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ABSTRACT: The hippocampus plays a key role in pattern separation,
the process of transforming similar incoming information to highly dis-
similar, nonverlapping representations. Sparse firing granule cells (GCs)
in the dentate gyrus (DG) have been proposed to undertake this compu-
tation, but little is known about which of their properties influence pat-
tern separation. Dendritic atrophy has been reported in diseases
associated with pattern separation deficits, suggesting a possible role
for dendrites in this phenomenon. To investigate whether and how the
dendrites of GCs contribute to pattern separation, we build a simplified,
biologically relevant, computational model of the DG. Our model sug-
gests that the presence of GC dendrites is associated with high pattern
separation efficiency while their atrophy leads to increased excitability
and performance impairments. These impairments can be rescued by
restoring GC sparsity to control levels through various manipulations.
We predict that dendrites contribute to pattern separation as a mecha-
nism for controlling sparsity. VC 2016 The Authors Hippocampus Published by
Wiley Periodicals, Inc.
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INTRODUCTION

The hippocampus is known to be involved in memory formation, stor-
age and consolidation (Squire et al., 2004), but its specific functionalities
remain a mystery. One such functionality is the ability to rapidly store
non-overlapping representations of similar inputs and thereafter, retrieve
them given a partial or noisy stimulus. Theoretical models refer to those
processes as pattern separation and pattern completion, respectively (Marr,
1971; Treves and Rolls, 1994; Yassa and Stark, 2011; Santoro, 2013). The

Dentate Gyrus (DG), in particular, has been proposed
to implement pattern separation by sparsifying and
orthogonalizing its input, coming mainly from the
entorhinal cortex (EC), and thereafter, projecting this
information to the CA3 area via the mossy fibers
(Treves and Rolls, 1994). DG has been hypothesized to
separate two distinct but overlapping patterns through
the activation of different granule cells (GCs), through
the expression of different firing rates in identical neu-
ronal populations (Deng et al., 2010) or a combination
of the two. While several studies have investigated pat-
tern separation both in rodents (Leutgeb et al., 2004,
2005, 2007) and humans (Kirwan and Stark, 2007;
Bakker et al., 2008; Lacy et al., 2011; Motley and Kir-
wan, 2012), the role of dendrites in this phenomenon
remains unknown.

The DG is the first subregion of the hippocampus
that receives incoming information from other brain
areas. DG principal neurons, the granule cells (GCs),
receive input from excitatory afferents coming from
EC layer II cells and project to the CA3 subregion. In
addition, they receive input from other DG excitatory
cells, the Mossy cells (MCs), and various interneurons
(Sik et al., 1997) with Basket cells (BCs) and hilar
perforant path associated (HIPP) cells being the most
important. MCs form an inhibitory circuit as their
axons contact the BCs. The net effect of MC excita-
tion to both GCs and BCs is considered to be inhibi-
tory (Jinde et al., 2012).

Experimental studies have shown that only a small
population of GCs, �5%, are active in a single context
(Marrone et al., 2011; Satvat et al., 2011; Danielson
et al., 2016), a phenomenon termed sparse coding
(Olshausen and Field, 2004). It has been proposed that
sparse coding in GCs enhances pattern separation by
recruiting different subgroups of GCs to encode similar
incoming stimuli (Treves et al., 2008; Petrantonakis
and Poirazi, 2014, 2015). Computational models (San-
thakumar et al., 2005; Yim et al., 2015) and experi-
mental studies (Nitz and McNaughton, 2004; Jinde
et al., 2012) have proposed that inhibition controls GC
activity which, in turn, mediates pattern separation
(Myers and Scharfman, 2009, 2011; Ikrar et al., 2013;
Faghihi and Moustafa, 2015).

The ability to perform pattern separation is critical
for normal brain functioning and its impairment is
associated with cognitive decline. Diseases such as
schizophrenia (Das et al., 2014) and Alzheimer’s
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disease (AD) (Ally et al., 2013), where cognitive decline is evi-
dent, are both characterized by pattern separation deficiencies.
Interestingly, these conditions are also characterized by altera-
tions in the anatomical properties of GC dendrites, such as a
decrease in the total dendritic length (Einstein et al., 1994)
and spine loss (Jain et al., 2012). Dendritic growth on the oth-
er hand has been associated with pattern separation enhance-
ments. Specifically, voluntary running was recently shown to
enhance pattern separation and this enhancement was attribut-
ed to an increase in the neurogenesis rate that was accompa-
nied by increased GC dendrite outgrowth in active compared
to sedentary animals (Bolz et al., 2015). These findings suggest
that the dendrites of GCs are likely to play a key role in pat-
tern separation mediated by the DG.

To investigate this possibility, we implemented a morphologi-
cally simple, yet biologically relevant, scaled-down spiking neural
network model of the DG. The model consists of four types of
cells (MCs, BCs, HIPP, and GCs) modeled as simplified
integrate-and-fire neurons. The GC model alone was extended to
incorporate dendrites. The electrophysiological properties of all
cell types were calibrated according to a range of experimental
data. An advantage of using such a simplified approach lies in the
small number of parameters that make it possible to characterize
their role in the behavior of the model. Despite its simplicity, the
model exhibits realistic pattern separation under several conditions
and explains how inhibition to GCs provided directly from BCs
and indirectly via the inhibitory circuitry through MCs impact
this task, as suggested by a number of recent studies (Myers and
Scharfman, 2011; Jinde et al., 2012), thus, supporting its biologi-
cal relevance. We use the model to investigate whether and how
GC dendrites may contribute to pattern separation.

MATERIALS AND METHODS

The model was developed mainly based on the structure and
connectivity features described by Myers and Scharfman (2009),
and incorporates the four major dentate cell types. These are the
GCs, MCs, BCs, and HIPP cells. As the Hilar Commissural-
Associational Pathway (HICAP) cells are relatively rare and poorly
understood (Sik et al., 1997), they are not included in the model.
All simulations were performed using the BRIAN (BRIAN
v1.4.3) network simulator (Goodman and Brette, 2009; Brette
and Goodman, 2011) running on a high-performance computing
cluster (HPCC) with 312 cores under 64-bit CentOS Linux.

Model Neurons

The four types of DG neurons were modeled as simplified
phenomenological neurons of the integrate-and-fire (I&F) type
(Izhikevich, 2003; Burkitt, 2006), with no internal geometry
(“point neurons”). The GCs incorporated dendrites in order to
study their role in pattern separation; however the MCs, BCs,
and HIPP cells were simulated as simple somatic
compartments.

Modeling BC, MC, and HIPP Cells

Specifically, an adaptive exponential I&F model (aEIF)
(Brette and Gerstner, 2005) was used to model MCs, BCs, and
HIPP cells. The model is mathematically described by the fol-
lowing differential equations [Eqs. (1, 2)]:

Cm
dVm

dt
5gl El2Vmð Þ1glDT exp

Vm2VT

DT

� �
1
X

Isyn–w (1)

sw
dw

dt
5a Vm2Elð Þ–w (2)

where Cm is the membrane capacitance, Vm the membrane
voltage, gl the “leak” conductance, El the “leak” reversal poten-
tial (i.e., the resting potential), Isyn the synaptic current flow
onto the neuron, w the adaptation variable, DT the slope fac-
tor, VT the effective threshold potential, a the adaptive cou-
pling parameter, and sw is the adaptation time constant.

The exponential nonlinearity describes the spike action
potential and its upswing. In the mathematical interpretation
of the model a spike occurs at time tspike when the membrane
voltage reaches a finite limit value, and thereafter the down-
swing of the action potential is described by a reset fixed value
Vreset, as follows:

at t5tspike Vm � Vthresholdð Þ
reset V  Vreset; w w1b (3)

where Vthreshold is the voltage threshold above which the neuron
fires a spike, and b is the spike triggered adaptation parameter.
For all neuron types the effective threshold is equal to the volt-
age threshold (see Table 1 for model parameters).

Modeling Principal Neurons, GC

In order to investigate the role of GC dendrites in pattern
separation, an extended point neuron was implemented. The
GC model consisted of a leaky Integrate-and-Fire somatic com-
partment connected to a variable number of dendritic compart-
ments whose morphology relies on anatomical data (see Table
2 for structure characteristics). Furthermore, an adaptation
parameter w was used, only in the somatic compartment, to
reproduce spike frequency adaptation reported in these neu-
rons. The equation that describes the membrane, somatic and
dendritic, potential of GC model cells is as follows:

Cm
dVm

dt
5gl El2Vmð Þ1

X
Isyn–w (4)

The adaptation parameter (w) was set to zero for the den-
dritic compartments. There is no evidence for dendritic spikes
in GCs (Krueppel et al., 2011), thus the spike mechanism was
only applied in the somatic equation.

The DG is divided into three distinct layers (Fig. 1A); the
molecular, granular, and polymorphic (hilus) (Amaral et al.,
2007). The GC dendrites extend in the molecular layer
(Amaral et al., 2007), which is further divided into the inner,
middle, and outer molecular layers, and therefore dendritic
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compartments are discretized accordingly. Table 2 lists the mor-
phological characteristics of the GC model. According to ana-
tomical data (Claiborne et al., 1990) GCs have 10–15
dendrites; thus, the control GC model includes 12 dendrites
and its physiological responses are validated against experimen-
tal data (see Table 1 for GC model parameters).

In order to investigate whether the number of GC dendrites
affects pattern separation, we used two different approaches;
dendritic pruning and growth. First, two more GC models
were implemented which differ only in their number of den-
drites (6 and 3), but the path length remained the same across
these models. Secondly, two GC models were implemented
which differ both in their dendritic number and their path
length. The morphological differences among the three models
are shown in Table 2. The membrane capacitance of the den-
dritic compartments was increased compared to the somatic

one to account for spines reported in GC dendrites (Aradi and
Holmes, 1999).

The intrinsic model properties that were validated against
experimental data are the input resistance (Rin), the sag ratio,
defined as the ratio between the exponentially extrapolated
voltage to the steady-state voltage, and the membrane time
constant (sm). In line with experimental procedures (L€ubke
et al., 1998), we used 1-second somatic current injection to
calculate the intrinsic properties. The input resistance is calcu-
lated by the equation Rin5 DVm=Iinjected, where DVm is the
membrane response to current stimulation. Finally, the mem-
brane time constant is approximated by the formula
sm5RinCm, which is a valid approximation for passive com-
partments. As experimental data were obtained in the presence
of synaptic activity blockers, a somatic current injection at the
model cell was used to replicate those conditions.

TABLE 2.

