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Abstract: Recent advances in integrating microengineering and tissue engineering have enabled
the creation of promising microengineered physiological models, known as organ-on-a-chip (OOC),
for experimental medicine and pharmaceutical research. OOCs have been used to recapitulate
the physiologically critical features of specific human tissues and organs and their interactions.
Application of chemical and mechanical stimuli is critical for tissue development and behavior,
and they were also applied to OOC systems. Mechanical stimuli applied to tissues and organs
are quite complex in vivo, which have not adequately recapitulated in OOCs. Due to the recent
advancement of microengineering, more complicated and physiologically relevant mechanical stimuli
are being introduced to OOC systems, and this is the right time to assess the published literature on
this topic, especially focusing on the technical details of device design and equipment used. We first
discuss the different types of mechanical stimuli applied to OOC systems: shear flow, compression,
and stretch/strain. This is followed by the examples of mechanical stimuli-incorporated OOC systems.
Finally, we discuss the potential OOC systems where various types of mechanical stimuli can be
applied to a single OOC device, as a better, physiologically relevant recapitulation model, towards
studying and evaluating experimental medicine, human disease modeling, drug development,
and toxicology.

Keywords: organ-on-a-chip (OOC); microfluidic device; mechanical cue; shear flow; compression;
stretch; strain; syringe pump; integrated pump; passive delivery

1. Introduction

Organ-on-a-chip (OOC) has enabled new opportunities in cell biology research through
reproducing key aspects of an in vivo cellular microenvironment. One of these parameters is mechanical
force, which imparts strain on cells and tissues. Such mechanical force and subsequent strain are integral
parts of the cellular microenvironment that modulates the proliferation, migration, phenotype, and/or
differentiation of cells. There have been extensive studies describing the cellular mechanisms where
mechanical forces are transduced into biochemical signals (called cellular mechanotransduction) [1–3].
These responses affect the function of multicellular systems, which is critical in tissue- and organ-level
health and disease. Mechanical forces provide cues for morphogenesis during organ development [4],
tissue homeostasis [5], and wound healing [6], to name a few. Disease processes of fibrosis and cancer
metastasis are also linked to the abnormal mechanical properties applied to tissues [7,8]. Recent studies
on cellular mechanotransduction suggest that mechanical modulation of the cellular microenvironment
can be used to improve the wound healing response [9], either by promoting faster wound closure or
by decreasing fibrosis [10]. Generally, it is crucial to characterize the influence of mechanical forces in
order to clearly understand in vivo physiology.
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Mechanotransduction operates through numerous pathways that are often complex and
unpredictable. OOCs can be used to recreate the in vivo biomechanical environment for studying and
evaluating such mechanotransduction. In this review, we describe the latest approaches and methods
used to generate mechanical stimuli on OOC systems and how they can be used towards diverse
applications. Specifically, technical details of OOC system designs and equipment used are summarized
and classified into several different categories. We also discuss on the potential advancement in
combining different types of mechanical stimuli that can be delivered to a single OOC system.

2. Types of Mechanical Stimuli Utilized in Current Organ-on-a-Chip (OOC)

In vivo cells and tissues experience various mechanical stimuli, which have been recognized as key
determinants of differentiated cellular functions. For example, fluid shear stress presented in the kidney
induces the morphological polarization and allows epithelium to perform the transportation function,
including the transport of water and sodium in response to hormonal stimulation. Mechanical stimuli
commonly applied in OOC systems can be classified into three categories: shear flow, compression,
and stretch/strain (Figure 1).
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Compression (D) generates compressive force on top of the cells. Stretch/strain applied to the ECM 
scaffold (E) generates the force to the cells attached to it. 

Liquid flow within microchannels of OOC systems usually induce the shear stress on the cells 
or tissues cultured in the system, thus called shear flow. Flow-induced shear stress has initially been 
used to study the effects of this stress on cell adhesion, mechanics, morphology, and growth in early 
microfluidic cell culture systems. Recent studies are focused on reproducing physiologically relevant 
shear stresses to understand their effects in the specific tissues and organs. Shear forces can be 
generated by laminar, pulsatile, or interstitial flow. 

2.1. Laminar Flow 

Laminar flow is dominant in tissues and organs and subsequently OOC systems, as the 
dimensions are in micrometer scale (Figure 1A). This leads to a very small Reynolds number (= 
Dvρ/μ, where, D is tube diameter, v is flow velocity, ρ is fluid density, and μ is fluid viscosity) [11]. 
Such flow is characterized as laminar flow, which is a series of parallel straight paths of flow lines 
with parabolic profile and no mixing among them. As such, laminar flow has commonly been used 
in various OOC systems (Figure 2A). For example, one kidney-on-chip device reproduced luminal 

Figure 1. Types of mechanical stimuli integrated in organ-on-a-chip (OOC) systems. Black arrow
represents the direction of each stimulus. Laminar (A) and pulsatile (B) flows along the microfluidic
channel and generates laminar and pulsatile shear stresses on the cell surfaces. Interstitial flow (C)
through the extracellular matrix (ECM) scaffold generates the shear stress to the cells attached to it.
Compression (D) generates compressive force on top of the cells. Stretch/strain applied to the ECM
scaffold (E) generates the force to the cells attached to it.

Liquid flow within microchannels of OOC systems usually induce the shear stress on the cells
or tissues cultured in the system, thus called shear flow. Flow-induced shear stress has initially
been used to study the effects of this stress on cell adhesion, mechanics, morphology, and growth in
early microfluidic cell culture systems. Recent studies are focused on reproducing physiologically
relevant shear stresses to understand their effects in the specific tissues and organs. Shear forces can be
generated by laminar, pulsatile, or interstitial flow.

