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Hereditary angioedema (HAE) is a rare disease where known causes involve C1

inhibitor dysfunction or dysregulation of the kinin cascade. The updated HAE

management guidelines recommend performing genetic tests to reach a

precise diagnosis. Unfortunately, genetic tests are still uncommon in the

diagnosis routine. Here, we characterized for the first time the genetic

causes of HAE in affected families from the Canary Islands (Spain). Whole-

exome sequencing data was obtained from 41 affected patients and unaffected

relatives from 29 unrelated families identified in the archipelago. The Hereditary

Angioedema Database Annotation (HADA) tool was used for pathogenicity

classification and causal variant prioritization among the genes known to cause

HAE. Manual reclassification of prioritized variants was used in those families

lacking known causal variants. We detected a total of eight different variants

causing HAE in this patient series, affecting essentially SERPING1 and F12 genes,

one of them being a novel SERPING1 variant (c.686-12A>G) with a predicted

splicing effect which was reclassified as likely pathogenic in one family.

Altogether, the diagnostic yield by assessing previously reported causal genes

and considering variant reclassifications according to the American College of

Medical Genetics guidelines reached 66.7% (95% Confidence Interval [CI]: 30.1-

91.0) in families with more than one affected member and 10.0% (95% CI: 1.8-

33.1) among cases without family information for the disease. Despite the
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genetic causes of many patients remain to be identified, our results reinforce

the need of genetic tests as first-tier diagnostic tool in this disease, as

recommended by the international WAO/EAACI guidelines for the

management of HAE.
KEYWORDS

hereditary angioedema, genetic cause, rare disease, variant interpretation,
precision medicine
Introduction

Hereditary angioedema (HAE) is a rare genetic dominant

condition with incomplete penetrance characterized by

recurrent swellings (edema) affecting the skin, internal organs,

mucosa or the upper airways (1, 2). Where genetic pathogenesis

is known, symptoms are caused by dysfunction of the C1

esterase inhibitor (C1-INH) or dysregulation of the kinin

cascade, leading to bradykinin release and resulting in

inflammation episodes. Bradykinin is a vasoactive peptide and

the main activator of the bradikinin receptor B2 expressed in

endothelial cells (3) whose activation leads to increased vascular

permeability and edema, causing the HAE symptoms (4). HAE

attacks can turn into a life-threatening episode if the edema

develops in the laryngeal track, which leads to the obstruction of

the upper respiratory airways (5). HAE attacks are unpredictable

and often develop in response to triggering factors such as

mental stress (6), use of contraception hormones (7),

infections (8), injuries or surgery interventions (9), and

weather changes (6), among others. HAE prevalence has been

estimated in over 1:50,000 worldwide (10) and has been reported

in all ethnic groups (11).

This genetic condition is typically divided in two main

groups attending to the C1-INH plasmatic levels. The most

frequent form (85% of the cases described) is caused by

decreased levels of C1-INH (11, 12), also known as HAE-C1-

INH of type I. The rest of cases are found either with normal

levels of non-functional C1-INH protein (also known as HAE-

C1-INH of type II) or with normal levels of a functional C1-INH

protein (HAE-nC1-INH). At the moment, more than 450

disease causing variants have been reported in SERPING1 gene

leading to HAE-C1-INH forms (11, 13–15). However, causal

variants affecting other genes of the bradykinin pathway underlie

HAE-nC1-INH cases (11).

