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Abstract

Hutchinson-Gilford progeria syndrome (HGPS) is a very rare fatal disease characterized for

accelerated aging. Although the causal agent, a point mutation in LMNA gene, was identi-

fied more than a decade ago, the molecular mechanisms underlying HGPS are still not fully

understood and, currently, there is no cure for the patients, which die at a mean age of thir-

teen. With the aim of unraveling non-previously altered molecular pathways in the prema-

ture aging process, human cell lines from HGPS patients and from healthy parental controls

were studied in parallel using Next-Generation Sequencing (RNAseq) and High-Resolution

Quantitative Proteomics (iTRAQ) techniques. After selection of significant proteins and tran-

scripts and crosschecking of the results a small set of protein/transcript pairs were chosen

for validation. One of those proteins, ribose-phosphate pyrophosphokinase 1 (PRPS1), is

essential for nucleotide synthesis. PRPS1 loss-of-function mutants present lower levels of

purine. PRPS1 protein and transcript levels are detected as significantly decreased in

HGPS cell lines vs. healthy parental controls. This modulation was orthogonally confirmed

by targeted techniques in cell lines and also in an animal model of Progeria, the ZMPSTE24

knock-out mouse. In addition, functional experiments through supplementation with S-ade-

nosyl-methionine (SAMe), a metabolite that is an alternative source of purine, were done.

Results indicate that SAMe has a positive effect in the proliferative capacity and reduces

senescence-associated Beta-galactosidase staining of the HPGS cell lines. Altogether, our

data suggests that nucleotide and, specifically, purine-metabolism, are altered in premature

aging, opening a new window for the therapeutic treatment of the disease.
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Introduction

Mutations in LMNA gene are the causal agent of subset of genetic diseases affecting mesoderm

tissues called laminopathies [1]. This term refers to a highly heterogeneous group of disorders

affecting the integrity of the nuclear lamina [2]. Among them, Hutchinson Guilford progeria syn-

drome (HGPS) or progeria is a fatal disease with a very low incidence characterized by a typical

clinical picture of elderly pathologies [3]. HPGS-affected patients begin to show symptoms of

accelerated aging at age of two, and usually die in the second decade of life due to cardiovascular

deficiencies. HGPS is due, in most cases, to a point mutation (G608G) in LMNA gene encoding

lamin A and C, major structural components of the nuclear lamina [4]. The mutation causes the

occurrence of a cryptic alternative processing site in lamin A, generating a truncated isoform

called progerin -PG- or Δ50 lamin A. This aberrant isoform remains farnesylated since the dele-

tion includes the specific recognition sequence for the metalloprotease FACE1 that, in normal

conditions removes the farnesylated C-terminal end of the Prelamin A to form the mature lamin

A [5]. Accumulation of PG promotes defects on nuclear structure, replication, chromatin organi-

zation and stem cell differentiation, causing a senescence phenotype at the cellular level, and a pre-

mature aging of the organism [6,7]. A mouse model of HGPS, the knock-out deficiency for the

metalloproteinase ZMPSTE24, the FACE1 homolog, fails to form mature lamin A, accumulates

the permanently farnesylated precursor and recapitulates most of the symptoms of the disease [8].

So far, most of the efforts put on the reversion of the harmful effects of the nuclear accumu-

lation of PG have focused on the use of farnesyl-transferase inhibitors (FTI) [9].

Aging is characterized by physiological alterations that compromise the health of the organ-

ism and represents one of the major risk factors for the development of a plethora of patholo-

gies, including cardiovascular disease, cancer, musculoskeletal degeneration and

neurodegenerative disorders [10]. At the molecular level, aging is accompanied by a set of hall-

marks [11]. Among them, cellular senescence [12] mitochondrial dysfunction (13) [13], stem

cell exhaustion [14], loss of proteostasis [15] and genomic instability [16] are the most charac-

teristic. Aging is now considered a multi-factorial process. For this reason, the combination of

complementary scientific approaches is necessary to fully understand the molecular aspects of

aging and to delay or even reverse their detrimental aspects.

Proteomics provides tools to globally analyze cellular activity at protein level. Besides, this

proteomic profiling will allow the elucidation of connections between broad cellular pathways

and molecules that were previously impossible to predict using only traditional biochemical

analysis. However, so far, the results obtained must be orthogonally validated with other

approaches. Next-Generation Sequencing (NGS) technology, together with novel methods of

pattern recognition and network analyses, has revolutionized cellular pathways [17]. Our

intention for this study was to combine both shotgun proteomics and NGS to unravel new

molecular pathways modulated in HGPS.