2.1. Laminar Flow

Laminar flow is dominant in tissues and organs and subsequently OOC systems, as the dimensions
are in micrometer scale (Figure 1A). This leads to a very small Reynolds number (= Dv%/µ, where,
D is tube diameter, v is flow velocity, % is fluid density, and µ is fluid viscosity) [11]. Such flow is
characterized as laminar flow, which is a series of parallel straight paths of flow lines with parabolic
profile and no mixing among them. As such, laminar flow has commonly been used in various OOC
systems (Figure 2A). For example, one kidney-on-chip device reproduced luminal fluid shear stress of
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0.2–20 dyn/cm2 (which is ~10% of the shear stress experienced by endothelial cells) in the collecting
duct system of the kidney, to study the role of fluid shear stress of 1 dyn/cm2 in the reorganization of
actin cytoskeleton [12] and translocation of water transport proteins (aquaporin-2) of inner medullary
collecting duct (IMCD) cells of the kidney [13]. The kidney-on-chip device developed by Jang et al. was
composed of two polydimethylsiloxane (PDMS) layers separated by a thin porous polyester membrane.
The top layer was covered by IMCD cells to mimic the inside tubular system and the bottom layer
was left empty for fluid flow to mimic the outside tubular system. Various environmental factors
and their combinations, including 1–12 h of exposure time, 0.2–5 dyn/cm2 of shear stress, different
concentrations of hormones, and transepithelial osmotic gradient conditions across a porous membrane,
were investigated to generate various dynamic conditions for kidney tubular cells. Fluid shear stress,
together with the presence of hormone and osmotic gradient, triggered the F-actin polymerization
and depolymerization in both apical and basal regions of the cells, and the process is reversible.
These kidney-on-chip models can be used towards studying renal physiology and pathophysiology.

Laminar flow was also used for an OOC system to study how fluid forces modulate angiogenesis
(formation of new blood vessel) [14,15]. The OOC system for an angiogenesis study invented by
Vickerman et al. was comprised of two parallel microfluidic channels, lined with human umbilical
vein endothelial cells (HUVECs), and a central microchannel of a three-dimensional (3D) collagen
extracellular matrix (ECM) that separated the two parallel microfluidic channels, into which HUVECs
could migrate [14]. Similarly, Zheng et al. fabricated a microvessel network of HUVECs within collagen
matrix and the 0.1 dyn/cm2 shear stress was delivered to the cells [15]. These OOC systems recreated
the physiological environment of vascular endothelial cells for assessing angiogenesis. Laminar flow
used in this system generated the tangential shear stress on the HUVECs and induced cell sprouting
into the central channel.

Another example was a liver-on-chip device, where the hepatocytes were 3D-cultured within
a microfluidic channel to study drug toxicity in vitro [16]. The device was composed of highly
fluidic-resistant endothelial barrier channels, which was connected to the flow channel and the cell
loading channel. Media was pumped as laminar flow at the steady rate of 10–20 nL/min to mimic the
mass transport properties of the hepatic microcirculation. The endothelial barrier was introduced to
minimize the damage to hepatocytes caused by high shear stress. The 3D morphology of hepatocytes
and liver metabolically specific functions were maintained under this continuous, laminar flow.
Hepatotoxicity of the anti-inflammatory drug, diclofenac, was also investigated using this liver-on-chip
model to assess the short-term (<4 h) and long-term (24 h) exposures to the liver cells and compared
with the reported drug-induced injury to liver.

2.2. Pulsatile Flow

When the heart beats, blood is pumped to vessels throughout the body due to cycles of contraction
and relaxation of the ventricles and atria, which resulted in a pulsatile flow within the transportation
part of cardiovascular system (Figure 1B) [17]. Pulsatile flow has commonly been utilized in blood
vessel-on-chip systems to simulate the actual pulsatile blood flow in human circulation [18]. For example,
a hemodynamic microfluidic system with endothelial cells was developed mimicking the physiological
pulsatile nature of the vascular system, to investigate the effect of biological factors in the blood from
diabetic patients [18]. This microfluidic chip consisted of three rows for triplicate experiments to be
performed at the same time. Each row has three different microchannel designs that mimic different
blood vessels shapes: 600 µm-wide channel to mimic typical human arteries, 600 µm-wide at the
beginning and gradually narrowing down to 300 µm, and a half-circle block with a radius of 300 µm in
the middle of the 600-µm channel to mimic the blood vessel with an atherosclerotic plaque. All three
channels were 150 µm deep. Pulsatile shear stress was applied at the average flow rate of 1.41 µL/s
(corresponding to the average shear stress of 15 dyn/cm2 in 600 µm-wide channels) and at a pulse
rate of 70 beats per min (bpm), both of which corresponded to the physiological conditions of typical
arteries in a healthy human body. The other profile is a pulsatile flow at the elevated average flow rate of
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2.22 µL/s (corresponding to the average shear stress of 23.6 dyn/cm2 in 600 µm-wide channels) with the
elevated pulse rate of 110 bpm, to simulate the blood flow in diabetic patients. The rate of endothelial cell
apoptosis increased by a factor of 1.4–2.3 with increasing glucose concentration and shear stress.

Similarly, an OOC system mimicking a microvascular transportation connecting multiple
organ-on-chip systems was designed and constructed to study the long-term homeostasis of human
blood vasculature and its transport function [17]. Such a multi-organ-on-chip (MOC) device consisted
of two separate microvascular circuits and the insert compartments were filled with organ-equivalent
culture. Pulsatile flow was delivered to the MOC at the periodically varied rates from 7 to 70 µL/min
with the frequency of 144 bpm. The measured average shear stress was 25 dyn/cm2 in the microvascular
circuit, which is within the physiological shear stress of 10–40 dyn/cm2 [19].

An integrated microfluidic chip cultured with endothelial cells was developed to study the
endothelial cell’s morphology, cytoskeleton, and barrier formation under the self-contained loop
of induced pulsatile shear stress at a physiologically-relevant level (Figure 2B) [20]. The chip is
composed of three layers: a bottom layer for microgap, a middle layer for microchannels and
microchamber, and a top layer for reshaping the microchannel. The average pulsatile flow rate of
0.34 nL/s was delivered to the systems, which correlated to the instantaneous shear stress from +8.15
to −5.92 dyn/cm2. Several in vivo physiological structures and processes were similarly represented
in this chip, such as endothelium barrier, albumin transport, soluble factors diffusion, and pulsatile
and oscillatory shear stress exposed to endothelial cells. These processes were utilized towards
comprehensive understanding of the endothelial cell’s behavior and functions.

