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Cucumber wilt caused by Fusarium oxysporum f.sp. cucumerinum (Foc) is a highly
destructive disease that leads to reduced yield in cucumbers. In this study, strain
YB-04 was isolated from wheat straw and identified as Bacillus subtilis. It displayed
strong antagonistic activity against F. oxysporum f.sp. cucumerinum in dual culture
and exhibited significant biocontrol of cucumber Fusarium wilt with a higher control
effect than those of previously reported Bacillus strains and displayed pronounced
growth promotion of cucumber seedlings. B. subtilis YB-04 could secrete extracellular
protease, amylase, cellulose, and β-1,3-glucanase and be able to produce siderophores
and indole acetic acid. Inoculation with B. subtilis YB-04 or Foc increased cucumber
defense-related enzyme activities for PPO, SOD, CAT, PAL, and LOX. However, the
greatest increase was with the combination of B. subtilis YB-04 and Foc. Sequencing
the genome of B. subtilis YB-04 showed that it had genes for the biosynthesis of various
secondary metabolites, carbohydrate-active enzymes, and assimilation of nitrogen,
phosphorous, and potassium. B. subtilis YB-04 appears to be a promising biological
control agent against the Fusarium wilt of cucumber and promotes cucumber growth
by genomic, physiological, and phenotypic analysis.

Keywords: Fusarium oxysporum f.sp. cucumerinum, biocontrol agent, genome sequencing and assembly,
Bacillus subitilis, growth promotion

INTRODUCTION

Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide. Cucumber wilt caused by
Fusarium oxysporum f.sp. cucumerinum (Foc) is one of the most destructive diseases of cucumber
that can lead to severe losses in yield and quality (Zhou et al., 2017). Foc enters root tissues by
direct penetration or wounds causing visible symptoms, including necrotic lesions, vascular and
root wilt, and ultimately death (Ahn et al., 1998). It can survive up to 20 years in soil (Zhao
et al., 2017). Furthermore, there are no commercially available cucumber cultivars with resistance
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against Fusarium wilt. Therefore, biological control of cucumber
Fusarium wilt using antagonistic microorganisms has been
considered to be a promising alternative.

Beneficial microorganisms can be used as biological control
agents (BCAs) against different plant diseases. Many of these
are species of Bacillus, which are also plant growth-promoting
bacteria (PGPB) that can improve plant growth by producing
secondary metabolites, such as fengycin, surfactin, bacillaene,
and macrolactin, siderophores, and indole acetic acid (IAA)
and secreting hydrolases to suppress plant pathogens and
promote plant growth (Blake et al., 2021). More importantly,
Bacillus species have several advantages, such as rapid growth,
spore production, safe, non-pathogenic nature, and adaptation to
broader environmental conditions (Nayak, 2021). However, there
are several problems in the field application of microbial agents,
including lack of high-efficiency biocontrol, relatively short shelf
life, and variable control effectiveness. Therefore, understanding
the growth-promotion and biocontrol mechanisms of beneficial
microorganisms can significantly contribute to improved
application efficacy of BCAs.

One way to better understand these organisms is through
whole genome sequencing allowing for the discovery of genes
for the production of bioactive compounds responsible for
biocontrol and growth promotion (Bauman et al., 2021). For
instance, sequencing the complete genome of the BCA Bacillus
velezensis 9912D revealed gene clusters for secondary metabolite
synthesis, including several potentially new lantibiotics (Pan
et al., 2017). Similarly, the complete genome of Bacillus
subtilis 7PJ-16 revealed genes for biosynthesis of antimicrobial
metabolites and promoting plant growth traits, indicating its
ability to act as a BCA and PGPB (Xu et al., 2019). The
genome of B. subtilis 9407 showed that it had genes for the
biocontrol mechanism against bacterial fruit blotch, including
genes for a newly identified subtilosin A, bacilysin, and bacillaene
(Gu et al., 2021).

In this study, strain YB-04 was isolated from wheat straw.
A number of BCA and PGPB traits were screened for YB-04 in
culture. The genome of strain YB-04 was sequenced to identify
a number of genes associated with BCA and PGPB traits. Plant
growth promotion of cucumber seedlings by soil inoculation of
YB-04 was assessed based on chlorophyll content and growth
of shoots, roots, stems, and leaves. Biocontrol activity by YB-
04 against Fusarium wilt of cucumber was assessed based on
disease severity and disease index. Furthermore, the activities
of cucumber defense-related enzymes activities, both by YB-04
alone and in combination with Foc inoculation, were examined.
The discovery and characterization of B. subtilis YB-04 indicate
that it is a promising BCA and PGPB of cucumber.