Morphological Structure of GC Models

Structure of GC models

Control

Pruning Growth

12 dendrites 6 dendrites 3 dendrites 6 dendrites 3 dendrites

Number of compartments

Total 21 15 9 9 3

Proximal 3 3 3 3 3

Medial 6 6 3 6 –

Distal 12 6 3 – –

Length per compartment (lm) 83 83 83 83 83

Total dendritic length (lm) 1743 1245 747 747 249

Diameter per compartment (lm)

Proximal 1.0 1.0 1.0. 1.0 1.0

Medial 0.9 0.9 0.9 0.9 –

Distal 0.8 0.8 0.8 – –

TABLE 1.

Model Parameters for all Neuronal Types

Model parameter

Granule cells

Mossy cells Basket cells HIPP cellsSoma Dendrites

El (mV) resting potential 287 282 264 252 259

gl (nS) “Leak” conductance 0.00003a 0.00001a 4.53 18.054 1.930

Cm (nF) Membrane capacitance 1.0b 2.5b 0.621 0.1793 0.0584

Vreset (mV) Reset voltage 274 249 245 256

VT 5 Vthr (mV) Threshold voltage 256 242 239 250

DT (mV) Slope factor 2 2 2

a (nS) Adaptation coupling parameter 2.0 2 0.1 0.82

sw (ms) Adaptation time constant 45 180 100 93

b (nS) Spike triggered adaptation 0.0450 0.0829 0.0205 0.015

aFor the GC model, the “leak” conductance is given in Siemens/cm2.
bFor the GC model, the membrane capacitance is given in uF/cm2
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Modeling Synapses

Since the DG network consists of both glutamatergic cells
(GCs and MCs) and GABAergic interneurons, AMPA,
NMDA and GABA synapses were included in the network
model. Therefore, the total synaptic current [Eqs. (1,(4))] con-
sisted of two components; the excitatory current through
AMPA receptors (IAMPA) and NMDA receptors (INMDA), and
the inhibitory current via GABAa receptors (IGABA). The
majority of ligand-gated ion channels mediating synaptic

transmission, such as AMPA and GABA receptors, display an
approximately linear current–voltage relationship when they
open. We modeled these channels as an ohmic conductance
(gsyn) multiplied by the driving force:

Isyn5gsyn tð Þ Vm tð Þ2Esyn

� �
(5)

where Esyn is the AMPA and GABA reversal potential,
respectively.

FIGURE 1. A. Schematic representation of the implemented
DG network model. Different shades of green illustrate the layer
division. PP: perforant path, GC: granule cells, BC: basket cells,
MC: Mossy cells, HIPP: hilar perforant path-associated cells. Per-
forant path afferents curry the input to the network, and project
on both the GCs and the HIPP cells. MCs and GCs are connected
in a recurrent manner. MCs also excite the BCs. Inhibition of GCs
is provided through BCs and HIPP cells directly and indirectly
via MCs. Note that HIPP cells contact the distal dendrites rather
than the soma of GCs. GCs provide the output of the DG net-
work. B. Schematic representation of pattern separation using
population-based coding. When two highly overlapping EC inputs

(input 1 and 2, with identical mean firing rates) arrive in DG, the
corresponding outputs are highly dissimilar. Note that the output
pattern is sparse because of the low number of GCs that encode
any given pattern. C. Schematic representation of pattern separa-
tion using rate-based coding. When two highly overlapping EC
inputs (inputs 1 and 2, with different mean firing rates but identi-
cal input populations) arrive in DG, the corresponding outputs
are highly dissimilar in their firing rates but also likely to differ in
the populations they activate. Rate distances are estimated over
the set of common neurons (red box). [Color figure can be viewed
at wileyonlinelibrary.com]
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The NMDA receptor-mediated conductance depends on the
postsynaptic voltage due to the gate blockage by a positively
charged magnesium ion (Mg21). The fraction of NMDA chan-
nels that are not blocked by Mg21 can be fitted by a sigmoidal
function (Jahr and Stevens, 1990):

s Vð Þ5 1

1 1h Mg21½ �oexp 2gVmð Þ (6)

where h is the sensitivity of Mg unblock, g the steepness of
Mg unblock, and Mg21½ �o is the outer magnesium (Mg) con-
centration. For NMDA receptors in MCs, BCs, and HIPP
cells we used h50:28 mM21, Mg21½ �51 mM, and g5

0:072 mV21. Instead, for GCs we tuned these parameters in
to match the latest experimental data found in literature
(Krueppel et al., 2011) with the corresponding values equal to
h50:2 mM21, Mg21½ �52mM, and g50:04 mV21. Conse-
quently, the NMDA synaptic current is calculated by the fol-
lowing equation:

Isyn5gsyn tð Þs Vð Þ Vm tð Þ2Esyn

� �
(7)

The ohmic conductance is simulated as a sum of two exponen-
tials (Bartos et al., 2001), one term based on rising and the
other on the decay phase of the postsynaptic potential. This
function allows time constants to be set independently. We
simulated such a function as a system of linear differential
equations (Roth and Van Rossum, 2009):

gsyn tð Þ5gmaxu tð Þ (8)

du

dt
52

u

sdecay
1 h0v 12uð Þ; dv

dt
52

v

srise
(9)

where srise and sdecay are the rise and decay constants respec-
tively, h0 a scaling factor and u tð Þ is the function of two expo-
nentials u tð Þ 5 exp 2t=sdecay

� �
2 exp 2t=sriseð Þ, which is

divided by its maximum amplitude. The scaling factor is set to
1 ms21 for all AMPA and GABA receptors and all neuronal
types. The NMDA scaling factor is set to 0:5 ms21 apart from
the synapses form on GCs where it is set to 2 ms21. Because
axons of neurons are not included in the model, a delay is
used between pre- and postsynaptic transmission. The role of
the delay is to account for both the synaptic transmission and
the axonal conduction delay, and its value depends on the pre-
synaptic and postsynaptic neuronal types. The peak conduc-
tance (gmax), rise and decay time constants, and the delay of
various network connections were estimated from experimental
data (Kneisler and Dingledine, 1995; Geiger et al., 1997;
Bartos et al., 2001; Schmidt-Hieber et al., 2007; Larimer and
Strowbridge, 2008; Schmidt-Hieber and Bischofberger, 2010;
Krueppel et al., 2011; Chiang et al., 2012) and are given in
Table 3. Specifically, the GC peak conductance both for
AMPA and NMDA, was validated against experimental data
(Krueppel et al., 2011), where it is evidenced that a single syn-
apse provokes a 0:6 mV somatic EPSP, and also the NMDA
and AMPA peak current ratio is equal to 1:08. These values
were reproduced in the GC model cells. The models also
incorporate background activity, in order to simulate the exper-
imental findings of spontaneous activity in DG. Accordingly,
we used Poisson independent spike trains in order to reproduce
the experimental data for MCs (2–4 Hz spontaneous activity)
(Henze and Buzs�aki, 2007) and for BCs (1–2 Hz spontaneous
activity) (Kneisler and Dingledine, 1995). GCs infrequently
generate spontaneously activity, even if inhibition is blocked
(Lynch et al., 2000). Thus, we implemented noisy inputs in

TABLE 3.

Synaptic Parameters of the Dentate Network

From (column)/

to (row)

Granule

cells

Mossy

cells

Basket

cells

HIPP

cells

AMPA

Perforant path

gmax (nS) 0.8066 0.240

srise (ms) 0.1 2.0

sdecay (ms) 2.5 11.0

Delay (ms) 3.0 3.0

Granule cells

gmax (nS) 0.500 0.210

srise (ms) 0.5 2.5

sdecay (ms) 6.2 3.5

Delay (ms) 1.5 0.8

Mossy cells

gmax (nS) 0.1066 0.350

srise (ms) 0.1 2.5

sdecay (ms) 2.5 3.5

Delay (ms) 3.0 3.0

NMDA

Perforant path

gmax (nS) 0.8711 0.276

srise (ms) 0.33 4.8

sdecay (ms) 50.0 110.0

Delay (ms) 3.0 3.0

Granule cells

gmax (nS) 0.525 0.231

srise (ms) 4.0 10.0

sdecay (ms) 100.0 130.0

Delay (ms) 1.5 0.8

Mossy cells

gmax (nS) 0.1151 0.385

srise (ms) 0.33 10.0

sdecay (ms) 50.0 130.0

Delay (ms) 3.0 3.0

GABAA

Basket cells

gmax (nS) 14.0

srise (ms) 0.9

sdecay (ms) 6.8

Delay (ms) 0.85

HIPP cells

gmax (nS) 0.12

srise (ms) 0.9

sdecay (ms) 6.8

Delay (ms) 1.6
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order to only evoke spontaneous EPSPs (0.05 Hz spontaneous
activity).

The DG Network Model

The DG network model consists of 2000 simulated GCs, a
scale that represents 1/500 of the one million GCs found in
rat brains (West et al., 1991). The chosen number of GCs pro-
vides enough power to explore pattern separation, while main-
taining computational efficiency. The population of GCs is
organized in nonoverlapping clusters, with each cluster contain-
ing 20 GCs, respectively. This kind of organization roughly
corresponds to the lamellar organization along the septotempo-
ral extent of DG (Sloviter and Lømo, 2012).

Apart from the principal excitatory dentate cells (GCs), the
model comprises two kind of inhibitory interneurons, the peri-
somatic (BCs), which form synapses at the soma of the GCs,
and dendritic (HIPP) inhibitory cells, which contact the GCs at
their distal dendritic compartments. There is one BC per cluster
of GCs, which in turn corresponds to 100 simulated BCs in the
model. This is a form of “winner-take-all” competition (Coul-
trip et al., 1992) in which all, but the most strongly activated
GCs in a cluster, are silenced. Given 100 clusters in the model,
and with one winner within each cluster, approximately 5% of
GCs are active for a given stimulus; this is in agreement with
the theoretically and experimentally estimation of 2-5% granu-
lar activity in the substrate (Treves et al., 2008; Danielson et al.,
2016). Moreover, the model includes simulated hilar MCs and
HIPP cells. Estimated numbers for these neuronal types vary
from 30,000 to 50,000 MCs in rats (West et al., 1991; Buck-
master and Jongen-Rêlo, 1999), which in turn corresponds to
3–5 MCs per 100 GCs. Accordingly, the model includes 80
MCs per 2,000 GCs. Experimental counts for HIPP cells vary
significantly, but the latest estimates suggest about 12,000 HIPP
cells in rats (Buckmaster and Jongen-Rêlo, 1999) meaning less
than 2 HIPP cells per 100 GCs. To reflect this empirical data,
we simulated 40 HIPP cells in the network model (Fig. 1A).