2.3. Interstitial Flow

Interstitial flow is fluid flow through or around a 3D ECM, where interstitial cells such as
fibroblasts, tumor cells, tissue immune cells, and adipocytes can be found. It differs from open-channel
flow, such as blood flow within vessels, in several ways (Figure 1C). For example, it generally flows at
a much slower velocity because of the high flow resistance of the ECM, it moves around the cell-matrix
interface in all directions rather than only on the apical side, and it can have important effects on
pericellular protein gradients, particularly those that are matrix binding [21]. Microfluidic systems have
been considered as a promising platform to investigate the effects of interstitial flow on cell motility.
For example, a microfluidic device with two regions for ECM gel was proposed to study the effect of
interstitial flow on cancer cells’ migration (metastasis) [22]. In this work, breast cancer cells were used
as a cancer model and the use of two ECM gels allowed maximum flexibility in adjusting flow rates.
Interstitial flow of 10 µm/s increased the number of circulating cancer cells (CTCs) as well as their
velocity, but the directionality of such movement varied between cell types. Effects of interstitial flow
on cancer cell invasion were also examined in order to provide a better understanding of how cancer
cells gain access to the lymphatic system and manipulate their environment [23–25]. Bonvin et al.
designed a multichamber radial flow system consisting of nine identical gel-filled chambers sharing
inlet and outlet medium reservoirs [23]. Interstitial flow rate of 1–2 µm/s successfully induced the
migration of cancer cells into the fibroblast-containing gel region. Similarly, Munson et al. utilized
the radial flow chamber to investigate the effect of interstitial flow (average velocity of 0.7 µm/s) on
the glioma (brain cancer) invasion as well as flow-induced cellular polarization [24]. A co-culture
model with fibroblast and cancer cell was used to study the effect of interstitial flow (~0.5 µm/s) on
cancer cell invasion [25]. In this work, interstitial flow enhanced the fibroblast migration through
increased transforming growth factor β1 (TGF-β1) activation and collagen degradation, through which
fibroblasts eventually reorganized collagen fibers and in turn, enhanced cancer cell invasion.

Interstitial flow also affects angiogenesis (formation of new blood vessels) as well as
lymphanogenesis (formation of new lymphatic vessels). These processes are essential to both
normal development and pathological processes that are heavily influenced by the dynamic mechanical
environment, for example, laminar and interstitial flows experienced by endothelial cells. Effects
of interstitial flow on angiogenesis and lymphanogenesis were investigated on OOC models [26,27].
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Kim et al. utilized the microfluidic device composed of 6 microchannels: two peripheral media
channels, two outermost channels for 3D culture of fibroblasts (secreting angiogenic biochemical
cues), one central channel for a fibrin-matrix embedding endothelial cells, and one central channel
for an acellular fibrin-matrix for angiogenic sprouting (Figure 2C). In the presence of interstitial flow
(0.1–4 µm/s), vasculogenic organization of the microvascular network was significantly facilitated
regardless of flow direction, whereas angiogenic sprouting was promoted only when the directions
of flow and sprouting were opposite from each other [26]. A similar chip design was used to study
the lymphanogenesis in response to interstitial flow (~1 µm/s). The growth of vessel sprouting was
significantly augmented in the direction opposite the flow, while sprouting was suppressed along with
the flow direction. These results imply that interstitial flow is a key mechanical regulator of tissue
vascularization including the rate of morphogenesis and sprout formation [27].

2.4. Compression

Various types of cells experience compression stresses that are applied on top of the cells (Figure 1D).
A good example is skin tissue, where the top two layers are epidermis (top, exposed layer) and dermis
(just underneath the epidermis). From a physical standpoint, the main function of the dermis is to
provide mechanical integrity to the skin. In normal non-injured skin, the majority of compressive and
tensile forces imparted onto the skin are borne by the ECM network in the skin dermis, with little force
directly applied onto the resident fibroblasts or other structures [28]. The hypodermis, innermost layer
of the skin and lining between dermis and skeletal muscle, mainly consists of subcutaneous fat and
serves as a shock absorber.

Another good example is cardiac tissue. It displays macroscopic contraction with the entire tissue
being compressed at each contraction without collapse of the internal vasculature [29]. Microfluidic
devices can be used to mimic the organ functionality through constructing multi-cellular architecture,
interfacing the tissues and physiochemical microenvironments along with perfusion of the body.
Several different OOCs can fluidically be connected together, mimicking the physiological connections
between organs with integrating flow shear stress, mechanical compression, and cyclic strain or other
physical forces, which can be used for analyzing drug distribution and organ-specific responses [30].
The complex mechanical microenvironment of organs can be replicated in vitro on OOCs, enhanced
pressure can be applied to compress the tissues at a higher level than normal [31]. For example,
adipocyte-derived stem cells and bone marrow-derived stem cells were cultured on microfluidic devices
and exposed to dynamic hydraulic compression to evaluate the osteogenic abilities [31]. The uniform
mechanical compression was provided to the array of cell culture chamber that were located along
a concentric circle of the central air inlet on a microfluidic chip (Figure 2D). Dynamic mechanical
compression of 1 and 5 psi(= 6.9 and 34 kPa) was evaluated to investigate its effect on the osteogenic
differentiation abilities of different types of stem cells. Dynamic compression increased osteogenic
ECM formation and integrin levels in both types of stem cells, leading to stimulus-enhanced bone
differentiation. Bone marrow-on-chip was also used to study blood cell production under radiation
countermeasure drugs [32]. Bone marrow chip exposed to gamma radiation resulted in a reduction
of leukocyte production. Treatment of the chips with two potential therapeutics, granulocyte-colony
stimulating factor (G-CSF) or bactericidal/permeability-increasing protein (BPI), induced significant
increases in the number of hematopoietic stem cells and myeloid cells in the fluidic outflow.