MATERIALS AND METHODS

Isolation of Strain YB-04 and in vitro
Antagonism Test
Strain YB-04 was isolated from wheat straw and cultured
in LB broth by a dilution plate method at 37◦C, collected
from a field (E113◦97’, N35◦05’) at the Henan Academy of

Agricultural Sciences in Xinxiang, Henan, China in June. Foc
was obtained from the College of Plant Protection, Henan
Agricultural University. Antagonistic activity against Foc was
performed by a dual culture where Foc was grown on PDA at
28◦C for 5 days, and then 5 mm agar plugs were excised and
transferred to the center of another PDA plate. Strain YB-04 was
placed 3 cm away from the edge of the Petri dish, and the growth
rate of Foc was measured relative to the control, which was Foc
without strain on a plate (Xu et al., 2020).

Biocontrol Efficiency of Strain YB-04
Against Cucumber Fusarium Wilt and
Growth Promotion on Cucumber
Seedlings
Strain YB-04 was cultured in LB broth for 24 h at 37◦C with
shaking at 180 rpm and harvested by centrifugation (4,000× g for
5 min), washed once with LB broth, and adjusted to 108 CFU/ml
based on OD at 595 nm. Foc was grown on PDA at 28◦C for
5 days, and then ten 5 mm agar plugs were excised and transferred
to 100 ml PDB. The broths were incubated at 28◦C in a shaker
at 180 rpm for 3 days. The Foc cultures were filtered through
4 layers of sterile gauze, and the filtered spores were adjusted
to 105 spores/ml using a hemacytometer (XB-K-25, Qiujing,
Shanghai, China).

Cucumber seeds of cultivar Chuancui No. 3 were surface-
sterilized in 75% ethanol (v/v) for 30 s and then rinsed with sterile
water three times. The seeds were air-dried and each seed was
planted in a separate pot (10 cm high, 10 cm diameter) filled
with a 400 g sterilized mixture of soil. The plants were grown in
the greenhouse at 25◦C with a 16 h light/8 h dark photoperiod.
After 10 days, each pot of cucumber seedlings was treated as
follows: (1) drenching with 15 ml of YB-04 suspension; (2) first
drenching with 15 ml l of YB-04 suspension and 24 h of later
drenching with 15 ml Foc spore suspension; (3) first drenching
with 15 ml of 0.1% hymexazol and 24 h later drenching with 15 ml
Foc spore suspension; (4) drenching with 15 ml of sterile distilled
water; or (5) drenching with 15 ml of sterile distilled water and
24 h later drenching with 15 ml of Foc spore suspension. Each
treatment was performed using 12 plants with 3 replicates. At
20 and 45 days post inoculation (dpi) with YB-04, chlorophyll
content, shoot height and fresh weight, root length and fresh
weight, stem thickness, and leaf area were measured, and disease
severity and disease index were recorded for plants inoculated
with Foc at 45 days post YB-04 inoculation (Chen et al., 2010).
In brief, disease severity was assessed using a 0–4 disease scale;
0 = leaf asymptomatic; 1 = leaf wilting below 1/4 of cucumber
seedling; 2 = leaf wilting in 1/4 to 1/2 of cucumber seedling;
3 = leaf wilting above 1/2 of cucumber seedling; 4 = the whole
plant was wilted and died. The disease index was calculated using
DI = [[(0 × N0) + (1 × N1) + (2 × N2) + (3 × N3) + (4 ×
N4)]/T× 4]× 100, where N is the number of cucumber seedlings
for each disease score and T is the total number of cucumber
seedlings. Disease incidence = [N1+N2+N3+N4]/T× 100%.
Control efficacy = (DI of control - DI of treatment)/DI of
control× 100%. The chlorophyll content of leaves was measured
by using a SPAD-502 Plus chlorophyll content meter (Konica
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Minolta, Tokyo, JP). Root length and shoot height were measured
with a ruler. The fresh weight of root and shoot was recorded
with an analytical balance (ME203E, Mettler Toledo, Shanghai,
China). Stem thickness was measured at 2 cm from the crown
with a vernier caliper (MNT-200, Shanghai Meinaite Metals
Instruments Co., Shanghai, China).