External input to the network model is provided by 400 affer-
ents representing the major input that DG receives from Ento-
rhinal Cortex (EC) Layer II cells, via the Perforant Path (PP).
The ratio of GCs to PP afferents is aligned with estimations of
about 200,000 EC Layer II cells in the rat (Amaral et al., 1990),
suggesting a ratio of 20 EC cells per 100 GCs. Therefore, the
model incorporates synaptic input that corresponds to 400 EC
Layer II cells. For simplicity, the input cells are simulated as inde-
pendent Poisson spike trains, with frequency of 40 Hz, which is
in line with experimental data (Hafting et al., 2005). Previous
experimental studies have shown that dentate GCs receive input
from 10% of the 4,000 afferents that contact a given GC in the
rat during a task (McNaughton et al., 1991), which in turn sug-
gests that an approximate 10% of EC Layer II cells are active.
The simulations reported here assume that 10% is the active PP
afferents representing a given stimulus. According to McNaugh-
ton et al. (1991), 10% of the total entorhinal input is necessary
to discharge one GC. However, the EC-GC connection is sparse,
with each GC receiving input from about 2% of EC Layer II

neurons. Assuming only 400 input cells; one GC could have
only 8 afferents from EC, which in turn would make it impossi-
ble for the GC to become active. As a compromise, we used a
randomly determined 20% of EC Layer II cells as input to each
GC and additionally, 20% randomly determined EC Layer II
cells as input to each HIPP cell; GCs contact each MC with
20% probability; GCs and HIPP cells each feedback to contact a
randomly determined 20% of GCs and finally, each MC con-
nects with every BC in the network. Connections are initialized
randomly (uniform random distribution) before the start of the
simulations and remain fixed across all simulations (no rewiring).
The connectivity matrix was the same for all experiments and
across all using GC models, apart from the PP

$
GC, and

HIPP
$
GC synapses due to the difference in GC number of

dendrites.

Pattern Separation and Data Analysis

Generally, a network performs pattern separation whenever
the similarity between two distinct input patterns is higher
than the similarity between the corresponding output patterns
(Fig. 1B). In this work, the input patterns are presented as the
activity along the 400 PP afferents. Each input pattern has 40
active PP afferents (10% input density), an amount of which
are common between two patterns; hence the two patterns
have a degree of similarity. Active cell is considered every GC
that fires at least one spike during stimulus presentation (Myers
and Scharfman, 2009), thus the output patterns correspond to
the active GCs. In order to quantify the pattern separation effi-
ciency we used a metric denoted by f1 (‘population distance’):

f1 i;oð Þ5
HDi;o

2 12si;o

� �
Ni;o

(10)

where the i and o subscripts denote input and output, respec-
tively, s denotes the sparsity (i.e., the ratio of silent neurons to
all neurons), N the number of neurons, and HD is the ham-
ming distance between two binary patterns (Hamming, 1950),
defined as the number of positions at which the corresponding
values are different. The factor of 2 in the denominator is used
to limit our distance measure at zero. Our network is said to
perform pattern separation if the input distance is smaller than
the output distance, i.e., when f1 ið Þ < f1 oð Þ. Thus far, the dis-
tance between two binary patterns is calculated using only the
HD metric. Although we construct the input patterns to have
the same sparsity (i.e., 10% are active), the corresponding out-
put patterns do not necessarily have the same activity level. As
we want to examine the differences among the active neurons
of each pattern we disengage the dependence on sparsity by
dividing the HD with the number of neurons that are active in
a pattern. In our case, the output patterns are vectors, each
with length equal to 2000 and 2-5% active neurons in 12 den-
drites case, which in turn correspond to 40–100 neurons. The
total number of active neurons lies in the range of 40-200. For
example, if the HD between two patterns is 20, the old metric
gives a distance equal to 0.01 whereas the f1 metric ranges
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from 0.10 to 0.25, depending on the percentage of active GC
neurons. Thus, using the proposed f1 metric, differences only
between active neurons are taken into account, making the
metric more robust across different levels of sparsity.

We constructed four groups of input pattern pairs, with dif-
ferent degrees of similarity and calculated the input and the
corresponding output population distances for each group
independently. Firstly, we constructed a variety of input pat-
terns with input density 10% (i.e., 40 active neurons) and con-
sequently, four additional input patterns were built with 40
active neurons, 8, 16, 24, and 32 of which are common
between patterns, respectively, which, in turn, corresponds to
f1 inputð Þ50:4; 0:3; 0:2, and 0:1. The reasoning behind this
approach is to examine highly overlapping patterns
(f1 inputð Þ50:1; 0:2), as well as less similar ones
(f1 inputð Þ50:3; 0:4). Thus, each trial was composed of two sim-
ulations using two input patterns within each group.

Whereas the f1 metric quantifies the distance between two
binary vectors containing active and nonactive neurons (‘popu-
lation distance’), we used an additional metric, denoted by f2,
which quantifies the distance in the firing rates of common
neurons that encode two patterns by using their firing rates
(‘rate distance’) (Fig. 1C). The f2 metric is calculated by divid-
ing, for each neuron that is active in both patterns, its mean
firing rate given one stimulus (40 Hz) by its mean firing rate
given a stronger stimulus (50 Hz), and averaging these ratios
across the population of input and output neurons, respectively
(Leutgeb et al., 2004). We subtract this ratio from one in order
to convert the ‘rate similarity’ into a ‘rate distance’:

f2512
1

Nc

XNc

j51

rB;j2 min rB

� �
rA;j2 min rA

� � (11)

where Nc denotes the number of common neurons that are
active for both inputs, r the firing rate of jth neuron using
input A and B, respectively. Here, B represents the low firing
frequency input, while A the high frequency input. We subtract
the global minimum firing rate of GCs found in all trials in
order to normalize the dynamic range of firing rates.

For this experiment, the population of active EC neurons in
each pair of inputs was identical. The network performs pat-
tern separation if the input ‘rate distance’ is smaller than the
corresponding distance in the output, i.e., f2 inputð Þ < f2 outputð Þ.
In each trial, the two stimuli were presented to the network
and their ‘rate distance’, both in input and output, was esti-
mated. The results were then averaged across all trials (50 trials
for each model).

For each trial, the network was simulated for 850 millisec-
onds (ms). The first 300 ms were simulated in order for the
network to reach its stable state, so they were excluded from
the analysis. The input onset was at 300 ms and the stimulus
was applied for 500 ms. The last 50 ms were simulated in
order for the network to reach again its steady state and they
were excluded from the analysis as well. The time step for all
simulations was set to 0.1 ms.

The data analysis and the figures describing the results were
made using custom made programs in python2.7.10TM (www.
python.org) while the statistical analysis was made using the
R3.3.1 programming language (https://www.r-project.org). We
used the two-sided, two-sample Wilcoxon signed-rank test for
the pattern separation efficiency comparison and the two-sided,
two-sample Kolmogorov–Smirnov test (K–S test) to compare the
GC activity probability density functions (Neuh€auser, 2011).
The model will be available for download in Model DB (acces-
sion number: 206372) at http://dendrites.gr/en/publications-8/
software-23.

RESULTS

The Dentate Gyrus Model

The DG network model consists of four different neuronal
types, namely GCs, BCs, MCs, and HIPP cells. MCs, BCs and
HIPP cells are modeled as adaptive exponential I&F (aEIF) point
neurons (Brette and Gerstner, 2005). GCs consist of a leaky
integrate-and-fire somatic compartment connected to a variable
number of dendritic compartments whose morphology relies
loosely on anatomical data (see “Materials and Methods”). I&F
models were selected primarily because of their correspondence
with experimental parameters (e.g., the Cm, Rm, Rin) that facili-
tated constraining with experimental data. Since dentate GCs are
known to have 10–15 dendrites (Claiborne et al., 1990), we con-
sider the GC model with 12 dendrites as the control. A schematic
illustration of the DG network is shown in Figure 1A.

All computational neuron models were validated against experi-
mental data with respect to their activity and basic electrophysiologi-
cal properties (L€ubke et al., 1998; Bartos et al., 2001; Krueppel
et al., 2011). The spiking profiles of the four neuronal model types
are depicted in Figure 2 while the respective I–V and I–F curves
compared against experimental data are shown in Supporting Infor-
mation Figures S1 and S2. The control (12-dendrite) GC model
was validated against the experimental data of (Krueppel et al.,
2011) with respect to its dendritic input–output function, which
was found to be slightly above linearity (see Supporting Information
Fig. S3A). Table 4 lists the model and experimental values of basic
intrinsic properties for each of these cell types. Overall, the electro-
physiological properties of the computational models of neurons
included in the DG network are in fair alignment with experimental
findings. It should be noted that spiking profiles are not taken into
account when estimating pattern separation in the DG network
model. A GC model neuron was considered active even if it pro-
duced a single spike. Thus, we chose to fit average values rather than
temporal profiles of the model neurons.

Pattern Separation in the DG Model

Following validation of the individual neuron models, we
tested the DG network’s ability to implement pattern separa-
tion when presented with pairs of inputs characterized by
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various degrees of similarity (modeled as overlap in the two
activated EC populations). An example of two such input pat-
terns and their corresponding output is schematically illustrated
in Figure 1B. The network model is deemed capable of sepa-
rating similar input patterns if the value of a distance metric f
is substantially larger in the DG output (GC activity) com-
pared to its input (EC cell activity). Pattern separation is pri-
marily estimated by looking at the differences in the

populations of neurons that encode each input (‘population
distance’, f1). To account for the possibility of rate-based pat-
tern separation (Deng et al., 2010), we also simulate the net-
work under conditions where the two input pairs are identical
in terms of EC ‘population distance’ (i.e., f1 inputð Þ50) but differ
in their mean firing rates (graphically depicted in Fig. 1C). Pat-
tern separation in this case is measured by looking at differ-
ences in the average firing rate of the neurons encoding both

FIGURE 2. Firing traces of the four model cells in response to
current injection (1 s). Note that APs are not explicitly modeled in
I & F neurons. A: The somatic membrane voltage of the granule
cell (GC) model in response to 190 pA (top), and 250 pA
(bottom) somatic current injections. B. Same as in A, for the

mossy cell (MC) with 1300 pA (top) and 2300 pA (bottom) cur-
rent injections. C. Same as in A, for the Basket cell (BC), with
1200 pA (top) and 250 pA (bottom) current injections. D. Same
as in A, for the HIPP cell, with 1300 pA (top) and 250 pA
(bottom) current injections.
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inputs (‘rate distance’, f2). The ‘rate distance’ is estimated both
at the input (EC cells) and the output (GCs) levels (see
“Materials and Methods”). Pattern separation is successfully
performed if the ‘rate distance’ of the output (f2 outputð Þ) is larger
than that of the input (f2 inputð Þ). The network’s ability to per-
form pattern separation across all (200) input pairs measured
with both metrics is shown in Table 5. These results demon-
strate that two inputs that are quite similar in their topology
[i.e., originate largely f1ð Þ or entirely from the same neurons,
perhaps with different firing rates (f2Þ], induce substantially dif-
ferent activation patterns of the GCs that they impinge on
(outputs) in the DG network.

