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Teleost fish anterior kidney (AK) is an important hematopoietic organ with multifarious
immune cells, which have immune functions comparable to mammalian bone marrow.
Myeloid and lymphoid cells locate in the AK, but the lack of useful specific gene markers
and antibody-based reagents for the cell subsets makes the identification of the different
cell types difficult. Single-cell transcriptome sequencing enables single-cell capture and
individual library construction, making the study on the immune cell heterogeneity of
teleost fish AK possible. In this study, we examined the transcriptional patterns of 11,388
AK leukocytes using 10× Genomics single-cell RNA sequencing (scRNA-seq). A total of
22 clusters corresponding to five distinct immune cell subsets were identified, which
included B cells, T cells, granulocytes, macrophages, and dendritic cells (DCs). However,
the subsets of myeloid cells (granulocytes, macrophages, and DCs) were not identified in
more detail according to the known specific markers, even though significant differences
existed among the clusters. Thereafter, we highlighted the B-cell subsets and identified
them as pro/pre B cells, immature/mature B cells, activated B/plasmablasts, or plasma
cells based on the different expressions of the transcription factors (TFs) and cytokines.
Clustering of the differentially modulated genes by pseudo-temporal trajectory analysis of
the B-cell subsets showed the distinct kinetics of the responses of TFs to cell conversion.
Moreover, we classified the T cells and discovered that CD3+CD4−CD8−,
CD3+CD4+CD8+, CD4+CD8−, and CD4−CD8+ T cells existed in AK, but neither
CD4+CD8− nor CD4−CD8+ T cells can be further classified into subsets based on the
known TFs and cytokines. Pseudotemporal analysis demonstrated that CD4+CD8− and
CD4−CD8+ T cells belonged to different states with various TFs that might control their
differentiation. The data obtained above provide a valuable and detailed resource for
uncovering the leukocyte subsets in Nile tilapia AK, as well as more potential markers for
identifying the myeloid and lymphoid cell types.
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INTRODUCTION

Similar to mammals, teleost fish possess innate and adaptive
immunity to protect themselves from microbial pathogen
infection (1). It is the anterior kidney (AK) that serves as the
main lymphoid organ for hematopoiesis in teleost fish instead of
the bone marrow in mammals, with abundant cell populations
divided into the myeloid lineage and the lymphoid lineage (2).
The myeloid lineage mainly includes granulocytes, monocytes
and macrophages, and dendritic cells (DCs), while the lymphoid
lineage refers to B cells, T cells, and nonspecific cytotoxic cells
(NCCs) (3–5). Based on the specific expressed cytokines and
transcription factors (TFs), these cell populations can be
classified into subsets with different functions (6–10).

There are four types of granulocytes (neutrophils, eosinophils,
basophils, and mast cells) that have been identified with the basic
criteria, such as ontogenetic, morphological, and functional (11).
In zebrafish, studies on neutrophil response have been reported
for several transgenic reporter lines, and this granulocyte subset
has been marked with myeloperoxidase (MPX), the ortholog of
mammalian myeloperoxidase (MPO) (12, 13). Neutrophils
constitute the first line of defense against invading pathogens,
migrating to sites of inflammation during normal immune
responses to tissue injury and infection. Basophils are the least
abundant leukocytes in most vertebrate species, but there is a
natural abundance in teleost fish circulating peripheral blood
with two distinct types of basophilic granules (14, 15). The
CCAAT enhancer binding protein alpha (CEBPA) is the
marker gene used for identifying fish basophils (15).
Additionally, studies on adult zebrafish hematopoietic tissues
discovered that all the highly expressed GATA binding protein 2
(GATA2) cells were eosinophils (6). Carboxypeptidase A5
(CAP5) was identified as a specific marker for zebrafish mast
cells (16). Monocytes, macrophages, and DCs are components of
the mononuclear phagocyte system (MPS) that clears invasive
microbial pathogens during immune challenge and removes the
apoptotic cell corpses through phagocytosis (17). A few pieces of
information are available for fish monocytes alone, but most
studies have been conducted on and represented as monocytes/
macrophages because the monocytes in AK could quickly
differentiate into macrophages once they interact with antigens
or with the help of cytokines (18). Specific lysosomal markers for
fish monocytes are not available, but markers used to identify
macrophages are available, including macrophage expressed
gene 1 (MPEG1), macrophage receptor with collagenous
structure (Marco), macrophage mannose receptor 1 (CD206),
CD68, and complement factor properdin (CFP) (19).
Macrophages are divided into M1 and M2 populations based
on the different expression patterns of TFs and cytokines and
metabolism. The M1 phenotype includes signal transducers and
activators of transcription 1 (STAT1), interleukin 12 (IL-12),
and tumor necrosis factor alpha (TNF-a), whereas M2
macrophages typically produce arginase, legumain, and IL-10
(20–22). Teleost fish DCs have been identified in a few fish species
(including rainbow trout and zebrafish) as antigen-presenting
cells (APCs) with similar expression molecular markers to
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mammalian DCs, such as major histocompatibility complex
(MHC) II, CD80/86, and CD83 (7, 19, 23). In Barramundi, it
has been found that the DC-SCRIPT gene is a specific molecular
marker for fish DCs, a homolog of the human ZNF366 gene and
the pufferfish ZNF1 gene (24). In rainbow trout, the TFs ZBTB46
and DC-SCRIPT/ZNF366 have been identified to have potential
involvement in DC maturation and activation (25).