Determination of Defense Enzyme
Activities in the Cucumber Leaves
After 20 days post YB-04 inoculation, leaves were harvested
and stored at –80◦C. In brief, 0.5 g leaves were ground in
liquid nitrogen, and 1 ml of extraction buffer was added.
After centrifugation at 8,000 × g for 10 min, the supernatant
was removed for enzyme assays. Enzyme activities were
measured using assay kits for PPO (Cat. No. BC0195), SOD
(Cat. No. BC0175), CAT (Cat. No. BC0205), PAL (Cat.
No. BC0215), and LOX (Cat. No. BC0325) following the
procedures of the manufacturer (Solarbio, Beijing, China).
Absorbance was determined by using a plate reader (Tecan Spark,
Tecan, Switzerland).

Detection of Plant Growth-Promoting
Bacteria and Biological Control Agents
Traits
Protease activity was detected with single colonies of YB-04
grown at 30◦C for 5 days on skim milk agar (0.1 g CaCl2, 5.0 g
NaCl, 10.0 g skim milk, 10.0 g peptone, and 18.0 g of agar per
liter, pH 7.2). Protease activity was observed as clear zones around
the colonies (Kazanas, 1968). Amylase activity was detected with
single colonies grown at 30◦C for 48 h on starch agar (10.0 g
soluble starch, 10.0 g tryptone, 5.0 g glucose, 5.0 g NaCl, 5.0 g
beef extract, and 18.0 g of agar per liter, pH 7.2). Lugol’s iodine
solution (1% iodine in 2% potassium iodide w/v) was added
to the starch agar plate, and amylase activity was observed as
a colorless halo (Al-Naamani et al., 2015). Cellulose activity
was assayed with single colonies grown for 7 days at 30◦C on
carboxymethylcellulose agar (5.0 g CMC-Na, 0.1 g MgSO4·7H2O,
0.25 g (NH4)2SO4, 0.25 g K2HPO4, and 18.0 g of agar per liter,
pH 5.5). The plates were flooded with 1% (m/v) Congo Red, and
then washed with sterilized distilled water, and cellulose activity
was detected as a clear zone (Teather and Wood, 1982). The
β-Glucanase activity was assayed with single colonies grown at
30◦C for 2 days on β-glucan agar (0.05 g glucose, 0.5 g yeast
extract, 1 g peptone, 0.5 g NaCl, 0.01 g Congo Red, and 18.0 g
of agar per liter, pH 7.0). The β-Glucanase activity was indicated
by a clear zone around the colonies (Teather and Wood, 1982).
Siderophore production was determined with single colonies
grown at 30◦C for 2 days in the dark on Chrome Azurol S blue
agar (10 ml 20% sucrose solution, 30 ml 10% acid hydrolyzed
casein, 1 ml 1 mmol/L CaCl2, 5 ml 0.1 mol/L phosphate-buffered
saline (pH 6.8), 50 ml CAS dyeing solution, and 18 g of agar per
liter, pH 7.2). Siderophore production was indicated by a change
from blue to orange around the colonies (Schwyn and Neilands,
1987). IAA production was measured with single colonies grown
at 30◦C for 2 days on L-tryptophan nutrient broth (3 g beef
extract, 10 g peptone, 5 g NaCl,0.5 g L-tryptophan per liter,

pH 7.2). After centrifugation at 14,000 × g for 10 min,1 ml of
supernatant was mixed with 2 ml of Salkowski stain, and then
kept at room temperature in the dark for 30 min (Glickmann and
Dessaux, 1995). All of the above reagents were of analytical grade
and produced by China National Pharmaceutical Group Corp.,
Shanghai, China.