Understanding the Role of Inhibition in Pattern
Separation

After establishing the network’s ability to perform pattern
separation, we tested its validity against experimental data with
respect to the role of inhibition in this phenomenon. The net-
work model reproduced the recent findings of Engin et al.
(2015) whereby inhibition exerted by BCs was critical for the
sparse firing of GCs. Specifically, removal of all BCs resulted in
an overexcitation of the GC model population (more than

30% of GCs responded strongly to any input). This overexcita-
tion in turn impaired pattern separation, as the GC popula-
tions responding to the two inputs became nearly identical and
fired at very similar, high frequencies. These findings are also
in line with experimental evidence reporting increased memory
interference under conditions of reduced BC activity (Engin
et al., 2015).

Since MCs have also been suggested to control the excitabili-
ty of DG granule cells (Jinde et al., 2013), we simulated a
complete MC-loss lesion (Fig. 3A) as per (Ratzliff et al.,
2004). This manipulation led to an increase in the proportion
of active GCs for all input patterns tested (Figs. 3B and 3D),
and a decrease in pattern separation efficiency, measured either
with the population (f1, Fig. 3C) (Wilcoxon test,
W1 5 2095.5, P1 � 1029, 95% CI1 [0.05, 0.09], W2 5

2242.0, P2 � 10211, 95% CI2 [0.06, 0.10], W3 5 2363.0,
P3 � 10211, 95% CI3 [0.07, 0.11], W4 5 2444.0,
P4 � 10216, 95% CI4 [0.08, 0.12]) or rate metrics (f2, Fig.
3E) (Wilcoxon test, W 5 930.0, P 5 0.0276, 95% CI [0.01,
0.07]). The subscripts (from 1 to 4) in the Wilcoxon test sta-
tistic (W), P value, confidence interval (CI) correspond to the
four experiments with different input overlaps (see “Materials
and Methods”). The observed decrease in sparsity under the
MC-loss condition was accompanied by small increases in the
excitability levels of GC models. Specifically, for the population
coding experiment, the mean GC firing frequency increased
from 3.5 to 4.82 Hz, while for the rate-based coding experi-
ment from 3.75 to 4.94 Hz for 40 Hz inputs and from 5.24
to 8.07 Hz for 50 Hz inputs. These findings are in line with
the experimental data of (Ratzliff et al., 2004) where MC-loss
did not lead to an over-excitation of GCs.

Taken together, the proposed DG network model (a) exhib-
its single-neuron response properties that are in good agree-
ment with experimental data, (b) implements a connectivity
profile that relies on experimental observations, (c) exhibits
robust pattern separation, and (d) replicates experimental data
about the role of BCs and MC cells in the aforementioned
task. These features support the biological plausibility of the
model which is next used to investigate how dendrites contrib-
ute to pattern separation.

TABLE 4.

Physiological Properties of Real And Model Neurons

Cell type

Input resistance

Rin (MX)

Membrane time

constant, sm (ms) Sag ratio

Maximum firing

rate (Hz)

Model Biological Model Biological Model Biological Model Biological

Granule cells 360 292 6 34 41.2 31 6 2 0.91 0.96 6 .1 60 70 6 10

Mossy cells 105 199 6 19 33.7 35 6 5 0.98 0.81 6 .3 45 50 6 6

Basket cells 55 56 6 9 9.67 10 6 1 0.99 0.97 6 .02 247 230 6 15

HIPP cells 363 371 6 47 21.4 15 6 0 0.84 0.82 6 .04 113 101 6 24

Biological

value

Lubke et al. (1998),

Krueppel et al. (2011)

Lubke et al., (1997),

Ratzliff et al. (2004)

Lubke et al. (1998),

Bartos et al. (2001)

Lubke et al. (1997)

TABLE 5.

DG Network (12-Dendrite Model) Performance on a Simple Pattern

Separation Task

Input similarity (f1 inputð Þ)

Output similarity

(f1 outputð Þ) mean 6 SEM

0.10 0.43 6 0.007

0.20 0.52 6 0.007

0.30 0.59 6 0.008

0.40 0.64 6 0.008

Input similarity (f2 inputð Þ)

mean 6 sem

Output similarity

(f2 outputð Þ) mean 6 sem

0.16 6 0.05 0.66 6 0.01
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FIGURE 3. Complete mossy cell loss reduces pattern separation effi-
ciency in the DG network. A. Schematic representation of the 12-dendrite
DG network with MC loss. Details of every connection are given in Table
3. B. The corresponding probability density functions of GC activity in
response to 40 Hz input for the control (dark green) and MC loss condi-
tions (light green). The mean activity is 5 and 9% for the control and MC
loss networks, respectively. The respective mean firing rates of GCs are
shown in Table 6. The histograms were calculated with 20 bins each. C.
Input/output population distances (f1) for the control (dark green) and
MC loss (light green) networks estimated using input patterns with
increasing similarity. The dashed line denotes the limit above which the
model performs pattern separation. MC loss reduces pattern separation

efficiency for all input patterns tested. Error bars represent the standard
error of the mean Erevitt and Skrondal (2010). D. Probability density
functions of GC activity using control and MC loss models presented
with two input patterns that differ only in their firing rates. Shades of
green represent the high frequency input (50 Hz), while shades of brown
represent the low frequency input (40 Hz). Dark and light shades repre-
sent the control and MC loss condition, respectively. The respective mean
firing rates of GCs are shown in Table 6. E. Input/output rate distances
(f2) for the control (dark green) and MC loss (light green) networks esti-
mated using two input patterns with different firing frequencies, 40 and
50 Hz, respectively. MC loss slightly reduces the efficiency of pattern sepa-
ration. [Color figure can be viewed at wileyonlinelibrary.com]

98 CHAVLIS ET AL.

Hippocampus

http://wileyonlinelibrary.com


Dendrites and Pattern Separation

Dendritic pruning

The main question of interest in this work is whether and
how dendrites may contribute to pattern separation. To answer
this question we started by examining whether the number of
dendrites correlates with pattern separation performance as we
prune the GC (sister) branches from 12 (control) to six and
three (Fig. 4A). To assess the effect of dendritic number, we
kept all other parameters (path length, dendritic diameter in

the IML, MML, and OML layers, membrane capacitance,
“leak” conductance, number of activated synapses, and input
firing rates) of the three GC models identical to those of the
control. While the number of activated synapses remained the
same (both excitatory and inhibitory), their spatial distribution
on terminal dendrites (afferents from EC and HIPP cells) was
different in the three GC models. Dendritic integration proper-
ties for the pruned GC models are shown in Supporting Infor-
mation Figure S3B. The control DG network (12-dendrite
model) was calibrated to have a mean population sparsity level

TABLE 6.

Mean Firing Frequencies of GCs in Response to the Various Input Patterns Used in Figs. 3–8

Population–distance experiments (pruning, growth, MC loss)

Mean firing rate 6 SEM (Hz)

GC models Pruning Growth MC loss

12-dendrite 3.50 6 0.002 3.50 6 0.002 4.82 6 0.002

6-dendrite 3.65 6 0.009 3.85 6 0.007 –

3-dendrite 3.90 6 0.006 6.35 6 0.005 –

Population–distance experiments (Match Rin)

Mean firing rate 6 SEM (Hz)

Pruning Growth

GC models gleak Soma dimensions gleak Soma dimensions

6-dendrite 3.61 6 0.009 3.58 6 0.009 3.66 6 0.008 3.60 6 0.008

3-dendrite 3.75 6 0.007 3.58 6 0.007 4.59 6 0.006 3.78 6 0.006

Population–distance experiments (Match sparsity)

Mean firing rate 6 SEM (Hz)

GC models gleak Soma dimensions Synaptic weight

6-dendrite 3.47 6 0.010 3.44 6 0.010 3.31 6 0.010

3-dendrite 3.47 6 0.010 3.31 6 0.010 3.12 6 0.008

Rate–distance experiments (Control, Growth, MC loss)

Mean firing rate 6 SEM (Hz)

Control Growth MC loss

GC models

Low input rate

(40 Hz)

High input

rate (50 Hz)

Low input

rate (40 Hz)

High input

rate (50 Hz)

Low input

rate (40 Hz)

High input

rate (50 Hz)

12-dendrite 3.75 6 0.036 5.24 6 0.048 3.75 6 0.036 5.24 6 0.048 4.94 6 0.057 8.07 6 0.110

6-dendrite 3.98 6 0.028 5.20 6 0.035 3.83 6 0.023 5.03 6 0.030 – –

3-dendrite 4.13 6 0.019 5.48 6 0.023 6.43 6 0.015 9.07 6 0.017 – –
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of 2–5% as per (Treves et al., 2008; Danielson et al., 2016),
meaning that only a small fraction of GCs were active for any
given stimulus.

Interestingly, pattern separation of pairs of inputs with
increasing similarity (measured either by population distances,
Fig. 4C, or by rate distances, Fig. 4E) was successfully per-
formed in the control as well as both pruned models for all
pairs of inputs tested. The efficiency of pattern separation how-
ever correlated with the number of dendrites in GCs (Figs. 4C
and 4E), with the 12-dendrite GC model achieving the best
performance for both population (12-dendrite vs. 6-dendrite:
Wilcoxon test, W1 5 1849.0, P1 � 1025, 95% CI1 [0.02,
0.06], W2 5 1818.5, P2 � 1024, 95% CI2 [0.02, 0.06],
W3 5 2060.5, P3 � 1028, 95% CI3 [0.04, 0.07],
W4 5 1948.0, P4 � 1026 95% CI4 [0.03, 0.06] and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1 5 2471.0,
P1 � 10216, 95% CI1 [0.11, 0.15], W2 5 2462.0,

P2 � 10216, 95% CI2 [0.11, 0.14], W3 5 2473.0,
P3 � 10216, 95% CI3 [0.10, 0.13], W4 5 2451.0,
P4 � 10216, 95% CI4 [0.08, 0.11]) and rate based-metrics
(12-dendrite vs. 6-dendrite: Wilcoxon’s test, W 5 1764.0,
P 5 0.0004, 95% CI [0.03, 0.09], and 12-dendrite vs. 3-den-
drite: Wilcoxon’s test, W 5 2072.0, P � 1028, 95% CI [0.06,
0.12]) (i.e., the highest f1 outputð Þ and f2 outputð Þ, respectively).