Several research works have indicated that there are
functional B-cell subpopulations that reside in AK, including
pro/pre B cells, immature/mature B cells [(im)mat. B], activated
B cells (act. B), and antibody-secreting cells [ASCs, including
plasmablasts (PBs) and plasma cells (PCs)], which are regulated
by the combinatorial expressions of B-cell-specific TFs such as
E2A, IKAROS family zinc finger 1 (IKZF1), early B-cell factor-1
(EBF1), recombination activating 1 (Rag1), Rag2, paired box 5
(Pax5), B-lymphocyte maturation protein-1 (Blimp-1), and X-
box binding protein 1 (XBP1) (9, 10, 26, 27). In zebrafish, it is
indicated that the patterns of B-cell gene expressions are similar
to those observed during mammalian B-cell differentiation in the
major immunoglobulin M (IgM)-expressing B-cell subsets, such
as pro B cells (Pax5+Rag2+IgM−), pre B cells (Pax5+Rag2+IgM+),
(im)mat. B (Pax5+Rag2−/loIgM+), and PCs (Pax5−Blimp-
1+XBP1+CD40+) (10). Besides, fish T cells (CD3+) are
identified as distinct T-cell (Tc) functional subsets according to
the expression of either CD4 or CD8. T helper (Th) cells
expressing CD4 (CD4+) are in the position of coordinating the
immune system through the production of cytokines after
activation and differentiation; they are divided into several
subtypes, namely, Th1, Th2, Th6, Th9, Th17, and regulatory T
cells (Tregs) (8, 28, 29). Th1 cells express three lineage-specific
TFs: STAT1, STAT4, and T-bet. Th2 cells express two conserved
TFs: STAT6 and GATA3. Recently, IL-6 has been assigned as a
signature cytokine of Th6 (30). Th17 cells are defined by the
expressions of IL-17 and the TFs nuclear retinoic acid receptor
(RAR)-related orphan receptor gamma (RORg), STAT1, and
STAT3 (8). The Th22 subset was discovered to secrete IL-22,
but not IL-17 (31). In pufferfish, a Treg-like subset with the
phenotype CD4-2+CD25-like+Foxp3-like+ has been identified
(32). Cytotoxic T cells (cytotoxic T lymphocytes, CTLs)
expressing CD8 (CD8+) release cytotoxic factors that directly
kill infected or abnormal cells and are involved in specific cell-
mediated cytotoxicity in fish (33, 34). The heterogeneous
differentiation and function of CD8+ T cells (Tc subsets) have
been well established in mammals (35), as well as natural killer
(NK) cells with similar functions to Tc that use perforin and
granzyme to kill target cells (36, 37). NCCs are unique to fish and
are considered to be functionally similar to mammalian NK cells,
which have the ability to kill the target and affected cells through
lysis (38–40), and NCC receptor protein 1 (NCCRP1) has been
identified as the specific marker for this cell type (41).

Leukocytes are involved in innate and adaptive immunity,
providing a critical first line of defense soon after pathogen
infiltration, and in long-term immunological memory,
providing whole of life protection (42). Although the specific
markers described above have been used to identify fish cell
subsets, limited knowledge about these cell types and the antibody
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reagents in teleost fish hampers a more in-depth characterization
and separation of these cells. Several similarities exist between the
immune systems of teleost fish and mammals, but there still
remain unknown differences; more studies need to be performed
on teleost fish. For example, a study onMPEG1, a specific marker
for macrophages, has demonstrated, using single-cell RNA
sequencing analysis (scRNA-seq), that it is expressed in a
subpopulation of B cells in adult zebrafish (43). Moreover, in
Nile tilapia, 10× Genomics scRNA-seq surprisingly revealed that
NCCRP1 is expressed not only in NCCs but also in other cell
types (44). ScRNA-seq provides more detailed information of the
different leukocyte subsets and updates our current knowledge
about the immune cells in teleost fish. In this study, we analyzed
the AK leukocytes with 10× Genomics scRNA-seq in order to
identify leukocyte cell clusters. We aimed to provide more
valuable information to elucidate the cell types and their
potential functions. The identified cell markers for each
subpopulation will also benefit the design of future novel
specific marker antibodies that can be used to identify different
cell types more accurately.
MATERIALS AND METHODS

Experimental Fish
Nile tilapia (Oreochromis niloticus), with a mean weight of 250 g,
were supplied by Guangdong Tilapia Breeding Farm
(Guangzhou, China). Fish were maintained in 300-L fiber
glass-reinforced plastic tanks at the Aquaculture Breeding
Center of the South China Normal University, with an
automatic filtering aquaculture system at 28 ± 2°C and a
12:12-h light/dark photoperiod. The fish were fed a
commercial diet once a day. No clinical signs were observed
during feeding. All animal protocols were reviewed and
approved by the University Animal Care and Use Committee
of the South China Normal University.

Isolation of Tilapia Anterior Kidney
Leukocytes
Nile tilapia were anesthetized with 3-aminobenzoic acid ethyl
ester (MS-222; Aladdin, Shanghai, China), and blood was
extracted from the caudal vein with a heparinized syringe to
prevent blood pollution to the AK. Leukocytes from the AK were
obtained as previously described, with some modifications (45).
Briefly, the AK were dissected with aseptic dissection tools and
placed into a sterile plastic culture dish containing 5 ml RPMI-
1640 (Gibco, Grand Island, NY, USA) with 100 U/ml penicillin
G and 100 mg/ml streptomycin (Sigma, St. Louis, MO, USA).
Tissues were gently aspirated using a 1-ml syringe until no
chunks of tissues existed. Then, the single-cell suspension was
filtered with a 70-mm filter (NEST, Wuxi, China) to remove the
tissue fragments and transferred into a sterile tube before RPMI-
1640 (Gibco, Grand Island, NY, USA) was added to total volume
10 ml. The suspension was gradually layered upon the same
volume of Ficoll-Paque® PREMIUM (density = 1.077 g/ml) (GE
Healthcare, Chicago, IL, USA) in 50-ml centrifuge tubes and
Frontiers in Immunology | www.frontiersin.org 3
then centrifuged at 500 × g for 40 min at 4°C. Leukocytes were
collected from the interface layer and washed three times with
the RPMI-1640 medium. Cell quantity and viability were
determined using 0.4% trypan blue (Sigma, St. Louis, MO,
USA), which showed that more than 98% were living cells.
Subsequently, the cells were resuspended to a concentration of
1 × 106 cells/ml in RPMI-1640. The mixed leukocytes were
prepared from three fish AKs and used for sequencing.
Meanwhile, the cells were detected by flow cytometry (FCM)
on BD FACSAria III (BD Biosciences, Franklin Lakes, NJ, USA)
equipped with DIVA software to ensure detection of the main
lineages (Figure 1A).