Materials and methods

Cell culture

Human HGPS-derived fibroblast cell lines (AG3513, AG3199 and AG8467) and their respec-

tive parental healthy controls (AG3512, AG3257 and AG8468) were acquired from Coriell Cell

Repositories (CCR, Camdem, NJ, USA). Cells were cultured according to CCR instructions in

Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum

(FBS) and 1% penicillin/streptomycin and expanded when they reached 70% confluence to

100mm culture dishes. For SAMe supplementation SAMe was periodically added to the

medium at a concentration of 10 μg/mL.
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RNA isolation and preparation for NGS

Cells expanded in 100 mm culture dishes were harvested following standard procedures for

RNA isolation using the TRIzol1 extraction method. The quality of 1 μL of each RNA sample

was checked using the Bioanalyzer 2100 (Agilent Techologies, St. Clara, USA) to determine

the RIN (RNA Integrity) score using the 6000 Nanochip and reagents (Agilent). Samples with

a RIN score > 7 were retained and converted to cDNA by SureSelect Strand Specific RNA

library Prep for Illumina multiplexed sequencing method.

Protein preparation for quantitative proteomics

Cells expanded in 100 mm culture dishes were gently scrapped with 200 μL of RIPA buffer

with protease inhibitors at 4˚C. Cells were transferred to 1.5 mL tubes and incubated at 100˚C

for 10 minutes. After centrifugation protein supernatants were collected for determination of

the concentration by Bradford assay and checking of the protein integrity by SDS-PAGE and

silver-staining.

RNA sequencing

Sample preparation was carried out as recommended by Agilent SureSelect Strand- Specific

RNA Library Prep (Agilent, St.Clara, United States) for Illumina multiplex sequencing

method209. The study was designed to screen the complete transcriptome sequence per nor-

mal (AG03257 and AG03512) and HGPS (AG03199 and AG03513) human skin fibroblasts.

RNA from AG08647 failed to be retro-transcribed and this cell line and its counter partner

AG08648 were not included in the study. The experiment could not be repeated due to our

tight budget and the lack of extra funding. 1 μg of total RNA per sample was used. Fragmented

DNA was end-repaired and the sequencing data was generated on Hiseq 1500 (Illumina, San

Diego, United States) on a rapid mode flow-cell (Illumina, San Diego, United States). All sam-

ples were sequenced twice and they were prepared in duplicate.

Bioinformatics analysis of NGS data

An average of 25 million paired-end 100 bases pairs (bp) reads was obtained per sample in

transcriptome analysis. The raw RNA-sequencing reads for each sample were aligned to the

reference Homo sapiens (human) genome browser (GRCh38.p12) assembly using Bowtie2

(bowtie-bio.sourceforge.net/index.shtml/) and Tophat2 (http://tophat.cbcb.umd.edu/). After

alignment, raw sequence read depths was converted to estimate transcript abundance mea-

sures as fragments per kilo base of exons per million (FPKM) values with Cufflinks (http://

cufflinks.cbcb.umd.edu/). Identified transcripts were considered statistically significant when

q-value� 0.05.

iTRAQ labeling

Total protein extracts (100 μg per condition) were processed for iTRAQ labeling following

manufacturers instruction (Sciex). Two biological replicates were done in parallel (iTRAQ 1

and 2, Fig 1). Briefly, the total proteins were precipitated with overnight incubation with six

volumes of cold acetone at −20˚C, and denatured with 2% sodium dodecyl sulphate in 1 M

triethylammonium bicarbonate buffer (ABSciex, Foster City, CA, USA). After incubation for 1

hour at 60˚C using 50 mM tris-(2-carboxyethy) phosphine (Sciex), cysteines were blocked

with 84 mM iodoacetamide (Sigma-Aldrich) at room temperature for 30 minutes in absence

of ligth. Digestion was done with spectrometry-grade trypsin (Promega, Madison, WI, USA)

at a concentration of 1:50 trypsin/protein for 16 hours at 37˚C. The next morning each peptide
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solution was labeled for 1.5 hours at room temperature using the iTRAQ reagents (Sciex).