These findings are better understood by looking at the sparsity
levels exhibited by the three GC network models. As shown in
Figure 4B, the percentage of active GCs for the population-based
experiment increased substantially when the number of dendrites
was reduced. It rose from �5%, to �10 and �20%, for GC
model cells with 12, 6 and 3 dendrites, respectively. These differ-
ences in activity distributions were statistically significant (12-den-
drite vs. 6-dendrite: Kolmogorov–Smirnov test, D 5 1.000,
P � 10216 and 12-dendrite vs. 3-dendrite: Kolmogorov–Smirnov
test, D 5 1.000. P � 10216). The activity levels of the three

FIGURE 4. Effect of GC dendrite pruning on pattern separa-
tion. A. A schematic drawing of the three GC models with 12, 6,
and 3 dendrites. B. Corresponding probability density functions
of GC activity for the three GC models in response to a single
input pattern at 40 Hz. The mean activity is inversely analogous
to the number of dendrites: as the number of dendrites decreases,
the GC population becomes more active, i.e., less sparse. The
respective mean firing rates of GCs are shown in Table 6. C.
Input/output population distances (f1), for the 12-dendrite
(green), 6-dendrite (red), and 3-dendrite (blue) GC models in
response to the presentation of two overlapping input patterns at
40 Hz. Input pairs were generated so as to have decreasing
amounts of overlap, as depicted in Figure 1B. The dashed line

denotes the limit above which the model performs pattern separa-
tion. Performance declines as the dendritic tree has fewer den-
drites. Error bars represent the standard error of the mean across
trials. D. Probability density functions of GC activity for the three
GC models in response to presentation of two input patterns with
different firing rates (low rate 5 40 Hz, high rate 5 50 Hz), as
depicted in Figure 1C. GC activity increases with the number of
dendrites and the input firing rate. The respective mean firing
rates of GCs are shown in Table 6. E. Input/output rate distances
(i.e., f2) for the three models. All three models perform pattern
separation, as the rate distances in the input are significantly
higher than the corresponding ones in the output. [Color figure
can be viewed at wileyonlinelibrary.com]
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models followed a similar pattern in the case of rate-based coding
(Fig. 4D); Input patterns with high firing rates induced lower
sparsity levels in the 12-dendrite GC model, followed by the 6-
dendrite model and then the 3-dendrite model (12-dendrite vs.
6-dendrite: Kolmogorov–Smirnov test, D 5 1.000, P � 10216

and 12-dendrite vs. 3-dendrite: Kolmogorov–Smirnov test,
D 5 1.000. P � 10216). These data reveal that high levels of
sparsity (namely low levels of GC activity) and pattern separation
efficiency in the network model are a direct consequence of hav-
ing multiple dendrites and suggest that dendrites may contribute
to pattern separation through their effects on sparsity.

Dendritic growth

To further test whether the presence of dendrites helps pat-
tern separation by increasing sparsity, we also simulated the
opposite process, namely the growth of dendrites. We built GC

models with three, six and 12 dendrites with shapes that
roughly mimic the stages of dendritic growth (Fig. 5A): start-
ing with a GC model consisting of three thick dendritic com-
partments and adding a branch point with two thinner sister
branches at each terminal dendrite we end up with a 12-
dendrite model which is identical with our control one (see
“Materials and Methods”). Dendritic integration properties for
the growth GC models are shown in Supporting Information
Figure S3C. Note that in this simulation, the number, length,
and mean diameter of dendrites differ between the three
models.

In line with the findings of the pruning experiment, the per-
centage of active GCs declined as the number of dendrites
increased (Figs. 5B,D). The average GC activity for the
population-coding experiment started at �70% for the net-
work with three GC dendrites, dropped to �28% for the net-
work with six GC dendrites and to �5% for the 12-dendrite

FIGURE 5. Effect of GC dendrite growth on pattern separa-
tion. A. A schematic drawing of the three GC models with three,
six and 12 dendrites. B. Corresponding probability density func-
tions of GC activity for the three GC models in response to a sin-
gle input pattern at 40 Hz. The mean activity is inversely
analogous to the number/length of dendrites: as dendrites grow,
the GC population becomes sparser, i.e., fewer GCs are active. The
respective mean firing rates of GCs are shown in Table 6. C.
Input/output population distances (f1), for the 3-dendrite (blue),
6-dendrite (red), and 12-dendrite (green) GC models in response
to the presentation of two overlapping input patterns at 40 Hz,
with different degrees of overlap, as depicted in Figure 1B. The

dashed line denotes the limit above which the model performs pat-
tern separation. Performance improves with the growth of den-
drites. D. Probability density functions of GC activity for the
three GC models in response to presentation of two input patters
with different firing rates (low rate 5 40 Hz, high rate 5 50 Hz),
as depicted in Figure 1C. GC activity decreases with the number
of dendrites and increases with the input firing rate. The respec-
tive mean firing rates of GCs are shown in Table 6. E. Input/out-
put rate distances (i.e., f2) for the three models. The number of
GC dendrites is again analogs to the pattern separation perfor-
mance. [Color figure can be viewed at wileyonlinelibrary.com]
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(control) model (all differences were statistically significant (12-
dendrite vs. 6-dendrite: Kolmogorov–Smirnov test, D 5 1.000,
P � 10216 and 12-dendrite vs. 3-dendrite: Kolmogorov–Smir-
nov test, D 5 1.000. P � 10216). Similar differences in GC
sparsity were seen in the rate-based experiment (Fig. 5D). In
both cases, the 3-dendrite model exhibited much higher activi-
ty levels than the ones seen in the pruning experiment
(Figs. 4B,D), primarily because of additional alterations in den-
dritic length and diameter. Moreover, pattern separation mea-
sured by the population metric was completely impaired in the
3-dendrite model (Fig. 5C, blue line falls below the diagonal)
while performance based on rate coding remained above base-
line (Fig. 5E, blue bar). Pattern separation was successfully per-
formed in the 6-dendrite model albeit with lower efficiency
compared to the 12-dendrite model, as evaluated both with the
population (12-dendrite vs. 6-dendrite: Wilcoxon’s test,
W1 5 2456.0, P1 � 10216, 95% CI1 [0.12, 0.15],
W2 5 2421.0, P2 � 10215, 95% CI2 [0.09, 0.13],
W3 5 2466.0, P3 � 10216, 95% CI3 [0.09, 0.13],
W4 5 2368.0, P4 � 10214, 95% CI4 [0.06, 0.09], and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1–4 5 2500.0, P1–

4 � 10216, 95% CI1 [0.44, 0.48], 95% CI2 [0.40, 0.43], 95%
CI3 [0.36, 0.39], 95% CI4 [0.29, 0.32]) and rate distance met-
rics (12-dendrite vs. 6-dendrite: Wilcoxon test, W 5 1638.0,
P 5 0.0076, 95% CI [0.01, 0.07] and 12-dendrite vs. 3-den-
drite: Wilcoxon test, W 5 2305.0, P � 10213, 95% CI [0.17,
0.25]) (Figs. 5C,E).

Taken together, the “pruning” and “growth” simulations suggest
a strong link between pattern separation efficiency and GC popula-
tion sparsity (Deng et al., 2010; Aimone et al., 2011) and predict
that dendrites may serve as a mechanism for increasing the sparsity
of the GC population which in turn enhances pattern separation.

Controlling sparsity with nondendritic
mechanisms

The above simulations predict that dendrites can be suffi-
cient for mediating sparsity, which in turn enhances pattern
separation. We next ask whether they are necessary for this
task, as it is possible that a GC neuron can counteract the
decrease in sparsity induced by having fewer/shorter dendrites
through alternative mechanisms.

Input resistance does not explain differences in sparsity or
pattern separation efficiency. First, we assessed the effect of
input resistance differences among the various GC models on
sparsity and pattern separation efficiency. A possible explana-
tion of the above findings is that a GC model with a small
dendritic tree has increased input resistance (as can be seen in
Supporting Information Table S1) which in turn leads to
higher excitability and decreased sparsity. We thus corrected the
input resistance in the 6- and 3-dendrite models to match the
one in the 12-dendrite model (at the soma) by modifying (a)
the “leak” channel conductance (gleak) or (b) the size of the
somatic compartments (see Supporting Information Table S2
for the corrected values and Supporting Information Fig. S4

for the corrected dendritic integration profiles). Specifically, for
the pruning models, gleak increased by 1.230 and 1.635 for the
6- and 3-dendrite models while for the growth models, these
numbers were 1.596 and 2.438, respectively. Figure 6 shows
the outcome of this correction for both pruning (A–B) and
growth (C–D) cases. As evident from the figure, correcting the
input resistance by increasing the “leak” conductance in the
pruning case, reduced but did not eliminate differences in spar-
sity (Fig. 6A) (12-dendrite vs. 6-dendrite: Kolmogorov–Smir-
nov test, D 5 0.868, P � 10216 and 12-dendrite vs. 3-
dendrite: Kolmogorov–Smirnov test, D 5 1.000. P � 10216)
or pattern separation efficiency (Fig. 6B) (12-dendrite vs. 6-
dendrite: Wilcoxon test, W1 5 1636.5, P1 5 0.0078, 95%
CI1 [0.01, 0.07], W2 5 1606.5, P2 5 0.0141, 95% CI1 [0.01,
0.04], W3 5 1732.5, P3 5 0.0009, 95% CI1 [0.02, 0.05],
W4 5 1668.5, P4 5 0.0040 95% CI4 [0.01, 0.04], and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1 5 2164.0,
P1 � 10210, 95% CI1 [0.06, 0.09], W2 5 2177.5,
P2 � 10210, 95% CI2 [0.05, 0.09], W3 5 2284.0,
P3 � 10212, 95% CI3 [0.06, 0.09], W4 5 2151.0,
P4 � 10210 95% CI4 [0.04, 0.07]). Similar findings were seen
in the growth case, both for the sparsity (Fig. 6C) (12-dendrite
vs. 6-dendrite: Kolmogorov–Smirnov test, D 5 0.956,
P � 10216 and 12-dendrite vs. 3-dendrite: Kolmogorov–Smir-
nov test, D 5 1.000, P � 10216) and pattern separation effi-
ciency (Fig. 6D) (12-dendrite vs. 6-dendrite: Wilcoxon test,
W1 5 2252.5, P1 � 10212, 95% CI1 [0.06, 0.10],
W2 5 2387.0, P2 � 10215, 95% CI2 [0.09, 0.12],
W3 5 2408.5, P3 � 10215, 95% CI3 [0.07, 0.11],
W4 5 2258.5, P4 � 10212, 95% CI4 [0.05, 0.08], and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1–4 5 2500.0, P1–

4 � 10216, 95% CI1 [0.24, 0.28], 95% CI2 [0.22, 0.26], 95%
CI3 [0.20, 0.24], 95% CI4 [0.16, 0.19]). Both sparsity and
pattern separation efficiency were highest in the 12-dendrite,
followed by the 6-dendrite and the 3-dendrite models. The
same was seen when using the rate-based distance metric to
evaluate sparsity and pattern separation (Supporting Informa-
tion Fig. S5). In all cases, differences were more pronounced in
the growth compared to the pruning case, in line with the
findings of Figures 4 and 5.