Library Construction and Sequencing
The isolated AK leukocytes, 1,000 cells/µl, were used for scRNA-
seq on a 10× Genomics Chromium instrument (10× Genomics,
Pleasanton, CA, USA). Firstly, a total of ~20,000 cells were
loaded into the chips of the Chromium™ Single Cell 3′ Gel
Bead Kit (10× Genomics, Pleasanton, CA, USA) and subjected to
the Chromium instrument to generate single-cell Gel Bead-In
Emulsions (GEMs) following the manufacturer’s instructions.
The GEMs were then subjected to library construction using the
Chromium™ Single Cell 3′ Library Kit (10× Genomics,
Pleasanton, CA, USA). Briefly, upon dissolution of the Single
Cell 3′ Gel Bead in a GEM, primers containing an Illumina®

Read 1 sequencing primer, a 16-nt 10× barcode, a 10-nt unique
molecular identifier (UMI), and a poly-dT primer sequence were
released and mixed with the cell lysate and master mix.
Incubation of the GEMs then produced barcoded full-length
complementary DNA (cDNA) from poly-adenylated messenger
RNA (mRNA). After incubation, the GEMs were broken and the
pooled fractions were recovered. Silane magnetic beads were
used to remove leftover biochemical reagents and primers from
the post-GEM reaction mixture. The barcoded full-length cDNA
was then amplified by PCR (Bio-Rad, Hercules, CA, USA) to
generate sufficient mass for library construction. The Single Cell
3′ Protocol produces Illumina-ready sequencing libraries. The
library synthesis and RNA-seq were completed with Illumina
HiSeq 4000 by the Gene Denovo Biotechnology Co., Ltd.
(Guangzhou, China).

Initial Data Quality Control, Cell Filtering,
and Data Normalization
The Cell Ranger Single Cell Software Suite (version 6.1; http://
software.10xgenomics.com/single-cell/overview/welcome) (10×
Genomics, Pleasanton, CA, USA) was used to perform quality
control, barcode processing, and Single Cell 3′ gene counting.
For removal of low-quality sequences with barcodes and UMIs,
the raw data were first demultiplexed into the FASTQ format
with the bcl2fastq software and then aligned in the Nucleotide
Sequence Database (https://www.ncbi.nlm.nih.gov/genbank/)
with the NCBI Basic Local Alignment Search Tool (BLAST). A
total of 394,170,826 clean reads were obtained based on the
transcriptome of 11,743 cells, achieving an average read of 33,566
per cell. The Q30 bases in barcode, RNA read, and UMIs were
95.6%, 90.1%, and 95.2%, respectively.
December 2021 | Volume 12 | Article 783196
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FIGURE 1 | Single-cell RNA sequencing (scRNA-seq) analysis of Nile tilapia anterior kidney (AK) leukocytes. (A) Experimental workflow for the scRNA-seq of
leukocytes from Nile tilapia AK, including cell separation, flow cytometry detection, and 10× Genomics Chromium 3′ scRNA-seq and data visualization. (B) A total of
22 cell clusters were identified and shown with a uniform manifold approximation and projection (UMAP) space. (C) Bubble chart of the putative marker genes for B
cells, T cells, macrophages, granulocytes, and dendritic cells (DCs) in the cell clusters. The dot size and color intensity represent the gene expression percentage and
the average expression levels of the cells within a cluster, respectively. (D) Identification of the putative cell types based on the expressions of marker gene in both
mammals and fish.
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The FASTQ files were mapped to the Nile tilapia reference
genome (ASM185804v2) using the STAR RNA-Seq aligner. Once
aligned, barcodes associated with these reads–UMIs were subjected
to filtering and correction. For UMI tag counting, the 10×
Genomics pipeline Cell Ranger was used to generate single-cell
gene counts for this library. Only the confidently mapped, non-PCR
duplicates with valid barcodes and UMIs were used to generate the
gene–barcode matrix. The Seurat R package (version 4.0.4) (46, 47)
was used for quantity control and filtering of abnormal cells
according to their molecular counts. The criteria used to filter
cells were as follows: 1) less than 200 but more than 4,000 gene
counts per cell; 2) UMI counts >30,000 per cell; and 3) percentage of
mitochondrial (Mito) genes of >10%. Data normalization was
performed with a global-scaling normalization method,
“LogNormalize,” after removal of unwanted cells from the dataset.
This normalizes the gene expression measurements for each cell
with the following formula: Gene A expression level = log(1 + (UMI
A ÷ UMI Total) × 10,000).