Samples were labeled with iTRAQ reagents as follows: AG3513: tag 113; AG3199: tag 114;

AG8467: tag 115; AG3512: tag 116; AG3257: tag 117; and AG8468: tag 118. As an internal con-

trol of the labeling a duplicate of AG3513 was labeled with tag 119. The reaction was stopped

by reduction of the percentage of the organic phase with the addition of de-ionized water, and

all the labeled samples were combined in one tube. Homemade stage tips were used for desalt-

ing prior LC analysis.

Fig 1. Parallel genomic and proteomic workflows. Schematic representation of the workflow followed for the genomic (left) and proteomic (right) large-scale

approaches. HGPS and Healthy Progenitor cell lines were processed for RNA and total protein isolation. RNA was converted to cDNA for analysis in a Illumina Hi seq

1500 platform. Two technical replicates were analyzed for each sample. Raw data was processed and statistical analysis was done using Bowtie2, TopHat and Cufflinks

programs. Total protein extracts were labeled using iTRAQ 8-plex. Two biological replicates were processed in parallel (iTRAQ1 and iTRAQ2). Labelled peptides were

fractionated by Basic Reversed-phase chromatography and fractions were analyzed in a LTQ-Orbitrap Velos platform. Protein quantification was done using Proteome

Discoverer 2.1 software and XLSTAT software was used for statistical analysis.

https://doi.org/10.1371/journal.pone.0205878.g001
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High pH reversed phase fractionation

Each of the iTRAQ labeled tryptic digests was subjected to high pH fractionation with High

pH reversed phase peptide fractionation kit (Pierce) following the manufacturer’s instructions.

Briefly the samples were loaded onto a spin column in 0.1% trifluoroacetic acid (TFA), washed

and buffer exchanged with high pH buffer and then eluted in 9 fractions of increasing acetoni-

trile (ACN) concentration (f1 = 10%ACN; f2 = 12.5%ACN; f3 = 15%ACN; f4 = 17.5%ACN;

f5 = 20%ACN; f6 = 22.5%ACN; f7 = 25%ACN; f8 = 50%ACN; f9 = 75%ACN). Flow through

and wash fractions were pooled and also analyzed as FT-wash fraction. The fractions were

dried down in a speed-vacuum centrifuge and kept at -80˚C until LC-MSMS analysis.

LC-MSMS analysis

The 10 dried-down fractions were analyzed in a nano-Acquity liquid chromatograph (Waters)

coupled to a LTQ-Orbitrap Velos (Thermo Scientific) mass spectrometer. Tryptic labeled pep-

tides were resuspended in 2% ACN/1% formic acid (FA) solution and an aliquot (correspond-

ing to 500 ng) was injected for their chromatographic separation. Peptides were trapped on a

Symmetry C18TM trap column (5μm 180μm x 20mm; Waters), and were separated using a

C18 reverse phase capillary column (75 μm Øi, 25 cm, nano Acquity, 1.7μm BEH column;

Waters). The gradient used for the elution of the peptides was 2 to 35% B in 155 minutes, fol-

lowed by a gradient from 35% to 45% in 20 min (A: 0.1% FA; B: 100% ACN, 0.1%FA), with a

250 nL/min flow rate.

Eluted peptides were subjected to electrospray ionization in an emitter needle (PicoTipTM,

New Objective) with an applied voltage of 2000V. Peptide masses (m/z 300–1800) were ana-

lyzed in data dependent mode where a full Scan MS in the Orbitrap with a resolution of 30,000

FWHM at 400m/z was obtained. Up to the 10 most abundant peptides (minimum intensity of

2000 counts) were selected from each MS scan and then fragmented using HCD (Higher

Energy Collision Dissociation) in C-trap using nitrogen as collision gas, with 40% normalized

collision energy and analyzed in the Orbitrap with a resolution of 7,500 FWHM at 400m/z.

The scan time settings were: Full MS: 250 ms (1 micro-scan) and MSn: 300 ms (2 micro-

scans).Generated .raw data files were collected with Thermo Xcalibur (v.2.2).
Raw data was processed using Proteome Discoverer 2.1 software (Thermo Scientific) with

SequestHT as search engine against the latest SwissProt/Uniprot Human database. 10 .raw files

corresponding to the 10 injections from the MS analyses were used to perform as a single

search against this database. Both a target and a decoy database were searched to obtain a false

discovery rate (FDR; <1%), and thus estimate the number of incorrect peptide-spectrum

matches that exceed a given threshold. The following search parameters were applied: Data-

base/Taxonomy: SwissProt/Uniprot Human plus Contaminants (March 2017); Enzyme: Tryp-

sin; Missed cleavage: 2; Fixed modifications: Carbamidomethyl of cystein, iTRAQ8plex (N-

term), iTRAQ8plex (K); Variable modifications: oxidation of methionine, iTRAQ8plex (Y);

Peptide tolerance: 10 ppm and 0.1 Da (respectively for MS and MS/MS spectra). Thermo soft-

ware Proteome Discover (v.2.1) was also used for quantification, using an isobarically labeled

reporter ion quantification method (iTRAQ 8-plex).