2.5. Stretch/Strain

In addition to flow-induced shear stress, cells and tissues in the human body continuously
experience organ-specific tensile and compressive forces during the normal operation of organs
(Figure 1E). Compression from outside (skin tissue) and from blood (cardiac tissue) was already
described in the previous section. Tensile force applied to the cellular microenvironment leads to
stretch or strain to the tissue. One example is a lung-on-a-chip device that uniquely mimics the
combined solid and fluid (surface-tension) mechanical stresses induced by the air-flow-induced
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cellular stretching and the propagation of an air–liquid meniscus in the alveoli of a human lung [33].
Previously reported in vitro models of ventilator-induced lung injury generated either cyclic stretching
or air–liquid interface flow over the cells on non-stretching substrates [33–36]. This lung-on-a-chip
device created more physiologically relevant mechanical microenvironments for alveolar epithelial
cells during ventilation by simulating both fluid and solid mechanical stresses. This study showed that
combined solid and fluid mechanical stresses (cyclic stretch and surface tension forces, respectively)
significantly increased cell death and detachment compared to solid mechanical stress alone, supporting
the clinical observations that cyclic stretch alone is insufficient to induce the level of the cell injury,
as seen in ventilator-induced lung injury. Another example is a human-breathing lung-on-a-chip
device that reconstituted a mechanically active microenvironment of the alveolar–capillary interface
of the human lung [37]. Additionally, the lung-on-a-chip device reproduced the cyclic strain from
the breathing movement in a human lung. The microfluidic device consisted of a two-layer central
channel separated by a thin membrane for cell cultures and two side channels where a vacuum was
applied for suction (Figure 2E). Cyclic stretching was achieved at a frequency of 0.2 Hz (sinusoidal
wave form) with 10% strain by applying cyclic suction to the hollow side chambers, thus causing the
mechanical stretching of the flexible membrane between the alveolar and capillary compartments.
The lung-on-a-chip device was also used to create a human disease model-on-a-chip of pulmonary
edema [37]. Such a disease model revealed that mechanical forces associated with physiological
breathing motions increased vascular leakage that leads to pulmonary edema.
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Figure 2. Different types of mechanical stimuli used in OOC systems. (A) Laminar flow presented
in liver-on-chip, reproduced with permission from Reference [16]. (B) Pulsatile flow presented in
vessel-on-chip, reproduced with permission from Reference [20]. (C) Interstitial flow presented
in angiogenesis-on-chip, reproduced with permission from Reference [26]. (D) Compression stress
presented in bone-on-chip, reproduced with permission from Reference [31]. (E) Stretch/strain presented
in lung-on-chip, reproduced with permission from Reference [37].
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A model mimicking human intestinal microenvironments was developed to evaluate lipid
transport across the lymphatic endothelial layer for future applications in screening drug candidates
targeting intestinal lymphatics [38]. Incorporation of the presence of peristalsis and the subsequent
mechanical stretching on the endothelial layer to this model may be the next critical step for better
replicating intestinal lymphatics. As such, there is significant potential for microfluidic techniques to
further elucidate the functionality of the lymphatic system, as well as other systems that depend on
similar mechanical constraints.

Different types of mechanical stimuli and their application towards different OOC models are
summarized in Table 1.

Table 1. Summary of different types of mechanical stimuli and delivering mechanisms towards various
organ/tissue models and their applications.

Mechanical
Stimuli

Delivery
Method

Organ/Tissue
Model Applications Reference

Laminar flow

Passive delivery
(gravity-driven) Liver Improvement and maintenance of cell viability

under drug exposure [16]

Pressure
regulator Liver Real-time monitoring of metabolic function of liver

and drug-induced mitochondrial dysfunction [39]

Syringe pump Kidney Transportation, absorption, toxicity, and
pathophysiology of kidney [40]

Pulsatile flow

Peristaltic on-chip
micropump Blood vessel

Mimicking blood circulation systems connecting
two different organs-on-chip towards

long-term homeostasis
[17]

Syringe pump Blood vessel
(endothelial cells)

Endothelial cell’s integrity and apoptosis in the
blood of diabetic patients [18]

Pneumatic pump Blood vessel
(endothelial cells)

Barrier formation and permeability of
endothelial cells [20]

Interstitial flow

Peristaltic pump Breast cancer Cancer cell’s invasion in response to
interstitial flow [22]

Passive delivery
(hydrostatic

pressure-driven)

Brain cancer
(glioblastoma

stem cells)

Patient-derived glioblastoma stem cell’s invasion
in response to interstitial flow [41]

Passive delivery
(hydrostatic

pressure-driven)

Blood vessel
(endothelial cells)

Angiogenesis: vasculogenic formation and
angiogenic remodeling in response to interstitial

flow and vascular morphogens
[26]

Compression

Pressure
regulator Bone (stem cells)

Osteogenic ability of adipose tissue- and human
bone marrow-derived stem cells in response to

hydraulic compression
[31]

Compression
device Heart Formation and functions of cardiac muscle tissue

during the stage of compression [42]

Pressure
controller Bone (osteoblasts) Real-time monitoring of single cell response to

compressive stimuli [43]

Stretch/strain

Vacuum and
syringe pump Lung

Visualization and characterization of inflammatory
processes in response to bacteria at the

alveolar–capillary interface
[37]

Pneumatic pump Lung

Conservation of the epithelial barrier property
between human lung alveolar cells and primary

lung endothelial cells under long-term co-culture
and cyclic strain

[44]

Syringe pump Connective tissue
(fibroblasts)

Effect of static strain on cellular alignment of
fibroblasts encapsulated in hydrogel [45]

3. Current Methods of Delivering Mechanical Stimuli to Organ-on-a-Chips (OOCs)

As described previously, mechanical stimuli found in the human body can be classified into
(1) shear flow (laminar, pulsatile, and interstitial), (2) compression, and (3) stretch and strain [45],
which have also been demonstrated in OOC systems. The most common stimulus used in OOC
systems is shear flow as it can mimic the human body’s mechanisms to introduce medium and solution
of interests to the body systems. These shear flows have been generated in diverse ways, while they can
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generally be classified into three categories: external pumping, internal (on-chip) pumping, and passive
delivery. Figure 3 graphically illustrates various methods and equipment to deliver mechanical stimuli
to OOC systems.
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to the peripheral chambers, allowing the main culture chamber to stretch in a cyclic manner.