Transcriptome Dimensionality Reduction,
Cell Clustering, Visualization, and Marker
Gene Identification
The filtered and normalized dataset was examined using
canonical correlation analysis and then the data were
integrated. The integrated data were normalized by the Z-score
and then subjected to dimensionality reduction using principal
component analysis (PCA) to reduce the variables. Subsequently,
a graph-based clustering approach was used to cluster cells. This
setup was also applied to define the nearest neighbors among
cells with the k-nearest neighbor (KNN) method using the
findNeighbors function. To group the cells into different
subsets according to their expression levels, the Find Cluster
tool was applied using the Louvain algorithm with the resolution
set as 0.5, allowing the correct definition of clearly separated
clusters. Based on the results of the cell subgroup classification,
the single-cell subgroup classification results were further
visualized by uniform manifold approximation and projection
(UMAP) with the Loupe Cell Browser software and Seurat R
package (version 4.0.4). Data clustering was performed using the
Seurat R package. The identification of genes showing differential
expressions associated with a specific cluster was performed with
the known specific cell gene expressions.

Single-Cell Pseudo-Time Analysis
Further exploration of the single-cell trajectories in B and T cells
was conducted with a matrix of cells and gene expressions using
Monocle 3 (48). Monocle reduced the space down to one with
two dimensions and ordered the cells. We identified the key
genes related to the development and differentiation process and
grouped those with similar trends in expression, reasoning that
such groups may share common biological functions and
regulators. Differential gene testing for the pseudo-time
analysis was based on the previously identified cell clusters.
The cells were ordered and visualized in the trajectory in the
reduced dimensional space, in a tree-like structure (including
tips and branches).
Frontiers in Immunology | www.frontiersin.org 5
GO and KEGG Enrichment Analyses
For the analysis of the differentially expressed genes (DEGs),
Gene Ontology (GO) enrichment analysis was performed on the
DEGs by comparing with the genome background and filtering
the DEGs that correspond to biological functions. All peak-
related genes were mapped to GO terms in the GO database
(http://www.geneontology.org/), gene numbers were calculated
for every term, and the significantly enriched GO terms in DEGs
compared to the genome background were defined using a
hypergeometric test. The calculated p-values were false
discovery rate (FDR) corrected, and FDR ≤ 0.05 was taken as a
threshold to define the significantly enriched GO terms in DEGs.

Genes interact with each other and play certain biological
functions. Pathway-based analysis helps in further
understanding the biological functions of a gene. Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://www.
kegg.jp/) pathway enrichment analysis identified the
significantly enriched metabolic pathways or signal
transduction pathways in DEGs by comparing with the whole
genome background. The calculated p-value was FDR corrected
and an FDR ≤ 0.05 was used as the threshold. Pathways meeting
this criterion were defined as significantly enriched pathways
in DEGs.
RESULTS

Overall Characteristics of the Cell Cluster
Composition of Tilapia AK Leukocytes
AK leukocytes were obtained from healthy Nile tilapia using
Ficol-Paque® PREMIUM density gradient media (density, 1.077
g/ml) (GE Healthcare, Chicago, IL, USA), and cell viability was
checked and confirmed to be about 98% with microscopic
examination. Single-cell cDNA libraries were sequenced using
the two-terminal sequencing mode of the Illumina HiSeq 4000
sequencing platform. After quality control and mapping using
the Cell Ranger software, a total number of 394,170,826 reads in
11,743 single cells were acquired, with mean reads per cell of
33,566 and median genes per cell of 1,024.

The scRNA-seq data were then analyzed to identify the effective
cell number (Supplementary Figure S1A) and determine the total
number of genes (nFeature_RNA), the total number of UMIs
(nCount_RNA), and the percentage of reads mapping the Mito
genes (Percent.mito) (Supplementary Figure S1B). Abnormal
cells were filtered when 1) the gene counts were less than 200
but more than 4,000 per cell, 2) the UMI counts were >30,000 per
cell, and 3) the percentage of Mito genes was >10% (after filtering;
shown in Supplementary Figure S1B). The relationship between
nCount_RNA and nFeature_RNA and that between
nCount_RNA and percent_mito before and after filtering
(Supplementary Figure S1C) were shown as well. After filtering,
a total of 11,388 cells were retained for subsequent analysis.

The overall experimental workflow for scRNA-seq of the
leukocytes from Nile tilapia AK is shown in Figure 1A. A total
of 22 cell clusters (clusters 0–21) were characterized (Figure 1B).
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Based on the known cell markers (Supplementary Table S1),
3,176 cells (accounting for 27.9% of the total) from clusters 2, 8,
9, 12, 15, 17, 18, 19, and 20 were categorized into B cells, and
2,857 cells (accounting for 25.1% of the total) from clusters 3, 4,
6, 11, 16, and 21 were classified into T-cell populations. Cells in
clusters 14 and 5 were classified as DCs (208 cells, 1.8% of the
total cells) and macrophages (564 cells, 5.0% of the total cells),
respectively. The remaining 4,583 cells, included in clusters 0, 1,
7, 10, and 13, were classified as granulocytes, with a relative
percentage of 40.2% (Table 1 and Figure 1C). Clustering of the
identified cell types was annotated with UMAP and shown
in Figure 1D.

Granulocyte Subset Analysis in the
Identified Granulocytes
It is known that granulocytes contain neutrophils, eosinophils,
basophils, and mast cells (11). Therefore, the identified
granulocytes were further classified into eight clusters with a
resolution of 0.5 (Supplementary Figure S2A). The top 5 DEGs
for each cluster are shown in a heatmap (Supplementary Table
S3 and Figure S2B), and the reported marker genes, including
EPX, CEBPA, and GATA2 (GATA2a and GATA2b), were used to
identify neutrophils, basophils, and eosinophils, respectively
(Supplementary Table S2 and Figure S2C). Moreover,
NCCRP1, neutrophil cytosolic factor 1 (NSF1), NSF2, high
choriolytic enzyme 1 (HCE1), low choriolytic enzyme (LCE),
BCL2 family member b (MCL1b), CD66, colony stimulating
factor 1 receptor (CSF1R), macrophage-expressed gene 1
(MPEG1), Spi-1 proto-oncogene b (SPI1b/PU1), GATA2a,
GATA2b, histidine decarboxylase (HDC), and Fc receptor
gamma subunit (FCER1G) were used to identify the
granulocyte subsets further (Supplementary Table S2 and
Figure S2D). However, the expression patterns among these
clusters were similar, resulting in not being able to distinguish
the different granulocytes based on these genes.