The first genetic study in HAE families with normal levels of

C1-INH detected a mutation in the exon nine of F12 (16). FXII

activation increases the bradykinin accumulation, driving to

increased vascular permeability. Surprisingly, only 20% of

patients with HAE-nC1-INH in Europe carry causal variants

in the F12 gene (17). Until 2018, only SERPING1 and F12 were
02
known to cause HAE, which explains why HAE diagnosis has

been mostly based on plasmatic determinations of complement

proteins or the activity. The decreasing costs of Next Generation

Sequencing (NGS) prompted the first whole-exome sequencing

(WES) which allowed to detect variants affecting function in

HAE-nC1-INH patients in angiopoietin (ANGPT1) and

plasminogen (PLG) genes (18, 19). Using the same approach,

Bork et al. also identified variants in the kininogen 1 (KNG1)

gene as another cause of HAE (20). Most recently, two other

causal genes were found by applying WES in HAE-nC1-INH

families, encoding the heparan sulfate 3-O-sulfotransferase 6

(HS3ST6), and myoferlin (MYOF) (21, 22). The latter being

causal strongly suggests a key role of VEGF-mediated signaling

in HAE pathophysiology, although the mechanism triggering

the symptoms remains unclear.

Because of the nonspecific signs, HAE remains a poorly

recognized clinical entity, resulting in delayed diagnoses and

deficient treatment conditions for long periods. In fact, a

reported mean diagnosis delay of 7.9 years, ranging from

months to 50 years, has been recently exposed in the HAE cases

from the Canary Islands (23). Those patients lacking a diagnosis

have an increased risk for morbidities and mortality compared to

those that had been diagnosed, especially if attacks affect the

airways (24). Advances in testing procedures and disease

recognition have not improved HAE diagnosis, still representing

a challenge for professionals (25). Currently, genetic testing is not

part of the clinical diagnosis of HAE routine in many health care

systems despite the updated HAE management guidelines

recommend a genetic-based diagnosis in order to increase the

diagnostic yield and reduce the diagnosis odyssey (11, 26, 27).

Furthermore, the debilitating nature of HAE attacks makes early

and precise diagnosis critical to rapidly establish the actions and

treatments for short and long-term prophylaxis (28). Because of

the importance of establishing an accurate diagnosis and to

prescribe the optimal treatment, many countries have developed

their ownHAE patient registry. This has fostered the development

of standards and specialized facilities to help managing and

diagnosing patients while reducing the diagnosis delay. Here we

present the first genetic characterization of HAE patients from the

Canary Islands (Spain).
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Material and methods

Patient population and setting

The study was approved by the Hospital Universitario Nuestra

Señora de Candelaria (HUNSC; PI 57–17) Ethics Committee and

written informed consent was obtained from all patients and

relatives. The patient cohort is composed by affected individuals

that had compatible clinical history of angioedema attacks without

urticaria, and a differential diagnosis by blood molecular assays. We

excluded patients using medication that were known to trigger

angioedema attacks (i.e., angiotensin-converting enzyme inhibitors)

and patients suffering other pathologies that can potentially cause

angioedema attacks (i.e., hepatitis, HIV, hepatic/renal disorders,

immunological deficiencies, and infections due to Helicobacter

pylori).

HAE diagnosis was based on plasmatic determination of C1-

INH and C4, and C1-INH activity, according to the

international WAO/EAACI guidelines for the management of

HAE (29).
Whole-exome sequencing and
variant calling

DNA was extracted from 4 mL of peripheral blood with

Illustra™ blood genomicPrep kit (GE Healthcare; Chicago, IL).

Alternatively, for pediatric patients and adults where blood sample

extraction was not available, DNA from saliva samples were

obtained with the OG-250 kit (DNA Genotek, Ontario, CA)

following manufacturer’s instructions. DNA concentration was

evaluated using the dsDNA BroadRange Assay Kit for the

Qubit® 3.0 Fluorometer (Termo Fisher Scientific, Waltham, MA).
Frontiers in Immunology 03
Libraries were prepared using the TruSeq Rapid Exome

Library Prep Kit (Illumina, San Francisco, CA). Library sizes

and concentrations were assesed on a TapeStation 4200 (Agilent

Technologies, Santa Clara, CA) and sequences were obtained with

a HiSeq 4000 Sequencing System (Illumina, San Francisco, CA)

with paired-end 75-base reads. PhiX was loaded and sequenced at

1% as an internal control of the experiments (Figure 1).