3.1. External Pumping

The easiest and most common method for generating shear flow in OOC is the use of an external
pump, including a syringe pump or peristaltic pump (Figure 3A). A syringe pump delivers precise,
accurate, and small amounts of fluid in a programmable manner, where a stepper motor pushes the
plunger flange of a syringe filled with fluid, generating fluid flow to the tube connected from the
end of a syringe needle. The syringe pump has popularly been used for the OOCs fabricated with
polydimethylsiloxane (PDMS), which is the most frequently used substrate for many microfluidic
devices as well as OOCs. For instance, cardiotoxic drug exposure was demonstrated in the PDMS-based
microfluidic device cultured with human embryonic stem cell-derived cardiomyocytes with the medium
flow generated and manipulated by a syringe pump [46]. Similarly, angiogenesis was demonstrated
in the microfluidic device cultured with vascular endothelial cells, recapitulating in vivo blood flow
along the PDMS channel [46]. Angiogenesis of vasculature tissue has also been demonstrated on an
OOC system to study the angiogenic ability of different cell types, human aortic endothelial cells and
HUVECs, and expression level of fibroblast growth factor under the vascular endothelial growth factor
(VEGF) stimulation [47]. The syringe pump was also used to perfuse breast cancer cells (MCF7 and
MDA, as circulating tumor cells) through different PDMS-based OOC systems, and the metastasis
behavior of these cancer cells was observed (Figure 4A) [48]. In this work, co-culture of more than
one cell type—lung-liver-bone-muscle co-culture—has been explored to provide better physiological
relevance of OOC systems.
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Figure 4. Examples of OOC systems with external and internal pumping. (A) External syringe pump
for the OOC with endothelial cells. (B) External peristaltic pump for the OOC with hepatocytes and
Sertoli cells. (C) Electro-osmosis (EOS) pumping was integrated onto the OOC with human lung cancer
cells. (D) A peristaltic valve was integrated onto the OOC with liver-intestine and liver-skin cells.
Reproduced with permission from References [49–52].

In a peristaltic pump, fluid is contained within a flexible tube fitted inside the pump casing.
Its pumping principle, called peristalsis, is similar to the movements in human throat and intestines:
compression and relaxation of the tube is alternated, drawing the new fluid in and propelling the
existing fluid away from the pump. The peristaltic pump has also been used, albeit not as frequently
as the syringe pump, to generate medium flow in OOC systems. For example, the OOC system
with rat primary hepatocyte and primary Sertoli cells co-culture was demonstrated to investigate
hepatic metabolism and Sertoli barrier tightness relationship (Figure 4B) [49]. The vacuum pump has
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occasionally been used as well: for example, in the lung-on-a-chip model, vacuum was applied to
the side chambers to generate cyclic stretch (Figure 3F) [50], which is discussed in the later section.
All three types of external pumps, commonly utilized for PDMS-based OOC systems, are not suitable
to meet the demand of the “miniaturized” nature of OOC, due to their bulky size and requirement of
an AC power source.

3.2. Integrated on-Chip Pumping

To overcome the size limitation of external pumping, the pumps were integrated within the
microfluidic chips to miniaturize the systems (Figure 3B). For example, an electro-osmosis (EOS, voltage
applied to the channel creates the bulk flow of liquid) diode pumping system was used to generate
a pulsed, ultra-slow EOS flow (2.0–12.3 nL/s) through lung cancer tissue (Figure 4C) [51]. Briefly,
two electro-diodes were embedded along two PDMS side walls. The electric signals were applied to the
diodes directly via the electrolyte within the microfluidic channel and required no external electrical
connection because the leads of the diodes physically contacted the fluid. The flow rate was adjusted
by changing the electric field strength applied to the diodes from 0.5 Vpp/cm to 10 Vpp/cm. The diode
pump-driven fluidics were characterized by intensities and frequencies of electrical inputs, pH of
fluids, and fluid type. However, the long-term operation of this electro-osmotic microfluidic system
required a change of fluid every hour which is not easy-to-implement for some tissue or organ models.

A miniature peristaltic pump was also integrated on the PDMS chip to generate pulsatile flow
along the co-culture of liver-intestine and liver-skin tissue to investigate the efficacy of different
drug dosage and administration (Figure 4D) [52]. This microfluidic chip contained the cell culture
compartment, peristaltic micropump, and three PDMS membrane valves in a row. These were actuated
by applying pressure. The pumping frequency and peristaltic valve pressure were modified to adjust
fluid flow rate into a physiological range of a specific organ. The optimized conditions were the pump
at frequency of 2 Hz, the median flow rate of 2.6 µL/min, and the median shear stress of 0.7 dyn/cm2.
This system was stable for up to 14 days for the co-cultures of human 3D liver equivalents with human
intestinal barriers.

3.3. Passive Delivery

While the internal on-chip pumping allowed for miniaturizing the OOC systems, the integration
of such an internal pump onto PDMS chip is extremely complicated for both fabrication and operation.
Passive control of the flow has recently emerged in the past three years as an alternative. One example
is OrganoPlate, which is a commercialized microtiter plate where the cells are cultured on it and the
passive flow is generated by rocking the OrganoPlate (Figure 3C). The OrganoPlate supported up
to 96 tissue models on a single platform and each model usually consisted of two layers: a medium
layer for passive fluid flow and an ECM gel layer. This device also offered 3D tissue culture where the
cells were embedded within the ECM gel layer and also deposited as a monolayer at the inner wall of
the medium layer. Continuous perfusion of medium mimicked blood flow and enabled exchange of
nutrients and oxygen. This was driven by gravity levelling (difference in fluid level) using its Perfusion
RockerTM and no additional pumps and tubes were necessary. OrganoPlate has been used in many
OOC systems. For example, neuron tissues were cultured on OrganoPlate to investigate the stem cell
differentiation (Figure 5A) [52] and co-culture of neurons-glia cell for studying neurite outgrowth [53].
While this method is simple, it still requires a moveable stage to tilt the plate for generating a passive
flow. An improved method is the use of gravity-driven flow, which is also gaining popularity due to
its simplicity. For example, the inlet and outlet of PDMS chip were connected to syringes containing
different levels of solution. With gravity, a higher level of the medicine solution in the syringe inlet
was driven to flow through liver tumor spheroids, cultured within the PDMS chip for screening the
anti-cancer drug toxicity in the liver tissue [54]. Instead of syringes, the PDMS chip was placed on the
computer-controlled tilting stage to drive the flow within the chip where the co-culture of liver (HepG2)
and cancer (HeLa) cells existed and used to observe the pharmacokinetic and pharmacodynamic of



Micromachines 2019, 10, 700 11 of 22

anti-cancer drug activities (Figure 5B) [55]. Similar to the gravity-driven flow, hydrostatic pressure was
used to generate interstitial flow along the vasculature tissue culture within the PDMS chip to study
the angiogenesis [56]. Nonetheless, these passive flow controls can potentially result in an imprecise
rate of flow and may not be practical for long-term experiments.Micromachines 2019, 10, 700 12 of 22 
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Figure 5. Examples of OOC systems with passive delivery and compression. (A) OrganoPlate was
rocked to generate a passive flow through network of neurons. (B) Gravity flow machine generated
flow to the liver and cervical cancer cells on chip. (C) Piston chamber generated compressive stress on
the cardiac tissue within TCP. (D) Diaphragm and pressure controller generated compressive stress on
osteoblastic cells on chip. Reproduced with permission from References [26,43,53,56].