Similar results were obtained when correcting the input
resistance by increasing the dimensions of the somatic compart-
ment (Supporting Information Table S2). For the pruning
models, the soma increased by a factor of 1.278 and 1.527 in
the 6- and 3-dendrite models, respectively while for the growth
models, these factors were 1.513 and 1.746, respectively. As
shown in Figures 7(A,B), for the pruning case, differences in
sparsity (12-dendrite vs. 6-dendrite: Kolmogorov–Smirnov test,
D 5 0.820, P � 10216 and 12-dendrite vs. 3-dendrite, Kol-
mogorov–Smirnov test, D 5 1.000, P � 10216) and pattern
separation efficiency (12-dendrite vs. 6-dendrite: Wilcoxon test,
W1 5 1420.5, P1 5 0.2412, 95% CI1 [20.01, 0.03],
W2 5 1588.0, P2 5 0.0020, 95% CI2 [0.01, 0.04],
W3 5 1713.5, P3 5 0.0014, 95% CI3 [0.02, 0.05],
W4 5 1600.5, P4 5 0.0158, 95% CI1 [0.01, 0.04] and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1 5 1914.0,
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P1 � 1026, 95% CI1 [0.03, 0.07], W2 5 1878.0, P2 � 1025,
95% CI2 [0.02, 0.06], W3 5 1979.5, P3 � 1027, 95% CI3

[0.03, 0.07], W4 5 1891.5, P4 � 1025, 95% CI4 [0.02,
0.05]) among corrected models decreased significantly but were
not eliminated. Similar findings were seen in the growth case,
both for the sparsity (12-dendrite vs. 6-dendrite: Kolmogorov–
Smirnov test, D 5 1.000, P � 10216 and 12-dendrite vs. 3-
dendrite: Kolmogorov–Smirnov test, D 5 1.000, P � 10216)
and pattern separation efficiency (12-dendrite vs. 6-dendrite:

Wilcoxon test, W1 5 1965.0, P1 � 10213, 95% CI1 [0.04,
0.08], W2 5 1961.5, P2 � 1026, 95% CI2 [0.03, 0.07],
W3 5 2112.5, P3 � 1029, 95% CI3 [0.04, 0.08],
W4 5 1919.5, P4 � 1026, 95% CI4 [0.02, 0.06] and 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1 5 2465.0,
P1 � 10216 95% CI1 [0.12, 0.15], W2 5 2463.0,
P2 � 10216, 95% CI2 [0.10, 0.14], W3 5 2470.0,
P3 � 10216, 95% CI3 [0.09, 0.12], W4 5 2388.0,
P4 � 10215 95% CI4 [0.07, 0.10]). Both sparsity and pattern

FIGURE 6. Effect of GC dendritic pruning (top panel) and
growth (bottom panel) on pattern separation when the input resis-
tance (Rin) is the same across models. To match Rin, the leak con-
ductance (gleak) was increased by a factor of 1.695 and 1.230, in
the 3- and 6-dendrite models, respectively. A. Corresponding prob-
ability density functions of GC activity for the three GC models in
response to a single input pattern at 40 Hz. GC activity distribu-
tions become more similar but remain inversely analogous to the
number of dendrites: as the number of dendrites increase, the GC
population becomes sparser. The respective mean firing rates of
GCs are shown in Table 6. B. Input/output population distances
(f1), for the 3-dendrite (blue), 6-dendrite (red), and 12-dendrite

(green) GC models in response to the presentation of two overlap-
ping input patterns at 40 Hz as depicted in Figure 1B. The dashed
line denotes the limit above which the model performs pattern
separation. Performance improves with the number of dendrites.
C. The same as in A. for the growth experiment. While distribu-
tions move closer to one another, the inverse relationship between
dendritic number and mean sparsity is preserved. D. Same as in
B. for the growth experiment. Pattern separation efficiency still
correlates with the number of dendrites. Supporting Information
Figure S5 depicts the corresponding pattern separation efficiency
based on ‘rate distance’. [Color figure can be viewed at wileyonli-
nelibrary.com]
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separation efficiency remained highest in the 12-dendrite, fol-
lowed by the 6-dendrite and the 3-dendrite models. Similar find-
ings were obtained when using the rate-based distance metric to
assess pattern separation (Supporting Information Fig. S6). Note
that correcting the input resistance via increasing the somatic
compartment is more effective than increasing the leak conduc-
tance, as both Cm and gleak increase proportionally, keeping the
membrane time constant identical across model cells.

Overall, these simulations suggest that while the input resis-
tance is a key determinant of GC neuron activity, it does not
fully explain the differences in sparsity and pattern separation
efficiency among models with three, six or 12 GC dendrites.

Sparsity is the key determinant of pattern separation effi-
ciency. The question that arises naturally from the above
findings is whether further manipulations of the leak

FIGURE 7. Effect of GC dendritic pruning (top panel) and
growth (bottom panel) on pattern separation when matching the
input resistance (R in) via increasing the somatic size. The neuronal
soma of the 3- and 6-dendrite models was increased by a factor of
1.527 and 1.278, respectively. A. Corresponding probability densi-
ty functions in response to a single input pattern at 40 Hz. While
distributions move closer, the mean activity remains inversely anal-
ogous to the number of dendrites. The respective mean firing rates
of GCs are shown in Table 6. B. Input/output population distan-
ces (f1), for the 3-dendrite (blue), 6-dendrite (red), and 12-
dendrite (green) GC models in response to the presentation of two
overlapping input patterns at 40 Hz as depicted in Figure 1B. The

dashed line denotes the limit above which the model performs pat-
tern separation. Performance becomes similar yet statistically dif-
ferent among the three corrected models and remains analogous to
the number of dendrites. C. Same as in A. for the growth experi-
ment. The inverse relationship between dendritic number and
mean sparsity is preserved. D. Same as in B. for the growth experi-
ment. Pattern separation efficiency remains different and analogs
to the number of dendrites. Supporting Information Figure S6
depicts the corresponding pattern separation efficiency based on
‘rate distance’. [Color figure can be viewed at wileyonlinelibrary.
com]
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conductance and/or somatic dimensions could match sparsity
across all models? Moreover, would matching sparsity result in
identical pattern separation efficiency, thus making sparsity the
key determinant of pattern separation (O’Reilly and
McClelland, 1994; Johnston et al., 2015)? To answer these
questions we explored the effects of manipulating intrinsic
(gleak and somatic dimensions) as well as extrinsic (synaptic
weight) mechanisms in the 3-, 6-, and 12-dendrite GC models.
Due to the consistent nature of the previous results, the
remaining simulations were performed using the pruning
experiment configuration to generate the 3- and 6-dendrite GC
models and the population-based metric to assess pattern sepa-
ration. Their corresponding properties are shown in Supporting
Information Table S3 and the corrected dendritic integration
profiles in Supporting Information Figure S7.

As shown in Figure 8Ai, increasing gleak by a factor of 1.58
and 2.48, in the 6- and 3-dendrite GC models respectively,
eliminated the differences in sparsity distributions compared to
the control (12-dendrite vs. 6-dendrite: Kolmogorov–Smirnov
test, D 5 0.096, P 5 0.1995 and 12-dendrite vs. 3-dendrite:
Kolmogorov–Smirnov test, D 5 0.100, P 5 0.1641). The
same was observed with respect to pattern separation efficiency
(Fig. 8Aii). All three models exhibited identical performance
across all difficulty levels (12-dendrite vs. 6-dendrite: Wilcoxon
test, W1 5 1148.5, P1 5 0.4863, 95% CI1 [20.03, 0.01],
W2 5 1263.5, P2 5 0.9286, 95% CI2 [20.02, 0.02],
W3 5 1337.5, P3 5 0.5486, 95% CI3 [20.01, 0.02],
W4 5 1192.0, P4 5 0.6918, 95% CI4 [20.02, 0.02], 12-
dendrite vs. 3-dendrite: Wilcoxon test, W1 5 1195.5,
P1 5 0.7097, 95% CI1 [20.03, 0.01], W2 5 1067.5,
P2 5 0.2096, 95% CI2 [20.04, 0.01], W3 5 1326.5,
P3 5 0.6003, 95% CI3 [20.01, 0.02], W4 5 1246.5,
P4 5 0.9835, 95% CI4 [20.02, 0.02]). Similarly, increasing
the diameter and length of the somatic compartment in the 6-
and 3-dendrite models by 1.480 and 1.870, respectively (Fig.
8Bi) resulted in similar sparsity (12-dendrite vs. 6-dendrite:
Kolmogorov–Smirnov test, D 5 0.108, p 5 0.1083 and 12-
dendrite vs. 3-dendrite: Kolmogorov–Smirnov test, D 5 0.040,
P 5 0.9883). Similarly, pattern separation efficiency was iden-
tical across all models and difficulty levels (Fig. 8Bii) (12-den-
drite vs. 6-dendrite: Wilcoxon test, W1 5 1092.0,
P1 5 0.2776, 95% CI1 [20.04, 0.01], W2 5 1106.5,
P2 5 0.3242, 95% CI2 [20.03, 0.01], W3 5 1350.5,
P3 5 0.4906, 95% CI3 [20.01, 0.03], W4 5 1378.0,
P4 5 0.3794, 95% CI4 [20.01, 0.03] and 12-dendrite vs. 3-
dendrite: Wilcoxon test, W1 5 1144.0, P1 5 0.4670, 95%
CI1 [20.03, 0.01], W2 5 937.5, P2 5 0.0315, 95% CI2

[20.04, 0.00], W3 5 1281.0, P3 5 0.8335, 95% CI3 [20.02,
0.02], W4 5 1117.5, P4 5 0.3628, 95% CI4 [20.03, 0.01]).
It should be noted that the abovementioned sizes are not realis-
tic for the somata of GC neurons. Nevertheless, these findings
highlight the key role of sparsity in controlling pattern separa-
tion efficiency, irrespectively of the number of GC dendrites.
Moreover, these simulations predict that intrinsic mechanisms
of GC neurons could potentially be used to correct for mor-
phological alterations in order to control sparsity levels.