Macrophage Subset Analysis in the
Identified Macrophages
The macrophage lineage cells present a series of functional
specializations in vertebrates, and different subgroups (M1 and
M2) have been identified and studied in teleost fish as in
mammals (49, 50). The identified macrophages were further
classified into four clusters with a resolution of 0.5
(Supplementary Figure S3A). The top 5 DEGs for each cluster
are shown in a heatmap (Supplementary Table S4 and Figure
Frontiers in Immunology | www.frontiersin.org 6
S3B), and the reported cell subset gene markers, including
STAT1, TNFa, IL-12, Arginase-1, Arginase-2, legumain, and
IL-10, were used to identify M1 and M2 cells (Supplementary
Table S2 and Figure S3C). Moreover, related genes, such as
microphthalmia-associated transcription factor (MITF),
transcription factor 3b (TCF3b), CEBPA, transcription
regulator protein (BACH1), cellular repressor of E1A
stimulated gene 1 (CREG1), GATA6, Spi-C transcription factor
(SPIC), CCL20b, complement factor B (CFB), microfibril-
associated glycoprotein 4 (MFAP4), interleukin-12 subunit beta
(IL-12b, IL-12p40), interleukin-12 subunit alpha (IL-12p35), IL-
34, CD209, CSF1R, and CSF2Rb, were used to identify
macrophage populations (Supplementary Table S2 and Figure
S3D). However, most of these marker genes were low expressed
and those with high expression were similar in the four clusters.
It seemed, therefore, that M1 and M2 macrophages cannot be
identified in these clusters.

Dendritic Cell Subset Analysis in the
Identified Dendritic Cells
DCs have been considered as the most powerful professional
APCs in mammalian species (51). Different from mammalian
DCs, teleost fish DCs have only been identified in a few fish
species (including rainbow trout and zebrafish) and without any
detailed information for further subtype characterization (7, 19,
23). It is valuable to identify the teleost fish DC subsets to
determine whether they can be classified with the known gene
markers in mammals. Therefore, we further classified the DCs
into three clusters with a resolution of 0.5 (Supplementary
Figure S4A). The top 5 DEGs for each cluster are shown in a
heatmap (Supplementary Table S5 and Figure S4B), and the
reported cell subset gene markers were used to identify the DC
subsets (Supplementary Table S2 and Figure S4C). Although
the gene markers in the three subsets did not show the
anticipated results, the antigen-presenting molecules were
highly expressed in cluster 1. We further analyzed the top 3
most significant GO terms within the biological process (BP)
category for cluster 1 and found that the immune system process,
regulation of metabolic process, and intracellular signal
transduction were enriched (Supplementary Table S6).

Identification of B-Cell Subsets and
Analysis of Single-Cell Trajectories
Teleost fish B cells contain distinct B-cell subsets during teleost
immune development, similarly to mammals, and TFs play roles in
vertebrate B-cell development (9, 10). The identified B cells were
further classified into 10 clusters with a resolution of 0.3
(Figure 2A). Different B-cell-specific expression markers were
used to identify the B-cell subsets, and it was demonstrated that
clusters 2, 6, and 8 were pro/pre B, clusters 0 and 4 were (im)mat.
B, clusters 3 and 5 were act. B/PBs, and clusters 1 and 9 were PCs;
cluster 7 did not classify with any of the categories (Supplementary
Table S7 and Figures 2B, C). The top 5 most significant subset-
specific genes for each B-cell subset are shown in a heatmap
(Supplementary Table S8 and Figure 2D). It is noteworthy that
CXCR5 and IgM were the most significant marker transcripts in
TABLE 1 | Identified cell types and the corresponding cell numbers (percentages)
in Nile tilapia anterior kidney leukocytes.

Cell type No. of cells (%)

B cells 3,176 (27.9)
T cells 2,857 (25.1)
Macrophages 564 (5)
Granulocytes 4,583 (40.2)
Dendritic cells 208 (1.8)
Total 11,388 (100)
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(im)mat. B and PCs, respectively. We analyzed the top 10 most
significant GO terms within the BP category for each B-cell subset
and discovered that metabolic process was enriched in every B-cell
subset, demonstrating that metabolism is related to B-cell
development (Supplementary Table S9 and Figure 2E). It is
particularly important for humoral immune response that plasma
cells synthesize and secrete tremendous amounts of antibodies (26,
52). In PCs, one of the most significant BP categories and the most
significant KEGG pathway (Supplementary Table S10 and Figure
S5A) was enriched in protein transport (Supplementary Table
S11), as shown in the heatmap (Figure 2F), implying that these
genes may regulate antibody secretion in PCs. Moreover, antigen
processing and presentation was significantly enriched in (im)mat.
B (Supplementary Table S12 and Figures S5A, B). It is widely
recognized that teleost fish B cells have antigen-presenting ability
(53), and these data implied that (im)mat. B cells may exert their
main function among the B-cell subsets.
Frontiers in Immunology | www.frontiersin.org 7
In order to reveal the potential relationships among the B-cell
subsets during B-cell development, pseudo-temporal analysis
was performed in B-cell subsets, including pro/pre B, (im)mat.
B, and PCs (Figure 3), using Monocle. Distinct pseudo-time
trajectory states in B-cell subsets were defined and are shown in
Figures 3A–C. Among them, pro/pre B cells, being the starting
point of differentiation, was in state 1, followed by (im)mat. B
(state 2) and PCs (state 3). The identified PCs were in a single
branch, and pro/pre B were shown to gradually differentiate into
(im)mat. B (Figure 3D). According to the analysis of the top 10
genes branching differential genes, thioredoxin (TRX) and IgM
were found to be highly expressed in state 3 cells (PCs)
(Figure 3E). To further explore the regulation of B-cell
differentiation, we analyzed the differently expressed TFs
(Supplementary Figure S5 and Figure 3F). Pseudo-temporal
analysis revealed a trajectory of gene expression associated with
B-cell differentiation in cells in states 1, 2, and 3 (Supplementary
A