3.4. Compression

In addition to shear stress, compression is also an important factor in certain tissues such as
heart [26], bone [42], and vessel [57]. For instance, cardiac cells were cultured on alginate scaffold within
a 48-well plate. These 3D cell cultures were placed underneath the compression device consisting
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of 48 pistons to provide the compression and medium perfusion for each culture well to study the
cell behavior under mechanical stimuli (Figures 3D and 5C) [42]. Compression stimuli on osteoblasts
can be presented in a microfluidic device to study the real-time cellular response, for example, the
changes of intracellular calcium concentration, and intracellular strain distribution after exposure to
those stimuli. Compression stimuli applied to cells can be controlled by regulating the expansion
of the diaphragm via pressure control (Figures 3E and 5D) [58]. Cyclic compression in a sinusoidal
waveform with magnitudes of 0.33, 0.5, and 1 MPa were delivered at 1 Hz frequency by a commercially
available compression system (FX-5000CTM, Flexcell, Burlington, NC, USA), to study the differentiation
of osteoblasts [59]. This commercial system regulated the positive air pressure to compress tissue
samples or 3D cell cultures that were placed in between a piston and a stationary platen using their
own tissue culture plate (TCP). This device allowed each piston to apply the loads up to 14 lb (=6.4 kg)
into an individual well on TCP.

3.5. Stretch/Strain

A vacuum pump was used to generate cyclic stretchin OOCs, specifically lung-on-a-chip,
as described in the external pumping section. As PDMS (the most popular material for OOC
fabrication) is flexible, periodic changes in the vacuum pressure can result in stretching and/or strains to
the substrate (PDMS) and subsequently to the cells attached to it. Stucki et al. fabricated a PDMS-based
lung-on-chip device to study the conservation of the epithelial barrier functionality between primary
human lung alveolar cells (hAEpCs) and primary lung endothelial cells for long-term co-culture and the
effect of physiological cyclic strain on epithelial barrier permeability [53]. In this work, the cyclic strain
was delivered to the systems by connecting a chip to an electro-pneumatic setup via access ports which
was used to control the opening and closing of the valves by applying negative and positive pressures.
The applied pressure deflected the 40 µm thick PDMS membrane (microdiaphragm), resulting in
opening and closing the valves. The setup regulated the cyclic motion by applying a negative pressure
to the access ports. The movements of the PDMS membrane were transferred to the thin, porous
alveolar membrane (Figure 6A). Besides cyclic strain, the effect of gradient static-strain on cellular
alignment was studied on microfluidic chip as well [60]. Fibroblasts were cultured on a concentric
circular hydrogel pattern and a flexible PDMS membrane. Initially, the outlet of the flow channel on
the microfluidic chip was closed with a PDMS plug. Once the liquid was injected in the flow channel,
a non-continuous gradient height of hydrogel along the radius was formed. After unplugging the
outlet, the PDMS membranes became flat and gradient stress was applied on the cell-encapsulated
hydrogels (Figure 6B). Cell behaviors were influenced by a combination of hydrogel shape and a
variety of tensile stretch guidance cues.



Micromachines 2019, 10, 700 13 of 22

Micromachines 2019, 10, 700 13 of 22 

 

gradient static-strain on cellular alignment was studied on microfluidic chip as well [60]. Fibroblasts 
were cultured on a concentric circular hydrogel pattern and a flexible PDMS membrane. Initially, the 
outlet of the flow channel on the microfluidic chip was closed with a PDMS plug. Once the liquid 
was injected in the flow channel, a non-continuous gradient height of hydrogel along the radius was 
formed. After unplugging the outlet, the PDMS membranes became flat and gradient stress was 
applied on the cell-encapsulated hydrogels (Figure 6B). Cell behaviors were influenced by a 
combination of hydrogel shape and a variety of tensile stretch guidance cues. 

As mechanobiological studies on OOC systems have been gaining popularity, many commercial 
tools have been developed that could easily deliver mechanical stimuli to the OOC systems (Figure 
7). For example, the fibroblast’s ability to align in response to mechanical stimuli was tested through 
a series of 0% to 10% cyclic uniaxial stretch experiments in 2D and 3D cell culture by using the 
commercially available MechanoCulture B1 device from CellScale Inc. (Waterloo, ON, Canada) 
(Figure 7A) [61]. Cyclic stretch generated from commercial devices successfully induced the 
perpendicular fibroblast alignment in 3D culture. In addition to uniaxial mechanical stretch, biaxial 
stretch generated by commercialized mechanical tester (BioTester, CellScale Inc.) was used to 
characterize the heterogeneity and function of the heart valve leaflet (Figure 7B) [62]. The porcine 
atrioventricular heart valve leaflet was dissected and placed on the device where the various loading 
ratios and stress-relaxation tests were performed on each region of tissue sample. Briefly, membrane 
tension applied by the device in the circumferential and radial directions were 100 and 50 N/m for 
different heart valve leaflet, and varying ratios of membrane tension loading in each direction was 
applied with eight loading/unloading cycles to investigate all possible physiological tissue 
deformations. Similarly, proteomic analysis of mitral valve anterior leaflets under 10% cyclic radial 
strain at a frequency of 1 Hz was investigated by using the commercialized MCT6 uniaxial stretcher 
(CellScale Inc.), where the tissue was placed between the two clamps of the device [63]. After 
mechanical stretch exposure, the endothelium of the heart valve was removed to test how 
endothelium mediates the mitral valve’s response to stretch. This work showed a significant finding 
on new protein groups that might be involved in the mitral valve’s response to mechanical stretch. 