Statistical analysis of iTRAQ data

XLSTAT software was used to analyze the individual ratios obtained after Proteome Discov-

erer 2.1 processing. Briefly, the ratios for all the proteins quantified in both replicates were

extracted and classified as “equal” (twelve ratios HGPS/HGPS and Control/Control) or “oppo-

site” (eighteen ratios Control/HGPS). After checking that the ratios follow a normal distribu-

tion using the Kolmogorov-Smirnov test we applied a Student T-test to identify those proteins
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that present significant (p-value� 0.001) differences when comparing HGPS/HGPS and Con-

trol/Control (equal) versus Control/HGPS (opposite) ratios.

Real-time PCR of PRPS1

RNA was transformed to complementary DNA (cDNA) using NZY First-Strand cDNA syn-

thesis kit (NZYTECH, Lisbon, Portugal) according to manufacturer’s instructions. cDNA was

amplified using specific primers for the PRPS1 gene. The design of primers was carried out

using the software Primer3 (http://biotools.umassmed.edu/bioapps/primer3). The sequences

of the primers were as follows; Forward: tcagactgcctgctgacttc; Reverse: tacctcaacgtgctcagtgg.

Quantitative RT-PCR was carried out in a LightCycler 480 Instrument (Roche Applied Sci-

ence) using Light Cycler 4800 SYBR Green I Master kit (Roche, Basel, Switzerland). The

amplification program consisted on initial denaturation of 92 oC for 2 min followed by 40

cycles at 92 oC for 15 s, annealing at 55–62 oC, depending on the gene, for 30 s and extension

at 72 oC for 15 s. qRT-PCR were done in triplicate, with each set of assays repeated three times.

For control experiments no reverse transcriptase was used.

Immunohistochemistry of PRPS1 in liver sections

Full-depth sections (4 μm) of paraffin-embedded livers from ZMPSTE24 null, heterozygous

and wild-type mouse strains (blocks kindly donated by B. Caramés, INIBIC, A Coruña, Spain)

were cut with a microtome and fixed in 4% (w/v) paraformaldehyde (Sigma-Aldrich) in PBS at

pH 7.6. All sections were immuno-stained with rabbit polyclonal antibody for PRPS1 (1:100)

(Abcam). Biotinylated secondary antibodies were detected using a peroxidase-labeled biotin-

streptavidin complex with diaminobenzidine substrate Ennvision Kit (Dako) following manu-

facturer instructions.

Cell proliferation assay

Cell lines were cultured at a density of 10.000 cells/well in 96-well plates, with or without peri-

odic addition of SAMe (Sigma-Aldrich) at a final concentration of 10 μg/mL. At different

times of culture (3, 5, 7 and 10 days), 10 μl of Thiazolyl Blue Tetrazolium Bromide (MTT,

from Sigma-Aldrich) was added per well to achieve a final concentration of 0.45 mg/ml and

incubated by 4 hours at 37˚C. The medium was removed and 100 μl of Dimethyl sulfoxide

(Sigma-Aldrich) was added per well to dissolve formazan crystals for 10 min and absorbance

was recorded at 570 nm in a Nanoquant platform (Tecam).

Senescence-associated Beta-galactosidase staining

X-Gal cytochemical staining for SA-β-gal was performed as previously described [18]. The

cells were fixed and then stained with freshly prepare SA-β-gal staining solution overnight at

37˚C according to the manufacturer’s protocols (Cell Signaling Technology, Beverly, MA,

USA). The number of SA-β-gal-positive cells in randomly selected fields was expressed as a

percentage of all cells counted.

Results

RNAseq analysis of HGPS and healthy control cell lines

A schematic workflow of the analysis is represented in Fig 1. Genomic datasets are deposited at

the Gene Expression Omnibus (GEO-NCBI) repository (http://www.ncbi.nlm.nih.gov/geo/).

