;
21%), and RUVr (103; 21%; 46%); in addition, Med and UQ
also decreased sensitivity. RUVr slightly increased the sen-
sitivity and is the only method that increased the number of
DE genes. The methods TMM (24; 62%; 31%), RUVg (24;
58%; 29%), PoissonSeq (31; 48%; 31%), DESeq (34; 44%
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Figure 6. DANA summary metrics mscr− and cc+ for the combined
TCGA-BRCA and TCGA-UCS data set.

31%), TC (27; 48%; 27%), RUVs (49; 39%; 40%), and QN
(38; 39%; 31%) all increased PPV but decreased sensitivity.
TMM had the overall highest PPV out of these methods
and moderate sensitivity.

Taken together, in our differential expression analysis,
TMM tended to outperform the other methods, while Med
and UQ were the worst performers. Hence, for the TCGA-
UCEC data sets, the results of our differential expression
study, again, align well with the results of our DANA ap-
proach.

Normalization assessment for the combined TCGA-BRCA
and TCGA-UCS data

Lastly, we demonstrate the effectiveness of the DANA ap-
proach for the combined breast and uterine cancer data set
(TCGA-BRCA and TCGA-UCS), for which no gold or sil-
ver standard is available. We selected the ranges [�−, u−] =
[2, 5] and [�+, ∞) = [100, ∞) based on our recommended
data-driven, graphical criteria (Supplementary Figure S12).
The number of negative controls is p− = 91 and the number
of positive controls is p+ = 116.

Normalization assessment through DANA (Figure 6 and
Supplementary Figures S13–S15) reveals that RUVr and
QN offer the best performance for the combined BRCA and
UCS data set. Both methods have shown high preservation
of biological signals as well as a high reduction of handling
effects. As for the TCGA-UCEC data, Med, UQ, and TC
again performed worse compared to all other tested nor-
malization methods. TMM, PoissonSeq, RUVg, and DE-
Seq showed high cc+ with intermediate mscr−. RUVs of-
fered the highest reduction of handling effects but showed
the worst biological signal preservation, highlighting the ne-
cessity of both metrics in our assessment. In summary, even
though no benchmark or silver/gold standard is available,
DANA could effectively assess the performance of normal-
ization methods, and we recommend using RUVr or QN for
this particular data set.

DISCUSSION

When done appropriately, normalization can improve the
accuracy and reproducibility of subsequent statistical anal-
yses, such as the identification of disease susceptibility
genes (1,39). However, it has been shown that improper
normalization can lead to prominent findings that cannot
be reproduced (5,40,41). Hence, the selection of a suit-
able normalization method is a crucial step in transcrip-
tome sequencing data analysis. Despite numerous publica-
tions on the comparison and assessment of normalization
methods, there has been no consensus on which normal-
ization method works systematically best for which type
of data. For example, the comparison of 14 studies us-
ing normalization methods for downstream differential ex-
pression analysis in (15) and the summary of the litera-
ture on normalization comparison in (42) demonstrate that
no method yielded consistently high performance for dif-
ferent data sets. In this study, we addressed this pressing
and under-studied problem by developing a data-driven
approach for normalization assessment and selection in
miRNA sequencing where we focused on keeping biolog-
ical signals in the data intact while effectively removing un-
wanted variations due to heterogeneous experimental han-
dling.

We based our approach on control markers that are de-
fined by the data and biology, and we catered the choice
of numerical measures and summary metrics to each type
of control markers. Using the carefully benchmarked MSK
data, we were able to empirically justify the biology-driven
definition of the control markers and validate the choice of
numerical measures and summary metrics. We have previ-
ously successfully used similar definitions of negative con-
trols and positive controls for assessing the impact of nor-
malization in the context of microarray data (15,24,42).
However, we acknowledge that DANA would not be suit-
able for data sets in which the biological variation is ex-
pected to be zero across the samples under study for a siz-
able proportion of the positive control markers. Finally, we
demonstrated that our approach is also robust with respect
to the cutoff choices for positive and negative controls.

Across the three empirical studies we conducted in this
paper, the performance of normalization methods varied
greatly. A method may perform well for one data set but
poorly for others. For example, based on the DANA assess-
ment, we recommend using RUVr for the combined TCGA
breast and uterine cancer data set; in stark contrast, RUVr
performed poorly for the MSK sarcoma cancer data set.
Hence, we confirm the necessity of a data-driven selection of
a suitable normalization method, which previous studies are
lacking. In this study, we implemented DANA––a tool that
provides such data-driven guidance for miRNA data. In our
three empirical studies, two methods, upper quartile and
median normalization, are consistently among the worst
performers based on the two DANA metrics. Furthermore,
total count normalization, which is nevertheless widely used
due to its simplicity, performed poorly to mediocre at best
and needs to be reconsidered given our findings. Note that
we do not differentiate between different types of unwanted
variations in the data such as those due to different sample
handling batches and those otherwise, as they tend not to be
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clearly distinguished in practice. For example, TCGA uses
only total count normalization and not batch effect correc-
tion for pre-processing its miRNA sequencing data, even
though their data were collected in multiple batches for a
disease type. However, normalization may perform poorly
in presence of strong batch effects, as pointed out by a re-
viewer. Finally, while it is beyond the scope of this paper, the
choice of sequence alignment and feature counting methods
likely also affects the performance of normalization.

The application of our DANA approach does not depend
on the availability of benchmark data. It applies to any set
of miRNA sequencing data, such as those from TCGA.
For studies with very small sample sizes, however, efforts
should be made to profile the data in a single experiment
with uniform handling, as DANA’s metrics may not be statis-
tically meaningful. In general, DANA can assess any normal-
ization method that generates non-negative counts. While
the assumptions of each normalization method should be
checked and satisfied by the data, there are many situations
in which the validity of any assumption is unknown for the
given experiment, and normalization methods can perform
well even if their assumptions are (partially) violated (42).
To the best of our knowledge, DANA is the first approach
that provides a purely data-driven assessment of normal-
ization for miRNA sequencing data and does not depend
on the availability of reliable spike-ins, housekeeping genes,
or a gold standard.

CONCLUSION

In this study, we confirmed that normalization assess-
ment is in urgent need to objectively guide the selection
of depth normalization methods for the data at hand. We
developed DANA––a tool that is data-driven and biology-
motivated––for guiding such selection. Our results also
show that there is still a need for more effective normal-
ization methods and support the practice of careful study
design, such as uniform handling and a balanced sample-
to-library-assignment, for circumventing the need for nor-
malization. While we validated our approach using the most
common downstream analysis (differential expression anal-
ysis) in this paper, we plan to test it using other analysis
methods in future work. Moreover, we will extend the DANA
approach towards application to data generated using other
high-throughput profiling platforms. Finally, we plan to
further develop our general approach for other molecules,
such as mRNAs, by defining suitable sets of control mark-
ers and metrics measuring the degree of preservation of bi-
ological effects and removal of handling effects for these
molecules.
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