Sequencing reads were preprocessed with bcl2fastq v2.18

and mapped to hg19/GRCh37 with Burrows-Wheeler Aligner

v0.7.15 (30), and BAM files were processed with Qualimap

v2.2.1 (31), SAMtools v1.3 (32), BEDTools (33), and Picard

v2.10.10 (http://broadinstitute.github.io/picard) for quality

control steps. Variant calling of germline variants was

performed using an in‐house bioinformatics pipeline based on

the Genome Analysis Toolkit (GATK) v.3.8 (34). The pipeline

has been designed for the detection of nucleotide substitutions

(SNVs) and small indels (<50 bp) following the GATK best

practices (35) and its description is publicly available (https://

github.com/genomicsITER/benchmarking/tree/master/WES).

Subsequently, the identified variation was filtered by means

of SAMtools and VCFtools (36) based on “PASS” filter, depth of

coverage per position (≥ 20×), genotype quality (≥ 100), and

mapping quality (≥ 50).

The analysis was carried out at the Teide-HPC

Supercomputing facility (http://teidehpc.iter.es/en).
Variant annotation and causal
variant prioritization

The resulting variant calls were annotated with available

information (Figure 1). For that, ANNOVAR (37) was used to

include the allele frequency in reference populations, gene
FIGURE 1

Schematic representation of the steps followed for patient DNA sequencing data. Algorithms are shown in orange and processed files in blue.
The HAE causal variants prioritized by HADA and the Sanger validation step are shown in green.
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location, known functional consequences, links with disease

based on ClinVar (38) and The Human Gene Mutation

Database (39), and several pathogenicity scores including the

Combined Annotation-Dependent Depletion (CADD, 40),

among others. The classification of pathogenic potential of

variants was obtained and annotated using InterVar software

(41) following the American College of Medical Genetics and

Genomics (ACMG) guidelines (42).

The annotated variant calls were individually processed for

each patient by Hereditary Angioedema Database Annotation

tool (HADA, http://hada.hpc.iter.es/), an in-house designed

variant prioritization server of HAE genes to facilitate the

identification of the variants affecting function as well as other

accompanying information from the literature (13). In those

patients where causal variants were not detected by HADA,

Exomiser v12.1 was used to aim to identify the variants affecting

function causing HAE (43). SQUIRLs v1.3.0 was used to

specifically analyze candidate splicing variants and their

predicted effect, prioritizing them by the internal pathogenicity

score (44).

Finally, the variants that were classified as Variants of

Uncertain Significance (VUS) that could be reclassified as

Pathogenic/Likely Pathogenic variants based on complimentary

information were validated by direct Sanger sequencing of PCR

amplicons from the two strands. This assessment was performed

by Macrogen Spain sequencing services with a customized design

of primers (Supplementary Table 1).
Assessment of potential structural
variants in sequencing data

ExomeDepth v1.1.15 was used to identify putative structural

variants (SVs) that could constitute possible variants affecting

function causing HAE (45). Candidate variants obtained from

BAM files were filtered to remove false positives calls by Bayes

factor (BF) higher than 20.

To provide a clinical interpretation of the candidate SVs,

filtered calls were processed with ClassifyCNV (46), based on the

ACMG guidelines to determine pathogenicity potential.

Complementarily, StrVCTURE (47) was used to distinguish

pathogenic SVs from benign SVs that overlap exons based on

CADD scores. The classification was carried out with the

consensus of both algorithms.
Screening for mobile elements in
sequencing data

At least 17 Alu elements which are in SERPING1 gene have

been reported in the scientific literature. As such, pathogenic

rearrangements associated with this repetitive element have been

estimated to be responsible for approximately 15% of HAE cases
Frontiers in Immunology 04
(48). Because of that, the Soft Clipped Read Alignment Mapper