We next investigated whether sparsity levels can also be con-
trolled via extrinsic (network) rather than intrinsic mechanisms
such as changes in the synaptic weights between EC and GC
neurons, namely by decreasing the strength of the input to the
DG network. Specifically, the synaptic weight of the EC

$
GC

synapses in the 6- and 3-dendrite models was set to 0.75 and
0.56, respectively (the control value in the 12-dendrite model
was 1.00). Again, as shown in Figure 8Ci, differences in sparsi-
ty were eliminated among the three dendrite models (12-den-
drite vs. 6-dendrite: Kolmogorov–Smirnov test, D 5 0.092,
P 5 0.2406 and 12-dendrite vs. 3-dendrite: Kolmogorov–
Smirnov test, D 5 0.092, P 5 0.2406). Finally, pattern separa-
tion efficiency was nearly identical cross all models and difficul-
ty levels (Fig. 8Cii), with a tiny difference in the 3-dendrite
model for patterns overlapping by 90% (12-dendrite vs. 6-den-
drite: Wilcoxon test, W1 5 1085.5, P1 5 0.2582, 95% CI1

[20.04, 0.01], W2 5 1072.5, P2 5 0.2224, 95% CI2 [20.03,
0.01], W3 5 1316.5, P3 5 0.6491, 95% CI3 [20.02, 0.02],
W4 5 1122.0, P4 5 0.379495% CI4 [20.03, 0.01], and 12-
dendrite vs. 6-dendrite: Wilcoxon test, W1 5 1117.5,
P1 5 0.3628, 95% CI1 [20.04,0.01], W2 5 1052.5,
P2 5 0.1744, 95% CI2 [20.04, 0.01], W3 5 966.0,
P3 5 0.0507, 95% CI3 [20.01, 0.01], W4 5 773.0,
P4 5 0.0010, 95% CI4 [20.05, 20.01)]).

In sum, these simulations predict that sparsity is the key
determinant of pattern separation efficiency. Sparsity of the GC
neuronal population can be controlled via multiple mecha-
nisms, including the growth of dendrites. Pruning of dendrites
can be compensated by the growth of very large somata, a large
increase in the leak channel conductance or a significant
decrease in the strength of the EC input via synaptic weight
changes.

What Have We Learnt from the Model?

The above simulations suggest that dendrites contribute to
pattern separation via enhancing sparsity, yet they are not
essential for this task. Different mechanisms, both intrinsic and
extrinsic, can achieve the same effects. What is not entirely
clear is whether the relationship between sparsity and pattern
separation efficiency is identical for all three GC models across
different sparsity levels. To test this we challenged the three
models (deduced from the pruning experiment) with the task
of separating pairs of inputs that overlap by 80%, while vary-
ing the synaptic weight of the EC

$
GC connections so as to

induce different levels of sparsity. Only corrected models
(namely exhibiting the same level of sparsity) were compared.
As shown in Figure 9A, for any given sparsity level, pattern
separation efficiency was almost identical for all three dendrite
models (Wilcoxon test, P > 0.05). These simulations suggest
that indeed, when it comes to pattern separation, the key
determinant is the level of GC population sparsity. Having
multiple dendrites simply helps achieving high levels of sparsity
because the probability of generating somatic spikes when
inputs are distributed across many (rather than few) dendrites
is significantly smaller.
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Figure 9B summarizes the predictions made by our DG
model, whereby sparsity plays a central role in pattern separa-
tion. We already knew from previous studies that inhibition is

one of the key mechanisms mediating sparsity and in turn pat-
tern separation (Myers and Scharfman, 2009, 2011; Jinde
et al., 2012). What we propose here is that the presence of

FIGURE 8. Effect of matching sparsity on pattern separation
efficiency. A. The “leak” conductance, gleak, of the 6- and 3-
dendrite GC models increases by a factor of 1.58 and 2.48, respec-
tively. A. i Resulting GC activity distributions are not statistically
different. A. ii Networks with corrected GC models have identical
performance. Differences in pattern separation using the popula-
tion metric are not statistically significant. B. GC activity distribu-
tions are matched by increasing the soma diameter and length of
the 6- and 3-dendrite GC models by 1.48 and 1.87, respectively.

B. ii The network with corrected 3-dendrite GC models has a
slightly smaller pattern separation efficiency compared to the other
two probably because its activity distribution is wider. Generally
the three models have very similar pattern separation performance.
C. GC activity distributions are matched by decreasing the EC

$
GC

synaptic weight from 1.00, to 0.75 and 0.56 in the 6-, and 3- den-
drite models, respectively. Pattern separation efficiency is statisti-
cally the same across all corrected GC models. [Color figure can
be viewed at wileyonlinelibrary.com]
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dendrites comes with a bonus in the DG network: it provides
another mechanism for increasing sparsity and as such has a
key role in pattern separation. While dendrites appear to be
sufficient, they are not necessary for achieving high sparsity lev-
els. Both intrinsic and network mechanisms can be used to
achieve the same effects. In this study, we identified some of
these mechanisms but it is likely that there are many others
and/or their combinations can also achieve similar results.

DISCUSSION

Summary of the Results

The model

The goal of this study was to reveal whether and how den-
drites of principal (GC) cells can mediate pattern separation in

the DG via the use of a computational approach. Towards this
goal, we introduced a novel network model of the DG that
includes the four major neuronal cell types found in this area,
namely granule cells, Mossy cells, Basket cells, and HIPP cells.
GCs were modeled as two stage integrators via the addition of
dendritic branches whose properties are loosely constrained by
electrophysiological and anatomical data. The rest of the neu-
ronal types were simulated as exponential leaky integrate-and-
fire neurons with adaptation. The proposed hybrid model
serves as a bridge between simplified point neuron network
models (Myers and Scharfman, 2009) and more detailed bio-
physical models (Santhakumar et al., 2005) of the DG. As
such, it provides a biologically relevant and computationally
efficient tool for the in depth exploration of different factors
that may contribute to pattern separation, going beyond the
scope of this particular study. The selective use of dendritic
compartments only in GCs keeps the model complexity low
while at the same time allowing the dissection of some basic
GC dendritic mechanisms in pattern separation. To our knowl-
edge this is the first DG network model of its kind.

Model predictions

Inhibition is known to control neuronal activity by increas-
ing sparsity, as the number of active neurons is smaller for a
given stimulus (Jung and McNaughton, 1993) therefore,
enhancing pattern separation (Aimone et al., 2011). In the pre-
sented model, inhibition is provided to the network both
directly via BCs (perisomatic inhibition) and HIPP cells (den-
dritic inhibition) and indirectly through the MC circuitry. We
find that MC loss, while increasing GC cell activity in line
with the experimental data of (Ratzliff et al., 2002), does not
lead to hyper-excitability yet we do predict a measurable deficit
on pattern separation.

To our knowledge, our model is the first to predict a role of
GC dendrites in pattern separation. This role is an indirect
one and results from the inherent increase in sparsity of the
GC cells that is endowed by the presence of dendrites. Specifi-
cally, we show that the number of GC dendrites correlates pos-
itively with pattern separation efficiency due to the higher
sparsity levels provided by having multiple dendrites. In our
control model, higher sparsity arises from the requirement of
having at least two dendrites simultaneously active in order to
fire a GC model neuron. This emerged from the calibration of
GC properties against experimental data, thus is considered
biologically relevant. As a result, GCs with large numbers of
dendrites have a lower probability of activation given a fixed
number of afferents, therefore increased network sparsity. We
also predict that under conditions of dendritic pruning and/or
early in the growth stages of GCs, high sparsity can be
achieved with alternative mechanisms, both intrinsic (e.g., leak
conductance, somatic dimensions) and extrinsic (e.g., synaptic
weights) making dendrites a sufficient but not necessary condi-
tion for high pattern separation efficiency. These results sup-
port the hypothesis that sparsity in GC activity improves
pattern separation (O’Reilly and McClelland, 1994) and

FIGURE 9. A. The ratio of f1 outputð Þ to f1 inputð Þ for all three
models as function of GC activity. Each dot represents an average
of 20 trials for a specific synaptic weight value. We used values in
the range of 0.0 to 25.0. For any given sparsity level, pattern sepa-
ration efficiency is identical across all corrected GC models. B.
Schematic representation of our proposed working hypothesis
based on model predictions: sparsity is the key determinant of pat-
tern separation. Sparsity is in turn controlled by a number of
mechanisms, including inhibition, the presence of dendrites as
well as various intrinsic and extrinsic mechanisms. [Color figure
can be viewed at wileyonlinelibrary.com]
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provide a list of alternative mechanisms for controlling sparsity
in the DG. It is highly possible that additional mechanisms
beyond the ones examined here affect sparsity, such as specific
ionic channels as well as the morphological complexity of the
dendritic tree. These mechanisms could be explored in the
future with the use of more detailed models.

Implications for Pathology

As part of the hippocampus, the DG is long hypothesized to
play a key role in associative memories, and especially when
those are related with events (Morris, 2006). Furthermore, the
hippocampal DG has been implicated as the subregion most
sensitive to the effects of advancing age (Small et al., 2004).
While the CA1 subregion is directly associated with Alz-
heimer’s disease (AD) due to cell loss, as demonstrated in
humans (West et al., 2006), DG alterations have also been
reported in patients with the aforementioned disease (Scheff
and Price, 2003), including changes in granule cell dendrites
(Einstein et al., 1994). Specifically, the dendrites of GCs in
AD patients appear shorter, with fewer branches and fewer
spines than those of matched controls. Moreover, in AD
patients the dendrites of granular cells were reported to lose
approximately 50% of their spines (Einstein et al., 1994). Our
simulations show that the most important of the above-listed
observations with respect to pattern separation performed by
the DG would be the shortening of dendritic branches via the
loss of branch points rather than the loss of side branches while
maintaining the same dendritic length. Total dendritic length
of GCs was previously linked to AD, which in turn is aligned
with the evidence that patients with AD, who have extensive
hippocampal and parahippocampal damage, lost their ability to
encode information in distinct, orthogonal representations
(Ally et al., 2013).

The DG is also associated with epileptogenesis in temporal
lobe epilepsy (TLE) and hence, many computational models
are used to investigate the effect of GC alterations in epilepsy
(Tejada and Roque, 2014; Faghihi and Moustafa, 2015). More-
over, hilar cell loss has been reported in animal models after
concussive head injury and also under TLE (Mathern et al.,
1995). It remains unclear however, which hilar neurons are lost
in animal models of TLE. As a result, there are currently three
theories for TLE: (a) the “dormant basket cell” hypothesis
according to which the hyper-excitability in GC population is
due to the loss of MCs which normally excite BCs which in
turn provide inhibition to GCs. (b) The “irritable mossy cell”
hypothesis according to which surviving MCs hyper-excite GCs
by sending uncontrolled excitation, and c) the MC loss-
induced sprouting hypothesis (mossy fiber sprouting) (Ratzliff
et al., 2002). We show that under conditions of MC loss, GCs
exhibit increased activity (but not hyper-excitability) which
should lead to pattern separation deficits. While our results are
in agreement with the findings of (Ratzliff et al., 2002), more
experiments need to be performed to revolve this debatable
issue.