Genome Sequencing and Assembly of
Strain YB-04
Strain YB-04 was grown in LB broth for 16 h at 37◦C by
shaking at 180 rpm. Genomic DNA was extracted with a Mini-
BEST Bacterial Genomic DNA Extraction Kit Ver. 3.0 following
the manufacturer’s instructions (Takara, Beijing, China). An
approximately 10 kb insert sequencing library was constructed
and sequencing was performed using the PacBio Sequel II
system (Pacific Biosciences, Menlo Park, CA, United States) by
Frasergen (Wuhan, Hubei, China). Sequencing reads were de
novo assembled by using HGAP4 (Chin et al., 2013) and the
Canu (v.1.6) (Koren et al., 2017) software. The depth of genome
coverage was analyzed by using the align tool (BLASR, v0.4.1)
(Chaisson and Tesler, 2012). The assembled complete genome
sequence was deposited in NCBI GenBank (Accession number
CP072525). A circular map of the genome was constructed by
using Circos (v0.64) (Krzywinski et al., 2009).

Genome Annotation of Strain YB-04
The genome of strain YB-04 was annotated using Glimmer
(v3.02) (Delcher et al., 2007). The tRNA and rRNA genes were
identified by tRNAscan-SE (v2.0) (Lowe and Eddy, 1997) and
RNAmmer (v1.2) (Lagesen et al., 2007), respectively. Functional
descriptions of putative protein encoding genes were done by
BLASTx with an E-value threshold of 1e-5 using the NCBI
Non-Redundant protein database (NR), Swiss-Prot, Clusters of
Orthologous Groups (COG), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and Gene Ontology (GO).

Phylogenetic Relationship of Strain
YB-04
The 16S rRNA gene sequences of strain YB-04 and B. velezensis
FZB42, B. velezensis YB-130, B. subtilis H1, B. subtilis 168,
B. licheniformis SRCM103583, B. licheniformis ATCC 14580,
B. altitudinis CHB19, B. altitudinis GQYP101, B. pumilus
SF-4, and B. pumilus ZB201701 were obtained from the
genomes (GenBank IDs: CP000560.2, CP054562.1, CP026662.1,
NC_000964.3, CP035404.1, CP034569.1, CP043559.1,
CP040514.1, CP047089.1, and CP029464.1, respectively).
A tree of the 16S rRNA gene sequences was constructed with
MEGA 7.0 using the Neighbor Joining method (Kumar et al.,
2016). Average Nucleotide Identity (ANI) was calculated using
an ANI calculator (Yoon et al., 2017).

Analysis of Genes Encoding CAZymes
and Gene Clusters Responsible for the
Biosynthesis of Secondary Metabolites
Protein-coding genes in the genome of strain YB-04 were
aligned with the carbohydrate active enZYme (CAZy) database
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FIGURE 1 | Colony morphology of Foc co-cultivated with or without strain
YB-04. (A) Colony morphology of Foc in PDA; (B) inhibition of strain YB-04 on
Foc growth.

FIGURE 2 | Effect of strain YB-04 against Fusarium wilt and on
growth-promotion of Cucumber Seedlings. (A) Only Foc inoculation; (B) Foc
inoculation and hymexazol treatment; (C) inoculation of strain YB-04 and Foc;
(D) sterile distilled water; (E) only strain YB-04 inoculation.

TABLE 1 | Disease incidence, disease index, and control efficacy of B. subtilis
YB-04 against cucumber Fusarium wilt.

Treatment Disease
incidence (%)

Disease index Control
efficacy (%)

FOC 95.07 ± 0.41a 107.51 ± 0.4a

FOC + 0.1% Hymexazol 3.48 ± 0.15b 13.24 ± 0.14b 87.68 ± 0.08a

FOC + YB-04 2.42 ± 0.21c 8.69 ± 0.09c 91.92 ± 0.12a

Data are the mean ± standard deviation (SD); different letters (a–c) in the same
column indicate significant difference at p-values < 0.05 level.

(Lombard et al., 2014) using dbCAN2 (Zhang et al., 2018) and
HMMER (v3.1b2) (Finn et al., 2011) with an E-value threshold
of 1e-15. Identification of gene clusters for the synthesis of

secondary metabolites was analyzed by using antiSMASH5.0
(Blin et al., 2019).

Statistical Analysis
Statistical analysis was performed using SPSS v21.0 by one-
way analysis of variance (ANOVA). Means were compared with
Duncan’s multiple range tests at a probability of p ≤ 0.05.