v1.0.1 (SCRAMble) (49) was used to screen for mobile element

insertions (MEIs) in the exome data, with a particular emphasis

on SERPING1.
Results

Patient population and
sequencing summary

Forty-one patients and nine healthy relatives from 29

unrelated families with HAE diagnoses residing in the Canary

Islands were included in the study. Thirty-seven patients self-

declared European ancestry, two declared ancestry from

Colombia (family 3), and two from Israel (family 5). The

study sample included eight males (19.5%) and 33 females

(80.5%). The protective role of male hormones and the well-

known influence of estrogens as one of the main triggers of HAE

attacks could explain this sexual disbalance (50–52). The

patients were aged between four and 72 years (mean: 36.8 ±

16.9 years) and a positive family history for HAE attacks was

reported for 23 (56.1%) of them. Based on biochemical analysis,

all HAE types are present in the study sample, where HAE-C1-

INH was predominant, with 23 patients diagnosed for HAE type

I (56.1%) and four patients for HAE type II (9.8%). The rest of

patients (14, 34.1%) were diagnosed as HAE-nC1-INH, and

most of them were females (92.8%).

WES of this case series yielded an average of 8.36 Gb per

patient, with an average of 100% of on-target reads and a median

depth of 57×, and a transition/transversion ratio in the range of

3.1 to 3.3.
Causal variant identification and
concordance between clinical and
genetic assessments

Using HADA, we detected a total of six variants affecting

function linked to different HAE types in the study (Table 1 and

Figure 2). SERPING1 was the most commonly affected gene

(n=5). Two unrelated families clinically classified as HAE type I

were carriers of the synonymous variant affecting function

c.751C>T; p.Leu251= (families 4 and 11), which was

previously reported in Spain (53). The missense variant

c.613T>C; p.Cys205Arg, previously described in Spanish cases,

was also found in another family with HAE type I (family 8). We

detected a likely pathogenic frameshift variant affecting function

located in exon 3 of SERPING1 gene, c.143_144delCA;

p.Thr48SerfsTer9, which was associated with decreased C1-

INH plasmatic levels and leading to HAE type I (family 9).

We also detected the causative missense variant c.1396C>T;

p.Arg466Ser in the index patient of family 1. In this family, the
frontiersin.org
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index patient [with normal levels of C1-INH (47 mg/dL),

reduced C1-INH activity (10%) and low C4 levels (1.8 mg/dL)

had similar biochemical findings as his asymptomatic sister

(with normal) levels of C1-INH (65 mg/dl); reduced C1-INH

activity (< 10%), and low C4 levels (7.6 mg/dl)]. Sequence

analysis of this asymptomatic relative also releveled the

missense variant c.1396C>T; p.Arg466Ser. This variant has

been widely reported in Spanish patients in the literature,

although linked to HAE type II instead (54).

Furthermore, a well-known causal variant of F12 (c.983G>T;

p.Thr328Lys) was detected in members of the family 2 with

HAE-nC1-INH (Figure 2). This variant affecting function has

not been previously reported in Spanish patients and is absent

from ExAC (55) and gnomAD (56).

We also identified a missense variant affecting function in

SERPING1 gene that was previously classified as a VUS. The

variant c.1100T>C; p.Leu367Pro was detected in one patient for

which information from relatives was lacking (Figure 3).

Although this variant was described in previous genetic studies

with HAE patients, it lacks population frequency data or
Frontiers in Immunology 05
prediction scores which could supporta a damaging effect,

including individual predictions (SIFT, PolyPhen2, CADD, M-

CAP, among others) and meta scores (MetaLR, MetaSVM,

MetaRNN and REVEL). Despite that, we reclassified it as a

likely pathogenic variant according to the ACMG guidelines

using VarSome (57) based on the classification criteria PM1

(moderate), PM2 (moderate), PM5 (moderate), PP2

(supporting), and PP3 (supporting).

The manual inspection of sequencing data in the positions

with candidate calls for SVs and MEIs revealed that all the

prioritized findings were false positives due to low depth of

coverage in the inspected regions, therefore, offering insufficient

support to declare variants.
Splicing defects detected

The splicing variant defect c.686-12A>G in SERPING1 was

identified in all the affected patients of family 3 (Figure 4). This

variant was previously reported in two unrelated Italian patients
FIGURE 2

Pedigrees of unrelated HAE families in the Canary Islands.
TABLE 1 Detected causal variants affecting function of HAE in this study.