B

D

E

F

C

FIGURE 2 | Heterogeneous subsets in B cells. (A) The identified whole B cells were classified into 10 different clusters and shown with a uniform manifold
approximation and projection (UMP) space. The clusters were obtained with a resolution of 0.3. (B) Heatmap of the different expressions of the genes used to
identify the B-cell subsets. The clusters were identified into four B-cell subsets: pre/pro B, immature/mature B cells [(im)mat. B)], activated B cell and plasmablasts
(act. B/PBs), and plasma cells (PCs). The remaining small group in cluster 7 was not identified. (C) Distribution of the identified B-cell subsets in UMAP space.
(D) Heatmap of the top 5 most significant specific genes for each B-cell subset. (E) The top 10 most significant Gene Ontology (GO) terms within the biological
process (BP) category for each B-cell subset. (F) Bubble chart of the enriched protein transport genes in B-cell subsets.
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Table S13 and Figure 3F), which provided us the potential key
TFs that regulate teleost B-cell development.

Identification of T-Cell Subsets and
Analysis of Single-Cell Trajectories
In mammals, T cells are divided into several subsets and play
distinct functions in both humoral and cell-mediated immune
responses. Teleost fish T cells developing similar functions to
those known in mammals have been reported (8, 28, 29, 33).
Frontiers in Immunology | www.frontiersin.org 8
Based on the reported specific genes related to various T-cell
subsets, we attempted to identify the T-cell subsets further. The
identified T cells were classified into 10 clusters with a resolution of
0.5 (Figure 4A). Different T-cell-specific expression markers were
used to identify the T-cell subsets, which demonstrated that cells in
clusters 3 and 6 were CD3+CD4−CD8−, those in clusters 2, 7, 8, and
9 were CD3+CD4+CD8+, cluster 1, 4, and 5 cells were CD4+CD8−,
and those in cluster 0 were CD4−CD8+ T cells (Figures 4B, C). The
top 5most significant subset-specific genes for each T-cell subset are
A

B

D E

C

F

FIGURE 3 | Pseudo-temporal analysis of B-cell development using Monocle. (A) Trajectories of pre/pro B, immature/mature B cells [(im)mat. B], and plasma cells
(PCs) applying pseudo-time analysis. (B) Distribution of the three trajectory states. (C) Distribution of the three B-cell subsets in the trajectory. (D) Cell numbers and
percentages of each B-cell subset in the trajectory branches. (E) Monocle analysis revealing the progressive expressions of thioredoxin (TRX) and IgM across
pseudo-time in two branches. (F) Heatmap of the branch-dependent transcription factors (TFs) in the B-cell trajectory branch.
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shown in a heatmap (Supplementary Table S14 and Figure 4D).
The CD4+CD8− T-cell subset highly expressed CD4-1 and CD4-2,
while CD8-1 and CD8-2 were highly expressed in the CD4−CD8+

T-cell subset (Figure 4D). To further explore differences, we
analyzed the top 10 most significant GO terms within the BP
category for each T-cell subset and discovered that macromolecule
metabolic process was enriched in the CD4+CD8− T-cell subset,
while the regulation of cellular metabolic process was the enriched
BP category in CD4−CD8+ T cells (Supplementary Table S15 and
Figure S7). KEGG pathways analysis provided more information
on the T-cell subsets, which enriched a lot of pathways related to T-
Frontiers in Immunology | www.frontiersin.org 9
cell subset functions (Supplementary Table S16 and Figure 4E).
Although the T-cell receptor signaling pathway was enriched in the
T-cell subsets, except for CD3+CD4+CD8+ T cells, the highly
expressed genes in the different T-cell subsets differed from each
other (Supplementary Table S17 and Figure 4F). It is known that
CTLs expressing CD8 (CD8+) release cytotoxic factors that kill the
infected or abnormal cells by secreting perforin/granzyme and are
involved in specific cell-mediated cytotoxicity in fish (33, 34). In the
CD4−CD8+ T-cell subset, NK cell-mediated cytotoxicity was the
enriched pathway, and granzyme and perforin-1 were enriched, as
anticipated (Supplementary Table S18 and Figure 4G).
A

B

D

E

F

G

C

FIGURE 4 | Heterogeneous subsets in T cells. (A) The identified whole T cells were classified into 10 clusters and shown with a uniform manifold approximation and
projection (UMP) space. The clusters were obtained with a resolution of 0.5. (B) Heatmap of the different expressions of the genes used to identify the T-cell subsets.
T cells were identified into four T-cell subsets: CD3+CD4−CD8−, CD3+CD4+CD8+, CD4+CD8−, and CD4−CD8+. (C) Distribution of the identified T-cell subsets in
UMAP space. (D) Heatmap of the top 5 most significantly expressed genes for each T-cell subset. (E) The top 10 most significant Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways for each T-cell subset. (F) Bubble chart of the related genes in the enriched pathway of T-cell receptor signaling in T-cell subsets.
(G) Bubble chart of the related genes in the enriched pathway of natural killer cell-mediated cytotoxicity in T-cell subsets.
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It is known that the CD4+ Th subtypes, namely, Th1, Th2,
Th6, Th9, Th17, Th22, and Tre cells, perform different immune
functions subsequent to their differentiation from naive T cells
(8, 29). For the CD8+ CTLs, the Tc subtypes Tc1, Tc2, Tc9, and
Tc17 have diversity functions and differentiation programs (54).
Four clusters were obtained from the identified CD4+CD8− T
cells, and we attempted to identify the Th subtypes based on the
reported cytokines and TFs. However, it appeared that the
CD4+CD8− T-cell subset cannot be identified into Th subtypes
due to the specific genes being expressed in all clusters and not
concentrated in a certain cluster (Supplementary Figure S8A).
Similar results were shown for CD4−CD8+ T cells, where two
clusters were classified but none of Tc1, Tc2, Tc9, and Tc17 can
be identified completely based on the specific cytokines and TFs
(Supplementary Figure S8B).