Raw files are public and freely accessible (www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=

GSE113648). A total of 21872 transcripts were detected and quantified in both conditions
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(Control and HGPS) by NGS following our approach (S1 File and Fig 2A) Among them, 911

were differentially expressed with a q-value� 0.05 representing roughly a 4 per cent of the total

sequenced transcriptome.

iTRAQ analysis of HGPS and healthy control cell lines

Proteomic datasets are deposited at MassIVE repository (www.massive.ucsd.edu). Raw and

processed files (Quantitative Proteomics Study (iTRAQ) of Progeria Cell Lines;

#MSV000081576) are public and freely accessible. A summary of the quantitative proteomics

analysis is represented in Fig 2B and S1 Fig, which show the quantification results in both

experiments (S1A Fig), showing a nice correlation between the results (S1B Fig). Statistical

analysis of the quantification results (S2 File and Fig 2B) showed that 219 proteins present sig-

nificant (p-value� 0.001) differences in the Control/HGPS versus Control/Control and

HGPS/HGPS abundance ratios.

Comparison of the proteomics and transcriptomics results

The difference in the amount of identified transcripts and proteins is inherent to the differ-

ences in the sensitivity of the techniques used. The list of significant proteins was crosschecked

against the list of significant transcripts (Fig 3). From the 219 proteins we found that 24 of

their corresponding transcripts were detected as differentially expressed with a q-value� 0.05.

As showed in Table 1, the correlation of those 24 protein/transcript pairs is very high. Most of

those proteins appear to play important roles in cell shape and adhesion (THY1, TNC and

COL12A1), proliferation and apoptosis (CSPG4) and metabolism and generation of energy

(ENO2, PFKP, ANPEP and PRPS1). PRPS1 codifies for Ribose-phosphate pyrophosphokinase

1, a key protein responsible for de novo purine synthesis in the nucleotide metabolism. Our

data showed a decrease of the amount of PRPS1 in HGPS cell lines at both transcript and pro-

tein levels when compared to the parental healthy controls. Due to the novelty of this link with

HGPS, and the importance of de-regulation of the metabolism and imbalance of energy gener-

ation in this disease, we decided to focus our validation in this protein.

Orthogonal validation of PRPS1 levels in HGPS and healthy control cell

lines and in the ZMPSTE 24 KO mouse

Quantitative Real Time PCR (qt-RT-PCR) analysis of PRPS1 in the cell lines used for the

omics-study confirms the reduced levels of PRPS1 transcripts in the three HGPS cell lines (Fig

4A and 4B). Statistical analysis showed a significant difference (Fig 4B). We then decided to

verify if this difference in expression occurs also in vivo. ZMPSTE24 knock-out mouse is the

most used mammal model of HGPS. Since the liver is the main organ where purine de novo
synthesis occurs, we checked PRPS1 levels by immunohistochemistry in liver sections of

ZMPSTE24-null mice comparing to the heterozygous (HT) and the wild-type (WT) mice (Fig

4C). PRPS1 levels are significantly higher in WT versus both HT and null mice, thus corrobo-

rating the in vitro results.

Study of the effect of the incubation with an alternative purine source in

the proliferation capacity and senescence phenotype in HGPS cell lines

To further investigate the link between cellular senescence in premature aging and defective

purine synthesis we incubate HGPS cell lines with S-adenosyl methionine (SAMe), a com-

pound that provides an alternative source of adenosine, the final metabolite in the purine syn-

thesis pathway. The periodic addition of SAMe to the culture medium promotes a significant
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increase in the proliferative capacity of two out of the three HGPS cell lines studied (Fig 5A).

This effect is accompanied by a decrease of senescence-associated β-galactosidase staining

(Fig 5B).

Discussion

Aging is a complex and multi-factorial process that, to the date, is poorly understood at the

mechanistic level [19]. Genetic, epigenetic, metabolic and environmental factors contribute to

the accumulation of molecular alterations that promote a negative imbalance in the

Fig 2. Transcripts and proteins significantly modulated in HGPS-derived cells versus healthy parental control cell lines.