RESULTS

Isolation of YB-04 and Wilt Disease
Biocontrol Activity in vitro and in vivo
Dilution plating from surface-sterilized wheat straw yielded
numerous colonies with different colony appearances. Twenty
strains were purified and screened for antagonistic activity
against Foc in dual culture and reduced wilt severity of cucumber
inoculated with Foc in the greenhouse (data not shown). Strain
YB-04 was selected based on having the greatest antagonistic
activity against Foc in culture (Figure 1) and reduced wilt
severity of cucumber seedlings at 20 days after Foc inoculation
(Figure 2). Disease incidence, disease index, and control efficacy
at 45 dpi revealed that YB-04 significantly reduced wilt symptoms
caused by Foc to levels slightly less than the chemical fungicide
hymexazol (Table 1).

Growth-Promotion Activity of Strain
YB-04
At 20 and 45 dpi with strain YB-04, there was a significant
increase in chlorophyll content, height and fresh weight of
shoot, root length and fresh weight, stem thickness, and leaf
area compared to non-treated cucumber seedlings (Figure 2 and
Table 2). At 20 dpi, the greatest increases were observed for
the fresh weight of shoots and roots at 115.91 and 334.88%,
respectively. At 45 dpi, the greatest increases were observed for
shoot height and leaf area at 79.03 and 49.07%, respectively.

At 20 and 45 dpi with strain YB-04 and Foc inoculation,
there was also a significant increase in chlorophyll content,
height, and fresh weight of shoot, root length and fresh
weight, stem thickness, and leaf area compared to that
of the Foc inoculated cucumber seedlings (Figure 2 and
Table 2). This was also observed with the Foc inoculated
seedlings treated with hymexazol. However, strain YB-
04 treatment of the Foc-inoculated seedlings resulted
in significantly higher chlorophyll content, shoot height
and fresh weight, root length and fresh weight, and
leaf area than Foc-inoculated seedlings with hymexazol.
However, there was no significant difference in the stem
thickness of Foc-inoculated seedlings with strain YB-04 or
hymexazol at 45 dpi.

Effect of Strain YB-04 on Activities of
Defense-Related Enzymes in Cucumber
Seedlings
At 20 dpi with strain YB-04, cucumber seedlings showed
significantly higher activities of SOD, CAT, PAL, and LOX,
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TABLE 2 | Effects of B. subtilis YB-04 on growth parameters of cucumber seedlings.

FOC FOC + 0.1% Hymexazol FOC + YB-04 CK YB-04

20 days after inoculation Chlorophyll content (SPAD) 36.20 ± 0.52d 42.13 ± 0.23c 50.97 ± 0.30a 41.87 ± 0.39c 44.17 ± 0.41b

Shoot height (cm) 6.47 ± 0.20c 12.27 ± 0.27b 16.27 ± 0.23a 11.80 ± 0.17b 16.63 ± 0.09a

Stem thickness (mm) 3.47 ± 0.03e 4.33 ± 0.03c 4.47 ± 0.01b 3.74 ± 0.03d 4.60 ± 0.05a

Shoot fresh weight (g) 2.11 ± 0.02e 7.17 ± 0.04c 9.66 ± 0.08b 4.84 ± 0.06d 10.45 ± 0.07a

Root length (cm) 7.81 ± 0.06e 19.50 ± 0.42c 21.30 ± 0.32 b 18.50 ± 0.35d 35.27 ± 0.27a

Root fresh weight (g) 0.16 ± 0.02e 1.34 ± 0.05c 1.72 ± 0.05 b 0.43 ± 0.02d 1.87 ± 0.03a

Leaf area (cm2 ) 53.54 ± 0.70 e 74.37 ± 0.51c 84.53 ± 1.28b 71.30 ± 0.66d 103.12 ± 0.91a

45 days after inoculation Chlorophyll content (SPAD) 10.73 ± 10.73d 30.90 ± 30.90c 41.27 ± 0.64a 34.30 ± 0.61b 42.17 ± 0.64a

Shoot height (cm) 9.03 ± 0.24d 16.21 ± 0.52c 26.27 ± 0.69b 17.50 ± 0.69c 31.33 ± 0.66a

Stem thickness (mm) 4.11 ± 0.06c 4.43 ± 0.02b 4.52 ± 0.02b 4.20 ± 0.04c 4.94 ± 0.03a

Shoot fresh weight (g) 5.06 ± 0.02e 8.57 ± 0.76d 14.14 ± 0.58b 12.42 ± 0.30c 15.91 ± 0.24a