Family ID Individual ID Gene Chr Position start-end HGVS Aminoacid change HAE type ACMG class

1 1, 4 SERPING1 11 57381947- 57381947 c.1396C>T p.Arg466Cys II Pathogenic

2 5, 6 F12 5 176831232- 176831232 c.983G>T p.Thr328Lys HAE-nC1-INH Likely pathogenic

3 1, 2, 3 SERPING1 11 57373471- 57373471 c.686-12A>G None I Likely pathogenic†

4 1, 2 SERPING1 11 57373548- 57373548 c.751C>T p.Leu251= I Benign

5 1 SERPING1 11 57369570- 57369570 c.613T>C p.Cys205Arg I Likely pathogenic

9 1, 2 SERPING1 11 57367442- 57367442 c.143_144delCA p.Thr48SerfsTer9 I Likely pathogenic

10 1 SERPING1 11 57378700-57378700 c.1100T>C p.Leu367Pro I Likely pathogenic†

11 1 SERPING1 11 57373548- 57373548 c.751C>T p.Leu251= I Benign
†Validated previously VUS reclassified according to publicly available genomic information.
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(58) and in one case of a Serbian HAE type I family (59).

However, despite the authors did not assess the pathogenicity of

the variant, its function was assessed using a minigene in vitro

model (60). According to that study, the c.686-12A>G variant

was found to provoke an aberrant splicing effect possibly

triggering transcript degradation as deduced by the minimal

amount of the transcript detected in the patient’s blood. Based

on this extended information, we then scored this variant with

the following ACMG criteria: BP4 (supporting), PS2 (strong),

PM2 (moderate), PP1 (supporting), PP3 (supporting), and PP4

(supporting). As a result, VarSome reclassified the c.686-12A>G

variant from VUS to Likely Pathogenic.
Frontiers in Immunology 06
Diagnostic yield

Aggregating all the described evidence for the variants

affecting function detected across study patients from families

with different affected members, we obtained a genetic diagnostic

yield of 66.7% (95% Confidence Interval [CI]: 30.1-91.0%; 6/9

families) when considering only the previously known causal

variants (Figure 2). However, the genetic diagnosis yield among

proband-only cases decreased to 10.0% (95% CI: 1.8-33.1%; 2/20

cases). This finding supports the recommendation of the WAO/

EAACI current guidelines for HAE management to recruit

unaffected family members for causal variant screening.
A B

FIGURE 4

Pedigree of HAE affected family without previously reported causal variant (A) and representation generated by SQUIRLs of predicted acceptor
site for the novel SERPING1 c.686-12A>G affecting splice variant (B).
FIGURE 3

IGV view of sequencing reads supporting each allele of SERPING1 variant (up), and Sanger sequencing validation showing both alleles (down).
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Discussion