To explore the relationship between CD3+CD4+CD8+,
CD4+CD8−, and CD4−CD8+ T cells, we performed a pseudo-
temporal trajectory analysis in order to reveal a trajectory of gene
expressions associated with the functional changes in these cells
(Figure 5). Distinct T-cell subset pseudo-time trajectory states are
defined and shown in Figures 5A–C. CD3+CD4+CD8+ T cells were
defined as state 1, followed by CD4+CD8− T cells (state 2) and
CD4−CD8+ T cells (state 3) (Figures 5B–D). Analysis of the top 10
genes branching differential genes revealed that dual specificity
protein phosphatase 2 (DUSP2), adhesion G protein-coupled
receptor E1 (ADGRE1), histone H1.10 (H1-10), TSC22 domain
family protein 3 (TSC22D3), CD97, CD59, and C–X–C motif
chemokine 10 (CXCL10) were highly expressed in state 3 cells
(CD4−CD8+ T cells), but their expressions decreased in state 2 cells
(CD4+CD8− T cells) (Figure 3E). To further explore the changes in
differentiating T-cell subsets, the TFs were analyzed
(Supplementary Figure S9 and Figure 5F). The results showed
different expression patterns of the TFs associated with CD4+CD8−

(states 1 and 2) and CD4−CD8+ (states 1 and 3) T cells
(Supplementary Table S19 and Figure 5F).
DISCUSSION

Various leucocytes are enriched in teleost fish AK executing
immune functions comparable to those observed in mammals.
The separation and enrichment of specific types of leukocytes are
a crucial step in exploring their functions. However, limited
knowledge on teleost fish immune cells, as well as the lack of
specific antibody-based reagents and cell lines for non-model
organisms, makes an accurate analysis of certain cell types
difficult. In this study, the profiling of 11,388 cells from Nile
tilapia provided transcriptional insights into how and what the
leukocyte types consist of in healthy tilapia. We annotated five
cell types (B cells, T cells, granulocytes, macrophages, and DCs)
from 22 clusters and highlighted the B/T-cell subsets for cell
developmental trajectories, which illustrated the potential
temporal TFs that control B/T-cell differentiation.

The isolation of leukocytes from the AK has been widely
explored by centrifugation in density gradients for a long time.
Various mononuclear cell separation medium, mainly including
Frontiers in Immunology | www.frontiersin.org 10
Sepracell-MN (no longer manufactured), Percoll (GE
Healthcare, Chicago, IL, USA), Histopaque®-1077 (Sigma, St.
Louis, MO, USA), and Ficoll-Paque® PREMIUM (GE
Healthcare, Chicago, IL, USA), have been used to isolate the
different cell types in teleost fish (26, 55, 56). Among these,
continuous Percoll density gradients are used to isolate different
types of immune cells (monocytes/macrophages, NCCs, and
DCs) roughly (44, 57–59), but Histopaque®-1077 and Ficoll-
Paque® PREMIUM are used to obtain the leukocytes (a mixture
of various immune cells, but not referring to certain cells) (26,
60). Leukocytes in Oncorliynchus mykiss AK tissues separated on
Sepracell-MN have been demonstrated to contain 47%
lymphocytes, 35% neutrophils, and 11% macrophages (55).
The cell types identified in this study indicated that the
obtained leukocytes from tilapia AK consisted of about 53%
lymphoid cells and 47% myeloid cells (Figure 1 and Table 1),
which appeared to be consistent with the distribution in the FCM
(Figure 1A) and the proportion distribution in trout.

In this study, myeloid cells were annotated using the
expressions of marker genes and were classified into
granulocytes, macrophage, and DCs (Figure 1C). Surprisingly,
none of them can be identified into subsets based on the known
gene markers (Supplementary Figures S2-S4). It is known that
the differentiation or polarization (e.g., macrophages can be
polarized into M1 or M2 macrophages) of these immune cells
is trigged by the corresponding cytokines and TFs under stress,
immune, and inflammatory responses (1). Therefore, the
possible reason for the inability to identify these cell subtypes
is that not every cell subtype exists in healthy Nile tilapia. The
myeloid clusters obtained in this study will provide useful
information for further studies on the inflammatory response
of Nile tilapia. Until now, although it has been taken as a model
to explore teleost fish immunity, studies on Nile tilapia cell types
have been limited. The marker genes used to identify
granulocytes, macrophages, and DCs were noteworthy for
identifying these cells, but additional work is needed to
validate the accuracy of the results. In granulocyte clusters, the
top 5 most highly significant subset-specific genes in cluster 6
included CD79 and IgM (B-cell maker genes) and those in cluster
7 included CD3E (T-cell marker gene) (Supplementary Figure
S2B). It is unknown whether or not this phenomenon is a result
of the doublets produced during isolation with chromium. This
phenomenon cannot be explained using current knowledge
about teleost fish immune cells; further efforts are required.