Root length (cm) 13.02 ± 0.26d 14.77 ± 0.38c 18.97 ± 0.35b 15.02 ± 0.34c 20.40 ± 0.57a

Root fresh weight (g) 1.88 ± 0.04d 4.74 ± 0.06c 6.21 ± 0.06a 5.58 ± 0.07b 6.35 ± 0.07a

Leaf Area (cm2 ) 44.41 ± 1.16e 78.01 ± 0.90d 106.28 ± 1.12b 91.38 ± 1.13c 136.22 ± 0.78a

Data are the mean ± standard deviation (SD); different letters (a–e) in the same line indicate significant difference at p-values < 0.05 level.

TABLE 3 | Five defense enzyme activities of cucumber leaves under different treatments.

LOX (U/g) PAL (U/g) CAT (U/g) PPO (U/g) SOD (U/g)

FOC 1450.70 ± 28.01b 18.76 ± 0.65c 149.34 ± 7.58c 76.82 ± 1.14b 160.15 ± 0.83b

FOC + 0.1% Hymexazol 618.12 ± 9.48c 26.54 ± 0.57b 180.74 ± 4.61b 43.30 ± 0.75c 141.44 ± 1.19d

FOC + YB-04 3620.26 ± 27.82a 29.90 ± 0.92a 221.38 ± 3.38a 187.93 ± 3.85a 188.54 ± 1.05a

CK 460.10 ± 11.12d 12.64 ± 0.70e 104.99 ± 2.89e 21.72 ± 1.06d 102.22 ± 0.99e

YB-04 650.55 ± 12.38c 15.45 ± 0.63d 119.77 ± 2.48d 77.61 ± 0.62b 155.95 ± 0.97c

Data are the mean ± standard deviation (SD); different letters (a–e) in the same column indicate significant difference at p-values < 0.05 level.

FIGURE 3 | Antifungal and PGP traits of strain YB-04. (A) Protease production; (B) amylase production; (C) cellulose production; (D) β-1,3-glucanase production;
(E) siderophore production; (F) IAA production.

but not PPO, compared to non-treated seedlings (Table 3).
Inoculation with Foc also significantly increased those enzyme
activities, except PPO, compared to seedlings without Foc
inoculation. The highest activities were observed with Foc
inoculation and strain YB-04 treatment, which was significantly
higher for all the enzymes compared to Foc inoculation. However,
the activities of PAL and CAT significantly increased but LOX,

PPO, and SOD significantly decreased with Foc inoculation and
hymexazol treatment compared to Foc inoculation.

Detection of in vitro Antifungal and
Growth-Promoting Traits
Strain YB-04 could secrete protease (Figure 3A), amylase
(Figure 3B), cellulose (Figure 3C), and β-1, 3-glucanase
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FIGURE 4 | Map of the strain YB-04 genome. The distributions of circles from outwards to inwards are as follows: ring 1 for genome size (black line); ring 2 for the
restriction modification system, for forward strand (red) and reverse strand (blue); ring 3 for COG classifications of protein-coding genes on the forward strand and
reverse strand; ring 4 for the distribution of tRNAs (brown) and rRNAs (green); ring 5 for GC skew; ring 6 for GC content.

(Figure 3D). In addition, it could produce siderophores
(Figure 3E) and indole acetic acid (Figure 3F).

Genome Sequencing, Assembly, and
Identification of Strain YB-04
A total of 387,797 high-quality sequencing long reads with
a mean length of 10,962 bp and an N50 of 13,374 bp were
generated from the genomic DNA of strain YB-04 by the Pacbio
sequencing platform. Total base pairs were 4,251,215,058 bp with
an 882.47X genome coverage. The YB-04 genome consisted of a

FIGURE 5 | Phylogenetic tree of B. subtilis YB-04 and 10 other Bacillus
species based on 16S rRNA sequences.

single circular chromosome of 4,156,177 bp with a GC content
of 43.83% (Figure 4). There were 4,325 protein-coding genes
covering 88.62% of the genome with an average gene length of
851.6 bp, which included 87 tRNAs, 30 rRNAs (5S, 16S, 23S), and
22 sRNAs. Four gene islands, three CRISPRs, and four prophages
were detected (Supplementary Tables 1–3). For the predicted
protein encoding genes, 99.70, 90.73, 75.45, 64.30, and 53.87%
could be annotated with the NR, Swiss-Prot, COG, GO, and
KEGG databases, respectively (Supplementary Table 4).