 
Figure 6. Examples of OOC systems with stretch and strain stimuli. (A) Lung-on-chip device was 
connected to the electro-pneumatic system to provide the negative pressure on the 
polydimethylsiloxane (PDMS) membrane (microdiaphragm), which subsequently generated the 
cyclic strain mimicking lung breathing mechanism. Reproduced with permission from Reference [44] 

Figure 6. Examples of OOC systems with stretch and strain stimuli. (A) Lung-on-chip device was
connected to the electro-pneumatic system to provide the negative pressure on the polydimethylsiloxane
(PDMS) membrane (microdiaphragm), which subsequently generated the cyclic strain mimicking lung
breathing mechanism. Reproduced with permission from Reference [44] (B) Gradient strain chip with a
simple static strain delivery through the syringe at the inlet and PDMS plug at the outlet. Reproduced
with permission from Reference [61].

As mechanobiological studies on OOC systems have been gaining popularity, many commercial
tools have been developed that could easily deliver mechanical stimuli to the OOC systems (Figure 7).
For example, the fibroblast’s ability to align in response to mechanical stimuli was tested through a series
of 0% to 10% cyclic uniaxial stretch experiments in 2D and 3D cell culture by using the commercially
available MechanoCulture B1 device from CellScale Inc. (Waterloo, ON, Canada) (Figure 7A) [61].
Cyclic stretch generated from commercial devices successfully induced the perpendicular fibroblast
alignment in 3D culture. In addition to uniaxial mechanical stretch, biaxial stretch generated by
commercialized mechanical tester (BioTester, CellScale Inc.) was used to characterize the heterogeneity
and function of the heart valve leaflet (Figure 7B) [62]. The porcine atrioventricular heart valve leaflet
was dissected and placed on the device where the various loading ratios and stress-relaxation tests
were performed on each region of tissue sample. Briefly, membrane tension applied by the device in
the circumferential and radial directions were 100 and 50 N/m for different heart valve leaflet, and
varying ratios of membrane tension loading in each direction was applied with eight loading/unloading
cycles to investigate all possible physiological tissue deformations. Similarly, proteomic analysis of
mitral valve anterior leaflets under 10% cyclic radial strain at a frequency of 1 Hz was investigated
by using the commercialized MCT6 uniaxial stretcher (CellScale Inc.), where the tissue was placed
between the two clamps of the device [63]. After mechanical stretch exposure, the endothelium of
the heart valve was removed to test how endothelium mediates the mitral valve’s response to stretch.
This work showed a significant finding on new protein groups that might be involved in the mitral
valve’s response to mechanical stretch.
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Figure 7. Examples of commercially available OOC systems with stretch and strain stimuli.
(A) Microfluidic device was inserted to the MechanoCulture B1 system from CellScale Inc. to
provide the biaxial mechanical stretch stimulation and evaluate its effect on cell alignment. Reproduced
with permission from Reference [61]. (B) Porcine heart valves were positioned in the biaxial mechanical
tester (BioTester, CellScale Inc.) to characterize heterogeneity of heart valve leaflet. Reproduced with
permission from Reference [62].

4. Delivering Multiple Types of Mechanical Stimuli Simultaneously

A specific organ requires a specific microenvironmental stimuli to achieve an organ-level function,
for example, lung cells require breathing-derived mechanical stretch [64]. The general approach
for fabricating an OOC is to identify key aspects of the geometrical, mechanical and biochemical
microenvironment of the tissue. With these key aspects identified, a microengineering approach is used
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to recapitulate them on a chip, under the researcher’s full control. Then, isolated cells are introduced
on the chip and subjected to the designed stimuli.

Some tissues experience multiple types of biochemical and/or mechanical stimuli. While multiple
biochemical cues can be applied to a single chip relatively easily, it is not easy to do so for mechanical
stimuli. For example, lung tissues are exposed to periodic mechanical force within each respiratory cycle:
air flow in the air–epithelium interface, blood flow in the endothelium–blood interface, and stretching on
the epithelial–endothelial interface. The lung-on-chip model has therefore been developed integrating
all of these mechanical stimuli on a single device [64]. The microfabricated lung-on-a-chip consisted
of compartmentalized PDMS microchannels to form an alveolar–capillary barrier on a thin, porous,
flexible PDMS membrane coated with ECM. The device recreated physiological breathing movements
by applying a vacuum at a frequency of 0.2 Hz to the side chambers through a vacuum pump and
causing mechanical stretching (5–15% strain) of the PDMS membrane forming the alveolar–capillary
barrier. Alveolar epithelial and human pulmonary microvascular endothelial cells were grown on
either side of a thin porous membrane and were exerted by 20 µL/h (fluid shear stress of 0.1 dyn/cm2)
media flow via the two channels separated by a membrane (Figure 8A). Culture medium for alveolar
epithelial cells was gently aspirated from the upper channel on day five when the cells reached
confluency to form an air–liquid interface. After that, culture media for both cell types were delivered
to the lower channel to feed the epithelial cells on their basolateral side. This device can serve as a
tool for studying lung diseases and related screening of drugs. While the model was still small and
relatively simple, complex geometries were utilized that might prevent from easy reproduction and/or
long-term operation of the device.

Similarly, Musah et al. developed a glomerulus-on-chip (GOC) that is analogous to the previously
described lung-on-chip [65]. This GOC model efficiently facilitated the differentiation of human-induced
pluripotent stem (hiPS) cells into functional human podocytes, cells that wrap around capillaries of
the glomerulus and play a crucial role in selective permeability in blood filtration. It successfully
recapitulated the natural tissue–tissue interface of the glomerulus and the clearance of albumin and
inulin when co-cultured with human glomerular endothelial cells. The GOC can be used for drug
development and specifically personalized-medicine, for example Adriamycin-induced albuminuria
and podocyte injury. The fabrication and design were comparable to the lung-on-chip model developed
by Huh et al. [64], where the alveolar–capillary barrier on a thin laminin-coated porous membrane
was replaced with the urinary–microvascular interface, which recreated the physiology of human
glomerulus in kidney, while the two vacuum channels parallel to the fluidic channel were maintained.
The peristaltic pump was used to perfuse the fluidic channels at the volumetric flow rate of 60 µL/h,
corresponding to the shear stress of 0.0007 dyn/cm2 in the 1 mm × 1 mm urinary channel and
0.017 dyn/cm2 in the 1 mm × 0.2 mm microvascular channel. While the cyclic stretching (10% strain)
was applied to the GOC by the vacuum regulator at an amplitude of −85 kPa and frequency of 1 Hz.
Adriamycin, a cancer treatment drug, was used as an example of drug toxicity studies by continuously
being infused through the microvascular channel for up to five days. The toxicity of this drug was
assessed by a series of protein assays.