In recent years, the widely use of NGS in the clinical field has

significantly contributed to the achievement of early and

accurate diagnosis. In this context, we aimed to characterize

for the first time the underlying genetic causes of HAE in the

Canary Islands, where clinical studies have estimated a

prevalence of around 1.90:100,000 (23). This prevalence is

higher than the that reported for overall Spain and is closer to

that observed in other European studies, estimated in 2:100,000

(53). The isolation and the recent demographic history of the

Canary Islands population could explain the HAE prevalence in

the archipelago. Genetic studies have highlighted that the genes

from the regulation of inflammatory response and the

complement cascade are significantly enriched in the genomic

regions that harbor distinctive genetic variation of this

population (61). These findings, together with the estimated

higher prevalence of HAE in the Canary Islands, may add to the

underlying genetic factors involved in angioedema that have not

been identified so far. In this context, NGS-based studies with

HAE affected individuals and families are being constantly

implemented in several countries with the aim of increasing

the diagnostic yield, such as Denmark (62), Saudi Arabia (63),

Turkey (64), Japan (65), Portugal (66), Greece (67), Norway

(68), Switzerland (69), Croatia (70), China (71), Romania (72),

Austria (73), and Puerto Rico (74), among others. However,

NGS-based genetic studies have not been common in HAE

studies until recently (17). Part of the explanation may reside in

the fact that only two causal genes were identified until 2018 and

that clinical diagnosis was essentially based on clinical symptoms

and biochemical measurements of C4 and C1-INH levels/C1-

INH activity in plasma (11). In certain cases, the clinicians could

not refine the diagnosis in HAE borderline patients. In these

cases, WES brings new and efficient opportunities to clearly

identify the underlaying causes, especially in those without C1-

INH deficiency (11). Besides, obtaining WES from all patients

offers the possibility to unravel novel disease genes, as well as to

identify the underlying causes in the known HAE genes in a

single test. In this context, this study describes the first step in the

genetic characterization of HAE patients from the Canary

Islands. Subsequent studies based on phenotype-driven

prioritizations of causal variants from the whole-exome and

genome-wide studies will aim to identify novel genetic factors

involved in HAE in this population.

Following the international WAO/EAACI guidelines for the

management of HAE (26), we have obtained two remarkable

results in one of the families. First, we amended the initial

diagnosis based on the clinical and biochemical studies, which

supported a HAE type I in family 1. However, the prioritization

of genetic variants revealed a well-known variant of HAE type II

(SERPING1; c.1396C>T). Secondly, this variant was also

detected in one asymptomatic relative, allowing a diagnostic

anticipation to the manifestation of symptoms in this family
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member. The development of bioinformatics tools focused on

variant interpretation in the context of rare diseases accelerates

diagnosis accuracy, which translates into a great benefit for

patients and their families. However, we face a global problem

with the high proportion of VUS detected in NGS-based studies,

since it complicates an accurate clinical diagnosis identifying the

genetic causes, as recommended by current international

guidelines for HAE patient management. In addition, there is

also a widespread conflict in the pathogenic classification rules

for genetic variants. In family 4, we identified the synonymous

variant SERPING1; c.751C>T, which has been classified as

benign according to the ACMG guidelines. However, this

variant has been declared as causal of the disease in Spanish

patients with HAE (53). Synonymous variants can contribute to

diseases, affecting gene function by splicing (75), binding of

transcription factors (76), or mRNA stability (77), among others.

They are common in the human genome, but their role in

diseases have often been underestimated (78). It is well-known

that variants affecting splicing are significant contributors to

human diseases and are often missed in standard variant filtering

approaches, which tend to focus on protein coding regions (79).

In this study, we detected the SERPING1 c.686-12A>G variant in

all affected members of a recruited HAE type I family, previously

reported as VUS and here reclassified as likely pathogenic. As

indicated before, the increased number of sequencing studies in

rare disorders have overcome the main limitations to the

interpretation of the pathogenic potential of detected variants

and their association with the disease (80, 81). In this context,

the diagnostic yield of NGS-based solutions has improved to 35-

60% nowadays (44). However, the genetic cause of most cases of

this study is lacking (21/29 independent cases, 72.4%, 95% CI:

52.5-86.6). The diagnostic process of HAE is also a stressful

period due to confusing signs with histaminergic angioedema

attacks, which could be delayed for many years. To reduce the

clinical odyssey, we previously designed HADA, a variant

prioritization tool for DNA sequencing studies focused on

HAE diagnosis (13). HADA retrieves previously reported

causal variants in HAE patients in a few minutes, integrating

extended genetic variant information from public updated

databases used for pathogenic classification according to

ACMG guidelines. Taken all prioritized variants by HADA in

our study, we have estimated a NGS diagnostic yield of 66.7% (6/

9 families). Unfortunately, the diagnosis yield decreases to 10.0%

in proband-only analyses (2/20 cases). Remarkably, despite the

capabilities of using a WES approach, we did not find variants

affecting function in PLG, ANGPT1, KNG1, MYOF, and

HS3ST6 genes (involved in HAE-nC1-INH) in any of the

studied families.