The lymphocytes identified in this study included B and T
cells, but not NCCs (Figure 2). The reported tilapia scRNA-seq
revealed different NCC subsets post-poly I:C intraperitoneal
injection with 51%/34% Percoll density gradient (44). The
proven result of NCCRP1 being expressed in the identified
NCCs and macrophages was consistent with our study on
granulocytes (Supplementary Figure S2C), suggesting that
other specific markers were needed for NCC identification.
The successfully identified B-cell subsets demonstrated that
teleost AK comprised B-cel l subsets with different
differentiation stages that may exert different functions
(Figure 2). Different metabolic processes were enriched in the
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B-cell subsets, suggesting that these subsets have active activities
involved in immune processes in AK (Figure 3E). It is widely
accepted that mature B cells have the ability to process and
present antigens to Th cells (61). Antigen processing and
presentation was the enriched pathway in (im)mat. B cells,
implying that teleost (im)mat. B cells may play a critical role in
B-cell antigen presentation. The related TFs in the B-cell
subset developmental trajectories demonstrated that B-cell
differentiation in teleost fish shows similarities and differences
Frontiers in Immunology | www.frontiersin.org 11
when compared to B-cell development in mammals (62, 63).
It indicated that RAG1, RAG2, E2A, IKZF1, EBF1, Pax5, Blimp-1,
and XBP1 were the key TFs controlling tilapia B-cell
differentiation, which is similar to mammalian B-cell
differentiation (Figures 3 and 4). Recently, in rainbow trout
blood B cells, different B-cell subsets in different stages of
maturation or differentiation have been revealed (64). We
discovered that the B-cell subsets we identified were consistent
with the blood B-cell subsets to a certain extent, including the
A

B D E

F

C

FIGURE 5 | Pseudo-temporal analysis of T-cell development with Monocle. (A) Trajectories of CD3+CD4+CD8+, CD4+CD8−, and CD4−CD8+ with pseudo-time
analysis. (B) Distribution of the three trajectory states. (C) Distribution of the three T-cell subsets in the trajectory. (D) Cell numbers and percentages of each T-cell
subset in the trajectory branches. (E) Monocle analysis revealing the progressive expressions of dual specificity protein phosphatase 2 (DUSP2), adhesion G protein-
coupled receptor E1 (ADGRE1), histone H1.10 (H1-10), TSC22 domain family protein 3 (TSC22D3), CD97, CD59, and C–X–C motif chemokine 10 (CXCL10) across
pseudo-time in two branches. (F) Heatmap of the branch-dependent transcription factors (TFs) in the T-cell trajectory branch.
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TFs and cytokines. The immunoglobulins in Nile tilapia include
IgM (LOC106096470), IgD (LOC100709195), and IgT
(LOC100701592). Among them, the expression of IgT was
unexpectedly low in the B-cell subsets (for this reason, we have
not included the corresponding data in Figure 1C). It is known
that the degree of maturation of B cells in mammals is associated
with the presence or absence of IgD; however, it was concluded
that the membrane and secreted types of IgD and IgM were
expressed differently in the B-cell subsets. Therefore, we have not
added these into identifying B-cell subsets. However, it appears
that the membrane or secreted types of IgD and IgT cannot be
identified further in the Nile tilapia reference genome
(ASM185804v2). As a result, it appears infeasible to identify
the maturation degree of B cells here based on the expressions of
IgD/IgM. It is especially interesting to explore and discuss the
IgT subset maturation in fish, and such work can be carried out
in the mucosal immunity system, such as the skin and gills,
which are enriched in IgT+ cells. More information is worthy of
further study and exploitation.

The thymus is a crucial organ for the development of T
lymphocytes from early thymocyte progenitors to functionally
competent T cells (28). Surprisingly, the data presented here
indicated that CD3+CD4−CD8− T cells exist in teleost fish AK,
and CD163 (a monocyte/macrophage-specific membrane
marker) was the most significant subset-specific gene
(Figure 4D). Existing knowledge on teleost fish T cells cannot
be used to explain this phenomenon and should be further
explored. CD3+CD4+CD8+ T cells will develop and mature
into CD4+CD8− or CD4−CD8+ T cells. At the onset of positive
selection, CD8 transcriptional expression is shut down
in thymocytes, which is independent of whether they received
MHC class I or class II signals. This results in the appearance of
intermediate CD4+CD8− cells expressing an MHC II-restricted
T-cell receptor (TCR). When CD4+CD8− cells express an MHC
I-restricted TCR, TCR signaling is interrupted, leading to the
downregulation of CD4 and the specification of CD4−CD8+

cytotoxic T cells (65). Naive T cells are activated following
antigen or pathogen exposure and then differentiate into
functional T-cell subsets (8, 28, 33, 34). This might the reason
for the phenomenon that neither CD4+CD8− nor CD4−CD8+ T
cells can be classified into the Th or Tc subsets further in healthy
tilapia (Supplementary Figure S8). Studies on the differentiation
of T cells are limited, and the pseudo-temporal analysis revealed
that the key TFs might control the development of the T-cell
subsets (Figure 5F). The significant KEGG pathways enriched in
T-cell subsets provided more useful information, which were
consistent with the existing knowledge on teleost fish T cells (28,
40) regarding CD4+CD8− and CD4−CD8+ T cells playing
different roles in cell-mediated immunity.

In summary, the data presented here using 10× Genomics
scRNA-seq provided a rich resource to define the leukocyte
subsets in teleost fish AK. The specific gene expression profiles
in the healthy fish leukocyte subsets serve as a foundation
for studying cell differentiation under stimulation by pathogens
or other stimuli. Our study provided potential markers
for identifying the myeloid and lymphoid cell types.
Frontiers in Immunology | www.frontiersin.org 12
The highlighted diversity of the B- and T-cell subsets may
provide further insights for exploring the maturation and
differentiation of B and T cells in teleost fish.
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