Another example is the formation of new blood vessels or vasculature, e.g., angiogenesis. Vascular
endothelial cells, or simply ECs, are continuously exposed to shear flow (blood and interstitial flows)
and thus, experience shear stress tangential to the endothelial surface [66]. Shear stress causes
ECs to secrete biomolecular signals [53], leading to vascular structure remodeling [67], cytoskeleton
rearrangement [68–70], and transcriptional gene expression. Furthermore, ECs are exposed to interstitial
flow, which acts as a transverse force across the vessel wall. Interstitial flow above a certain threshold
promotes capillary formation [14,71]. In one OOC model, both tangential shear stress from luminal
flow and stress from interstitial flow were applied to the ECs on a chip to study angiogenesis [66].
Briefly, this OOC consisted of two peripheral microfluidic channels for HUVECs cultured on fibronectin
coated surface and central channel for collagen/fibronectin gel (Figure 7B). A syringe pump was used
to deliver a laminar flow with the shear stress of 3 dyn/cm2, the physiological level of shear stress
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in veins or venules, and the interstitial flow within the collagen/fibronectin channel was measured
as 0.0045–0.064 dyn/cm2. The results showed that fluid shear stress enhanced the EC sprouting and
interstitial flow promoted morphogenesis and sprout formation.

Finally, osteogenesis, the differentiation of mesenchymal stem cells (MSCs), is another excellent
example that can be heavily influenced by multiple types of mechanical stimuli: compression, shear
stress, strain, stretch, and hydraulic forces [72]. Virtually all types of mechanical stimuli should be
represented in an osteogenesis model, making the OOC design and fabrication extremely challenging.
As such, OOC demonstration of osteogenesis is still ongoing.
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permission from Reference [66].

5. Mechanobiological Studies and Real-time Microscopic Imaging

Mechanical stimuli on OOC systems can also be utilized to improve mechanobiological studies,
i.e., how an individual cell responds to the applied mechanical stimuli. To this end, cells and cellular
responses must be monitored in real-time without destroying the cells within the OOC systems.
For example, a customized miniature incubator was designed and fabricated to allow the real-time
microscopic observation of cultured cells in the aforementioned EOS pumping systems, where the
microscope lens was positioned above the microfluidic chip and the miniature incubator (Figure 4C).
This culturing platform with live-cell imaging was effectively used for assessing cellular biophysical
changes under fluid conditions [51].
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Cellular response to mechanical stretch can occur as quickly as within a few seconds and sudden
disruption of cell cytoskeletons can also occur at any point during such a cyclic stretch. Huang et al.
developed a cell stretching device and a real-time imaging system to investigate rapid cellular responses
to two phases of cyclic stretch stimulation (Figure 9A) [73]. Three motorized stages were used to
deliver the cyclic stretching to a cell culture chamber while the target cells were maintained in the
same position. The microscope was positioned underneath the stage system to collect cell images.
The cell stretching and imaging system was able to determine the maximum displacement of the
target cells in the horizontal and vertical directions and to capture the sudden disruption of cell–cell
junctions in response to two phases of cyclic stretch at the frame rate of 30 fps (frames per second).
This time resolution was greatly improved from the other cellular mechanobiological studies. Similarly,
a commercial microscope-mountable uniaxial stretching system (STB-150W, Strex Inc., San Diego,
CA, USA) was used to study the real-time single cell morphological deformation in response to
mechanical stretch (Figure 9B) [74]. This commercial device stretches the cell culture chamber from
both sides to enable the cells to remain inside the viewing area of a microscope. Nevertheless, the
aforementioned systems still required bulky microscope apparatus to image the cells. To resolve
this problem, a smartphone-based fluorescence microscope was developed and attached to an OOC
device to construct a small and handheld OOC system (Figure 9C) [75]. A microscope attachment was
modified with an additional LED light source and bandpass filters and the smartphone captured and
processed fluorescent images. This smartphone-based OOC system was used to study nephrotoxicity of
drugs with reduced assay time and production cost, while improving assay specificity and ease-of-use.
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Figure 9. Examples of mechanobiological models and real-time monitoring devices for OOC systems.
(A) Three motorized stages delivered cyclic stretching and a microscope imaged cellular local
displacement. Reproduced with permission from Reference [73]. (B) Smartphone-based fluorescence
microscope attached to an OOC device for in situ monitoring of nephrotoxicity. Reproduced with
permission from Reference [75].
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6. Conclusions

The emerging OOC technologies have been widely utilized toward physiologically relevant models
for understanding human physiology, studying diseases, drug development, and toxicology. In OOCs,
dynamic microenvironments around cells, tissues or organs have been recapitulated within microfluidic
chips. Physiologically relevant mechanical stimuli are one of the crucial microenvironments that affect
the cellular responses and functions. In order to deliver mechanical stimuli to OOC systems, external
syringe pumps have most frequently been used to drive the liquid through the microfluidic channel
with high precision and in a programmed manner. Pumps were also integrated within the microfluidic
chip to minimize the size. Simpler delivery methods have also been demonstrated, including rocking,
passive delivery, or applying hydrostatic pressure. Pistons and pressure controllers on the diaphragm
were used to apply the compression stress to OOC systems. Delivery of more than one type of
mechanical stimuli has also been suggested and demonstrated to better recapitulate the physiologically
relevant microenvironment for tissue and organ, for example, lung-on-a-chip and kidney-on-chip,
that is exposed to shear flow as well as cyclic strain. Successful fabrication and operation of OOC can
enable us to closely mimic specific physiologically relevant microenvironments, and to provide an
accessible, inexpensive, and readily manipulatable platform for rapid and definitive testing of both
fundamental and applied biological hypotheses.
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