A phylogenetic tree based on 16S rRNA gene sequences of
strain YB-04 and 10 other Bacillus isolates showed that strain YB-
04, B. subtilis 168, and B. subtilis H1 clustered (Figure 5). Strain
YB-04 and B. subtilis 168 had the maximum ANI value of 98.74%,
followed by B. subtilis H1with 98.65%, which is higher than
the cutoff of 95–96% for bacterial species identity. ANI values
between strain YB-04 and the 8 other Bacillus species ranged from
71.05 to 77.22% (Figure 6). Therefore, strain YB-04 was identified
as B. subtilis.

Genome Analysis of Selected Genes of
Bacillus subtilis YB-04
The genome of B. subtilis YB-04 had 111 genes identified
as putative CAZymes, namely, 2 auxiliary activities (AAs), 7
polysaccharide lyases (PLs), 15 carbohydrate-binding modules
(CBMs), 19 carbohydrate esterases (CEs) 24 glycosyltransferases
(GTs), and 51 glycoside hydrolases (GHs) (Figure 7 and

Frontiers in Microbiology | www.frontiersin.org 6 June 2022 | Volume 13 | Article 885430

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-885430 June 2, 2022 Time: 18:22 # 7

Xu et al. Evaluation and Genome Analysis of Bacillus subtilis YB-04

FIGURE 6 | ANI analysis of B. subtilis YB-04 and 10 other Bacillus species.

Supplementary Table 5). Six of those were classified as
both GHs and CBMs.

There were 13 gene clusters predicted to be responsible
for the biosynthesis of secondary metabolites. At 100%
similarity, there was each matching gene clusters for
bacillaene, fengycin, bacillibactin, subtilin, subtilosin A,
and bacilysin synthesis. There was also one gene cluster
with 82% similarity to that for surfactin synthesis. There
were 6 biosynthetic gene clusters with no similarity in the
antiSMASH database that appeared to be novel biosynthetic
gene clusters of secondary metabolites. Based on their matches
to the antiSMASH database, these were one gene cluster

each for types of lanthipeptide-class-i, Type III PKS, tRNA-
dependent cyclodipeptide synthases, other unspecified
ribosomally synthesized, post-translationally modified
peptide products, and two gene clusters, each encoding for
terpenes (Table 4).

The genome of B. subtilis YB-04 contained predicted genes
for an ATP-dependent phosphate uptake system PstABCS, phoPR
operon for regulating Pho regulon in response to phosphate
limitation, and alkaline phosphatase genes of phoA and phoD
for phosphorus acquisition (Table 5). It also contained the
nasABCDEF gene cluster for nitrite transport and reduction.
Additionally, there were the potassium uptake system ktrABCD,
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FIGURE 7 | Distribution of CAZy families in the genome of B. subtilis YB-04.

a putative gamma-glutamylcyclotransferase YkqA for potassium
assimilation, and a putative potassium efflux channel yugO.

DISCUSSION

Fusarium wilt disease caused by Foc is one of the most
devastating soil-borne diseases of cucumber, resulting in severe
yield losses throughout the world (Zhou et al., 2018). While the
use of BCAs to control plant diseases and PGPBs to improve
plant growth is considered to be promising (Radhakrishnan
et al., 2017; Koskey et al., 2021), new strains are needed to
screen for greater efficiency, shelf life, and consistency. As
part of that, an in-depth analysis of growth promotion and
biocontrol traits will help in developing them into successful
microbial products.

In this study, B. subtilis YB-04 was found to be a BCA with
antagonistic activity against Foc in dual culture and significantly
reduced Fusarium wilt caused by Foc at levels comparable to
hymexazol, which is used to control the disease in China.
It was also a PGPB with pronounced growth promotion on
cucumber seedlings. Previously, B. subtilis B579, B. subtilis
MBI600, and B. subtilis B068150 were also shown to significantly
reduce cucumber Fusarium wilt and promote cucumber growth
(Chen et al., 2010; Li et al., 2012; Samaras et al., 2020).
Compared to those bacteria, the percentage reduction in the
Fusarium wilt of cucumber by B. subtilis YB-04 was greater
than those achieved by B. subtilis B068150, B. subtilis B579,
or B. subtilis MBI600. The percentage of increased growth-
promotion based on the shoot and root fresh weight and
plant height by B. subtilis YB-04 was greater than those
achieved by B. subtilis B579 or B. subtilis MBI600. Thus,
B. subtilis YB-04 appears to be more effective as a BCA
and PGPB than some of the previously described B. subtilis
tested on cucumber.