Simplifications of the Model, and Future
Directions

Several simplifications were made in modeling the individual
cells and in implementing the DG network. First, we used sim-
ple point neurons in order to simulate the neuronal cells of
DG. Although these models could capture the average spiking
properties of a given neuron, it remains unclear how the geo-
metrical characteristics of those neurons could affect their
behavior. Another simplification concerns the effects of synaptic
failure rates and receptor desensitization (Harney and Jones,
2002) in the DG, which were not included in the model.

An important aspect of DG function is the long-term synaptic
plasticity, by which the connections from PP to GCs are modi-
fied. Previous DG models used a form of Hebbian learning that
incorporates features of long-term potentiation and depression
(Rolls, 2007). However, such a function is most likely to be rele-
vant when stimuli are presented repetitively. On the contrary, the
current model is used to distinguish patterns presented in single
instances and accordingly, plasticity is not considered. Future
work may address such issues along with including other inter-
neuronal populations such as the Molecular layer Perforant Path-
associated (MOPP) and the Hilar Commissural-Associational
pathway related (HICAP) cells, especially when more data on
their intrinsic and connectivity properties become known.

Moreover, GCs are among few cells that undergo neurogenesis
in adulthood (Eriksson, 2003; Aimone et al., 2010). In a recent
study by Nakashiba et al. (2012), the role of young GCs in pattern
separation was investigated and it was concluded that new neurons
are required for the discrimination of similar inputs. Since the pre-
sented model is used to examine specific alterations of GCs and
their effect on pattern separation, neurogenesis is not incorporated
but would be considered in the future. Overall, the abovemen-
tioned simplifications are unlikely to have a major effect on the
basic conclusions about the contribution of morphological altera-
tions of GC dendrites to pattern separation.
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2015. Paradox of pattern separation and adult neurogenesis: A
dual role for new neurons balancing memory resolution and
robustness. Neurobiol Learn Mem.

Jung MW, McNaughton BL. 1993. Spatial selectivity of unit activity
in the hippocampal granular layer. Hippocampus 3:165–182.

Kirwan CB, Stark CEL. 2007. Overcoming interference: An fMRI
investigation of pattern separation in the medial temporal lobe.
Learn Mem 14:625–633.

Kneisler TB, Dingledine R. 1995. Spontaneous and synaptic input
from granule cells and the perforant path to dentate basket cells in
the rat hippocampus. Hippocampus 5:151–164.

Krueppel R, Remy S, Beck H. 2011. Dendritic integration in hippo-
campal dentate granule cells. Neuron 71:512–528.

Lacy JW, Yassa MA, Stark SM, Muftuler LT, Stark CEL. 2011. Dis-
tinct pattern separation related transfer functions in human CA3/
dentate and CA1 revealed using high-resolution fMRI and variable
mnemonic similarity. Learn Mem 18:15–18.

Larimer P, Strowbridge BW. 2008. Nonrandom local circuits in the
dentate gyrus. J Neurosci 28:12212212223.

Leutgeb JK, Leutgeb S, Moser MB, Moser EI. 2007. Pattern separa-
tion in the dentate gyrus and CA3 of the hippocampus. Science
315:961–966.

Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA, McNaughton
BL, Moser MB, Moser EI. 2005. Progressive transformation of
hippocampal neuronal representations in “morphed” environments.
Neuron 48:345–348.

Leutgeb S, Leutgeb JK, Treves A, Moser MB, Moser EI. 2004. Dis-
tinct ensemble codes in hippocampal areas CA3 and CA1. Science
305(80–):1295–1298.

L€ubke J, Frotscher M, Spruston N. 1998. Specialized electrophysiolog-
ical properties of anatomically identified neurons in the hilar
region of the rat fascia dentata. J Neurophysiol 79:1518–1534.

DENDRITIC ROLE IN PATTERN SEPARATION 109

Hippocampus



Lynch M, Sayin U, Golarai G, Sutula T. 2000. NMDA receptor-
dependent plasticity of granule cell spiking in the dentate gyrus of
normal and epileptic rats. J Neurophysiol 84:2868–2879.

Marr D. 1971. Simple memory: A theory for archicortex. Philos Trans
R Soc Lond B Biol Sci 262:23–81.

Marrone DF, Adams AA, Satvat E. 2011. Increased pattern separation
in the aged fascia dentata. Neurobiol Aging 32:
2317.e2322317.e32.

Mathern GW, Babb TL, Vickrey BG, Melendez M, Pretorius JK.
1995. The clinical–pathogenic mechanisms of hippocampal neuron
loss and surgical outcomes in temporal lobe epilepsy. Brain 118:
1052118.

McNaughton BL, Barnes CA, Mizumori SJY, Green EJ, Sharp PE.
1991. Contribution of granule cells to spatial representations in
hippocampal circuits: A puzzle. In: Morrell F, editor. Kindling and
Synaptic Plasticity: The Legacy of Graham Goddar. Boston:
Springer-Verlag. pp 110–123.

Morris RGM. 2006. Elements of a neurobiological theory of hippo-
campal function: The role of synaptic plasticity, synaptic tagging
and schemas. Eur J Neurosci 23:2829–2846.

Motley SE, Kirwan CB. 2012. A parametric investigation of pattern
separation processes in the medial temporal lobe. J Neurosci 32:
13076–13084.

Myers CE, Scharfman HE. 2009. A role for hilar cells in pattern sepa-
ration in the dentate gyrus: A computational approach. Hippocam-
pus 19:321–337.

Myers CE, Scharfman HE. 2011. Pattern separation in the dentate
gyrus: A role for the CA3 backprojection. Hippocampus 21:
119021215.

Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL,
McHugh TJ, Barrera VR, Chittajallu R, Iwamoto KS, McBain CJ,
Fanselow MS, Tonegawa S. 2012. Young dentate granule cells
mediate pattern separation, whereas old granule cells facilitate pat-
tern completion. Cell 149:188–201.

Neuh€auser M. 2011. Nonparametric Statistical Tests: A Computation-
al Approach. New York: CRC Press.

Nitz D, McNaughton B. 2004. Differential modulation of CA1 and
dentate gyrus interneurons during exploration of novel environ-
ments. J Neurophysiol 91:863–872.

O’Reilly RC, McClelland JL. 1994. Hippocampal conjunctive encod-
ing, storage, and recall: Avoiding a trade-off. Hippocampus 4:
6612682.

Olshausen BA, Field DJ. 2004. Sparse coding of sensory inputs. Curr
Opin Neurobiol 14:4812487.

Petrantonakis PC, Poirazi P. 2014. A compressed sensing perspective
of hippocampal function. Front Syst Neurosci 8:1213.

Petrantonakis PC, Poirazi P. 2015. Dentate gyrus circuitry features
improve performance of sparse approximation algorithms. PLoS
One 10:e0117023.

Ratzliff ADH, Howard AL, Santhakumar V, Osapay I, Soltesz I.
2004. Rapid deletion of mossy cells does not result in a hyperexcit-
able dentate gyrus: Implications for epileptogenesis. J Neurosci 24:
2259–2269.

Ratzliff AH, Santhakumar V, Howard A, Soltesz I. 2002. Mossy cells
in epilepsy: Rigor mortis or vigor mortis?. Trends Neurosci 25:
1402144.

Rolls ET. 2007. An attractor network in the hippocampus: Theory
and neurophysiology. Learn Mem 14:7142731.

Roth A, Van Rossum MCW. 2009. Modeling synapses. In: De Shutter
E, editor. Computational modeling methods for neuroscientists.
Cambridge, MA: MIT Press. pp 139–160.

Santhakumar V, Aradi I, Soltesz I. 2005. Role of mossy fiber sprout-
ing and mossy cell loss in hyperexcitability: A network model of
the dentate gyrus incorporating cell types and axonal topography.
J Neurophysiol 93:4372453.

Santoro A. 2013. Reassessing pattern separation in the dentate gyrus.
Front Behav Neurosci 7:124.

Satvat E, Schmidt B, Argraves M, Marrone DF, Markus EJ. 2011.
Changes in task demands alter the pattern of zif268 expression in
the dentate gyrus. J Neurosci 31:7163–7167.

Scheff SW, Price DA. 2003. Synaptic pathology in Alzheimer’s disease: A
review of ultrastructural studies. Neurobiol Aging 24:1029–1046.

Schmidt-Hieber C, Bischofberger J. 2010. Fast sodium channel gating
supports localized and efficient axonal action potential initiation.
J Neurosci 30:10233–10242.

Schmidt-Hieber C, Jonas P, Bischofberger J. 2007. Subthreshold den-
dritic signal processing and coincidence detection in dentate gyrus
granule cells. J Neurosci 27:8430–8441.

Sik A, Penttonen M, Buzsaki G. 1997. lnterneurons in the hippocampal den-
tate gyrus: An in vivo intracellular study. Eur J Neurosci 9:5732588.

Sloviter RS, Lømo T. 2012. Updating the lamellar hypothesis of hip-
pocampal organization. Front Neural Circuits 6:102.

Small SA, Chawla MK, Buonocore M, Rapp PR, Barnes CA. 2004.
Imaging correlates of brain function in monkeys and rats isolates a
hippocampal subregion differentially vulnerable to aging. Proc Natl
Acad Sci USA 101:7181–7186.

Squire LR, Stark CEL, Clark RE. 2004. The medial temporal lobe.
Annu Rev Neurosci 27:2792306.

Tejada J, Roque AC. 2014. Computational models of dentate gyrus
with epilepsy-induced morphological alterations in granule cells.
Epilepsy Behav 38:63–70.

Treves A, Rolls ET. 1994. Computational analysis of the role of the
hippocampus in memory. Hippocampus 4:3742391.

Treves A, Tashiro A, Witter MP, Moser EI. 2008. What is the mam-
malian dentate gyrus good for? Neuroscience 154:115521172.

West MJ, Kawas CH, Martin LJ, Troncoso JC. 2006. The CA1 region
of the human hippocampus is a hot spot in Alzheimer’s disease.
Ann N Y Acad Sci 908:255–259.

West MJ, Slomianka L, Gundersen HJ. 1991. Unbiased stereological esti-
mation of the total number of neurons in the subdivisions of the rat
hippocampus using the optical fractionator. Anat Rec 231:4822497.

Yassa MA, Stark CEL. 2011. Pattern separation in the hippocampus.
Trends Neurosci 34:5152525.

Yim MY, Hanuschkin A, Wolfart J. 2015. Intrinsic rescaling of granule
cells restores pattern separation ability of a dentate gyrus network mod-
el during epileptic hyperexcitability. Hippocampus 25:2972308.

110 CHAVLIS ET AL.

Hippocampus


	l
	l
	l
	l
	l