Our study has some strengths and limitations. Among

limitations, we acknowledge that the number of patients where

a causal variant was identified is limited, precluding for now a

robust study of the relationships between phenotypes and

genotypes, as well as the links with drug responses or the
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patient management. We also acknowledge a relatively low

breath of coverage of some exons of the F12 gene compared

with that of SERPING1 gene (66.49% of bases covered at least

10× in F12 compared with 88.33% for SERPING1), which may

hinder the identification of causal genetic variants in patients

with clinical suspicion of HAE-nC1-INH. Another limitation

was the low genetic diagnosis yield obtained among proband-

only cases, which could be increased with the recruitment of

family members for genetic causative variant identification and

determining its origin (inherited vs de novo), as is recommended

by WAO/EAACI guidelines. Although WES is not the optimal

approach, we have aimed to identify and prioritize candidate

SVs and MEIs. However, the results did not support the

possibility that the cases could be caused by SVs in the known

HAE genes. Even though HADA assist in the genetic testing of

HAE patients, the tool was designed to prioritize genetic variants

within the literature identified genes of HAE, thus lacking the

function to identify novel HAE genes. To fill this gap,

complementary studies relying on phenotype-driven

approaches and genomic scans, among others, are needed to

allow the identification of novel genetic factors of HAE,

especially in those affected patients who remain without

genetic diagnosis. Among the strengths of our study, we

highlight the widespread recruitment of HAE patients and

their relatives in the archipelago by the Allergy Services of the

main hospitals from each island, allowing us to carry out an early

detection of new cases of HAE and study the genetic causes

through DNA sequencing. The detection of the SERPING1

c.1396C>T; p.Arg466Ser variant led to a diagnosis anticipation

in an asymptomatic relative considering both genetic results and

the biochemical findings, allowing to achieve a precise diagnosis

of HAE type II. Our study highlights the benefits of a first-tier

genetic testing for HAE diagnosis and reinforces the need to

clearly identify underlying genetic causes, as recommended by

the international WAO/EAACI guidelines for the management

of HAE and enhance the benefits of NGS as first-tier genetic

testing tool for its diagnosis (26).
Conclusions

To characterize the underlying genetic causes of HAE in the

Canary Islands, we have performed the first genomic study of

affected families from the region. A rapid detection of the causal

variants in sequencing data from whole-exome was carried out

based on HADA, providing in some families a refined diagnosis,

and revealing the genetic affectation in asymptomatic members.

Our results reinforce the necessity of NGS based studies on HAE

patients to identify and characterize novel genetic factors

involved in this disease. Complementary and more exhaustive

analysis are required to identify the genetic cause in all

the families.
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54. López-Lera A, Garrido S, Roche O, López-Trascasa M. SERPING1
mutations in 59 families with hereditary angioedema. Mol Immunol (2011)
49:18–27. doi: 10.1016/j.molimm.2011.07.010

55. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al.
Analysis of protein-coding genetic variation in 60,706 humans. Nature (2016)
536:285–91. doi: 10.1038/nature19057

56. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q,
et al. The mutational constraint spectrum quantified from variation in 141,456
humans. Nature (2020) 581:434–43. doi: 10.1038/s41586-020-2308-7

57. Kopanos C, Tsiolkas V, Kouris A, Chapple CE, Albarca Aguilera M, Meyer
R, et al. VarSome: The human genomic variant search engine. Bioinformatics
(2018) 35:1978–80. doi: 10.1093/bioinformatics/bty897

58. Pappalardo E, Caccia S, Suffritti C, Tordai A, Zingale LC, Cicardi M.
Mutation screening of C1 inhibitor gene in 108 unrelated families with
hereditary angioedema: functional and structural correlates. Mol Immunol (2008)
45:3536–44. doi: 10.1016/j.molimm.2008.05.007
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