Volcano plot representations of the RNAseq (A) and shotgun proteomics (B) analysis of the HGPS and Control cell lines. For

RNAseq, a threshold of q-value = 0.05 was set for significance according the statistical package used for analysis. A total of 911

transcripts present a q-value� 0.05. For shotgun proteomics a threshold of p-value = 0.001 was set for significance according to

the statistical package used. In this case 219 proteins were detected as significant with a p-value� 0.001.

https://doi.org/10.1371/journal.pone.0205878.g002

Fig 3. Crosschecking of the genomic and proteomic results shows that HGPS present features of a metabolic disorder. Representation of the modulation in HGPS

versus Control cell lines of the transcripts detected as significant and those correlating with the proteomic approach (red dots in A). String 10.4 gene ontology statistical

study of the 22 transcript/protein coincident pairs (B, C, D) demonstrate that most of the proteins are membrane-bounded or secreted and have a role on glycolysis,

energy generation and synthesis of bio-molecules.

https://doi.org/10.1371/journal.pone.0205878.g003
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regeneration/degeneration ratio of the tissues increasing the risk of disease and death at the

organism level. Metabolism is a key factor influencing aging, since caloric restriction and

down-regulation of the insulin/insulin-like growth factor 1 (IGF-1) pathway drive to an exten-

sion of the lifespan in nematodes, insects and mammals [20–22]. Premature aging syndromes

share many molecular and phenotype features with aging-associated diseases [10]. The impli-

cation of de-regulation of the metabolism in accelerated aging has been also demonstrated.

HGPS is characterized by a dramatic lipodystrophy [23] and has been recently associated to

increased protein synthesis [15, 24].

Large-scale omic-techniques have experienced an exponential development in the last 5

years in terms of sensitivity, reproducibility and throughput capacity. These tools are now of

great help to deeply investigate the molecular mechanisms underlying cell homeostasis and

organism healthiness but also the altered molecular pathways in disease [25].

In the present work we have found a good correlation between the shotgun quantitative

proteomics and the Next-Generation Sequencing after crosschecking of the results. The corre-

sponding transcripts of 24 out of the 219 modulated proteins were detected as significantly

modulated (Fig 3). As Table 1 shows, 22 out of the 24 protein/transcript pairs present the same

kind of modulation, (i.e. increased in control or, alternatively, in HGPS in both approaches).

Table 1. Crosschecking of the RNAsec and ITRAQ data.

Gene

name

Protein name RNAsec data: Up

in

iTRAQ data: Up

in

Function

AHNAK2 Protein AHNAK2 Control Control Regulation of calcium channels.

ANPEP Aminopeptidase N Control Control Digestion of proteins.

BAG2 BAG family molecular chaperone regulator 2 Control Control Protein folding.

CAPG Macrophage-capping protein Control Control Cytoplasmic and nuclear structure.

CCDC80 Coiled-coil domain-containing protein 80 Control Control Extracellular matrix organization.

COL12A1 Collagen alpha-1(XII) chain Control Control Extracellular matrix organization.

COL4A2 Collagen alpha-2(IV) chain HGPS HGPS Extracellular matrix organization.

CSPG4 Chondroitin sulfate proteoglycan 4 HGPS HGPS Regulation of cell proliferation and migration

ENO2 Gamma-enolase HGPS HGPS Glycolysis.

EPHX1 Epoxide hydrolase 1 Control Control Catabolism of aromatic compounds.

GPNMB Transmembrane glycoprotein NMB HGPS Control Cell migration and adhesion.

ISG15 Ubiquitin-like protein ISG15 HGPS HGPS Defense against bacteria.

ITGA3 Integrin alpha-3 HGPS HGPS Cell adhesion and cell-cell interaction.

MYH10 Myosin-10 Control Control Cell shape and cytokynesis.

NES Nestin HGPS HGPS Intermediate fillament binding.

P4HA2 Prolyl 4-hydroxylase subunit alpha-2 Control HGPS Proline hydroxilation in collagen.

PFKP ATP-dependent 6-phosphofructokinase HGPS HGPS Glycolysis.

PRPS1 Ribose-phosphate pyrophosphokinase 1 Control Control Nucleotide biosynthesis.

PSME2 Proteasome activator complex subunit 2 HGPS HGPS Proteosomal degradation.

RAD23B UV excision repair protein RAD23 homolog B Control Control Proteosomal degradation, part of the XPC

complex.

S100A16 Protein S100-A16 Control Control Calcium binding protein, adipocyte

differentiation.

THY1 Thy-1 membrane glycoprotein Control Control Cell adhesion and cell-cell interaction.

TNC Tenascin Control Control Extracellular matrix organization.

UACA Uveal autoantigen with coiled-coil domains and ankyrin

repeats

HGPS HGPS Regulation of stress-induced apoptosis.

List of the 24 protein/transcript pairs selected after the crosschecking of the proteomics and transcriptomics data.

https://doi.org/10.1371/journal.pone.0205878.t001
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Our intention for this study was to focus on this group of candidates. The analysis of the func-

tional protein association networks using String 10.5 demonstrates that the crosschecked mod-

ulated proteins are mainly membrane-bounded or secreted and participate in glycolysis and

metabolism (Fig 3), suggesting that HGPS presents features typical of a metabolic disorder.

Among them, one protein took specially our attention due to the novelty of its link with

premature aging. PRPS1 gene codifies for Phosphoribosyl pyrophosphate synthetase-1, a key

Fig 4. Targeted validation of PRPS1 shows down-regulation of transcript and protein levels in HGPS-cells and the animal model of HPGS, respectively.

Orthogonal validation of PRPS1 modulation by targeted techniques in cell lines (A, B) and in the mouse model of HGPS (C, D). Real-Time PCR (RT-PCR) of HGPS

and control cell lines (A) showing that PRPS1 transcript is down-regulated in the three HGPS cell lines when compare to their respective controls. Statistical analysis (B)

demonstrates that the difference between control and HGPS is significant (p-value� 0.01). Representative images (C) of the immunohystochemistry of the PRPS1

protein in liver sections of the ZMPSTE24-null mice strain (magnification: 20x). Statistical analysis shows that wild-type mice (WT) present significant (p-value� 0.05)

higher levels of the protein than heterozygous and null mice.

https://doi.org/10.1371/journal.pone.0205878.g004
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enzyme in nucleotide metabolism [26]. PRPS1 catalyzes the first step of the de novo Purine

synthesis pathway, the formation of phosphoribosyl-pyrophosphate (PRPP) from Ribose-

5-phosphate plus a molecule of adenosine triphosphate (ATP). PRPS1 loss-of-function muta-

tions have been previously related to disease phenotypes like Arts Syndrome, diabetes insipi-

dus or hearing loss [27].

De novo nucleotide synthesis is tightly regulated in the cells by a multi-enzymatic complex,

the purinosome, integrated by six different enzymes that catalyze ten different reactions [28].

The resulting metabolites are essential for key biological processes such as cell signaling,

energy generation and enzymatic activity, besides being the structural constituents of DNA

and RNA [29]. The purinosome is a transient structure, that is subjected to periodic assembly/

disassembly cycles in proliferating cells [30]. Purinosome activity is up-regulated during G1/S-

phases, accompanied by an increase in PRPP intracellular levels, and decreases dramatically by

G2/M-phases [31].

In the present study, PRPS1 levels are detected as significantly lower in HGPS vs. healthy

progenitor cell lines in both massive approaches. This is, to our knowledge, the first scientific

evidence linking premature aging and de novo purine synthesis. Further orthogonal verifica-

tion by targeted techniques is in accordance with the results. Real-Time PCR demonstrated

diminished levels of PRPS1 in the three HGPS cell lines versus the correspondent control cell

lines. Then we decided to investigate if this down-regulation is observed in vivo. ZMPSTE24--

null mouse is the most used animal model for the study of HGPS [32]. ZMPSTE24 is the

mouse-homolog of human FACE1, the metalloprotease that converts pre-lamin A to mature

lamin A. These mice accumulate permanently-farnesylated pre-lamin A, which exerts similar

harmful effects than progerin, and display most of the phenotypic features of the disease [33].

Immunohistochemical analysis in ZMPSTE24-null mice liver sections showed diminished lev-

els of PRPS1 when compared to both heterozygous and wild-type strains.

S-adenosyl-methionine (SAMe) is the central methyl donor in many cellular methylation

reactions, catalyzed by cellular methyltransferases and hydrolases, and is also an alternative

source of purine in living cells [34]. This metabolite was first discovered more than sixty years

ago [35] and several studies have demonstrated its therapeutic value for the treatment of osteo-

arthritis [36], depression [37] and liver disease [38]. In vitro, SAMe has a positive effect on

chondrocyte proliferation at a dose of 10 μg/mL [39]. In our hands, incubation of HGPS

derived cells with SAMe ameliorates the senescence phenotype and increase the proliferation

rate of the cells, suggesting that purine deprivation could be in part responsible for premature

aging phenotype.

PRPS1 activity has been previously reported to be negatively modulated by both amino-

acid starvation and a decrease of available D-Ribose-5-phosphate [40]. D-Ribose-5-phosphate

is an intermediate of the pentose phosphate pathway, specifically the first product of the non-

oxidative set of reactions. Interestingly, glycolysis has been also described as enhanced in

ZMPSTE24-null mice using proteomics approaches [41]. This is consistent with our results,

since we have found in the present work two of the key glycolytic enzymes, ATP-dependent

6-phosphofructokinase (PFKP) and gamma-enolase (ENO2), as up-regulated in HGPS cell

lines. In this scenario (Fig 6), the increase in the glycolysis due to lamin A de-regulation,

Fig 5. An alternative source of purine partially reverts the premature phenotype aging in HGPS-derived cells. Effect of incubation with SAMe on the

premature-aging phenotype of HGPS cell lines. MTT-based proliferation assay (A) showing that periodic addition of SAMe to the culture media at a final

concentration of 10 μg/mL, have a significant (p-value� 0.05) positive effect in the proliferation capacity of two out of the three cell lines after 10 days in

culture. Representative images (magnification: 20x) of the staining of Senescence Associated Beta-galactosidase (SA-β-gal) staining in HGPS cells with

and without SAMe addition to the culture media (B), showing a higher number of negative cells (arrows) in SAMe-treated cells. Densitometry analysis of

the staining signal shows a decrease in two of the HGPS cell lines after incubation with SAMe (C).

https://doi.org/10.1371/journal.pone.0205878.g005
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would produce a decrease in the amount of available D-Ribose-5-phosphate necessary for

purine biosynthesis, thus promoting a reduction in the activity of PRPS1 affecting the entire de
novo purine pathway. On the other hand, regarding the effect of amino-acid starvation on the

PRPS1 activity, it is noteworthy the reduction of the levels of aminopeptidase N (ANPEP) that

we have detected by both large-scale approaches. ANPEP, also known as CD13, is one of the

enzymes that participate in the final digestion of peptides coming from the gastric hydrolysis

of proteins [42] and participates in the rennin-angiotensin system that regulates vasopressin

release, thus regulating arterial blood pressure and the pathogenesis of hypertension [43]. A

reduction of the levels of ANPEP in HGPS would be responsible for the inhibition of PRPS1

Fig 6. Proposed model to explain the down-regulation of PRPS1 in HGPS. Enzymes in blue are detected as down-regulated and those in red as up-regulated in the

present study. High glycolitic rate in HGPS drives to a decrease in the levels of D-Ribose-5-phosphate available for de novo purine synthesis. This reduction

compromises PRPS1 activity. Furthermore, this inhibition is complemented by free amino-acid starvation resulting from down-regulation of ANPEP. As a result, de

novo nucleotide synthesis is affected thus promoting defects in key biological processes that contribute to the premature aging phenotype. Supplementation of SAMe

helps to restore the levels of AMP which, in turn, could be transformed to GMP by the cellular machinery, partially ameliorating the premature aging phenotype.

Abbreviations: PFKP: ATP-dependent 6-phosphofructokinase; ENO2: gamma-enolase; PRPS1: ribose-phosphate pyrophosphokinase 1; ANPEP: aminopeptidase N;

GPAT: glutamine-phosphorybosil aminotransferase; GARS: glycinamide-ribonucleotide synthetase; GART: glycinamide-ribonucleotide transformylase; IMP: inosine

monophosphate; GMP: guanosine monophosphate; AMP: adenosine monophosphate; SAMe: S-adenosylmethionine; SAH: S-adenosylhomocysteine; AHCY: S-

adenosylhomocysteine hydrolase.

https://doi.org/10.1371/journal.pone.0205878.g006
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through amino-acid starvation and, even more importantly, would contribute to the hyperten-

sion and high blood pressure levels that, long term, derive in the cardiovascular malfunction

characteristic of the disease.

Altogether, our results indicate a non-previously described alteration of the de novo purine

synthesis cellular machinery in HGPS. An attractive possibility is that LMNA de-regulation

promotes down-regulation of the PRPS1 gene, resulting in a decrease of PRPS1 levels in

HGPS. In this case, purine synthesis deprivation would compromise energy generation and

cell signaling. Further investigation is needed for a deeper understanding of this novel link

between premature aging and de-regulation of purine synthesis and to explore new therapeutic

windows for the treatment of the disease.
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