To act as a BCA against plant pathogenic fungi, bacteria
possess a number of mechanisms including synthesis of
hydrolytic enzymes, production of antibiotics, and induction of
systemic resistance (Morales-Cedeño et al., 2021; Saeed et al.,
2021; Xu et al., 2021). In this study, B. subtilis YB-04 had all
of those mechanisms. Hydrolytic enzyme activities including
protease, amylase, cellulose, and β-1, 3-glucanase were present
in pure cultures, and they can break down chitin, glucans,
and other polymers in fungal cell walls, thus inhibiting the
growth of fungal pathogens (Naglot et al., 2015; Li et al., 2019).
Other B. subtilis BCAs with similar enzymes include B. subtilis
BCC6327, B. subtilis ZIM3, and B. subtilis LR1 (Thakaew
and Niamsup, 2013; Banerjee et al., 2017; Dai et al., 2020).
Furthermore, a large number of CAZyme genes were found in the
genome of B. subtilis YB-04, also suggesting that it has a strong
capability to be antagonistic against fungal plant pathogens based
on the potential degradation and use of fungal polymers as
nutrient sources (Banani et al., 2015; Chen et al., 2018; Sui et al.,
2020). In addition, gene clusters were found to be responsible
for the biosynthesis of known secondary metabolites, including
bacillaene, fengycin, bacillibactin, subtilin, subtilosin A, bacilysin,
and surfactin, indicating antibiotic production by B. subtilis YB-
04, which is common in Bacillus species (Xu et al., 2019; Su et al.,
2020). Other B. subtilis BCAs found to produce antibiotics or
have genes for antibiotic production included B. subtilis BSD-2
for lanthipeptide (Liu et al., 2016). Surfactin and fengycin can
also be elicitors of induced systemic resistance in plants (Romero
et al., 2007; Ongena et al., 2010). Many studies have reported that
plant defense enzymes play important roles in disease resistance
(Prasannath, 2017; Ji et al., 2020; Xu et al., 2021). Induction of
the activities of defense-related enzymes in leaves following soil
inoculation with B. subtilis YB-04 and Foc indicates a form of
systemic resistance. Defense-related enzymes activities for PPO,
SOD, CAT, PAL, and LOX could be induced by inoculation with
B. subtilis YB-04 or Foc alone and the greatest increase was with
the combination of B. subtilis YB-04 and Foc. Other B. subtilis
BCAs causing host induction of defense-related enzyme activities
include B. subtilis B579, B. subtilis SL-44, and B. subtilis CBR05
(Chen et al., 2010; Chandrasekaran and Chun, 2016; Wu et al.,
2019).

All the growth parameters of cucumber seedlings measured
in this study were increased with B. subtilis YB-04 treatment.
Importantly, growth parameters were all increased much more
in infected seedlings with Foc treated with B. subtilis YB-
04 than those infected with Foc and treated with hymexazol.
This indicates that B. subtilis YB-04 can improve plant growth
while providing disease control, which would be an advantage
over using hymexazol that did not promote growth. This
was similar to Pseudomonas aeruginosa CQ-40 that controlled
tomato gray mold caused by Botrytis cinerea and promoted
the growth of tomato seedlings, whereas pyrimethanil only
controlled the disease with a prevention effect of up to 64.71%
(Wang et al., 2020).

To act as a PGPB, bacteria have a variety of mechanisms
including the production of enzymes and siderophores for
nutrient acquisition and phytohormones to promote growth, and
enzymes to reduce the negative effects of various abiotic stresses
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TABLE 4 | List of the putative gene clusters encoding for secondary metabolites by antiSMASH in the B. subtilis YB-04 genome.

Clusters Types Genomic locations Most similar known clusters Similarity

Cluster 1 NRPS 349,833–413,272 Surfactin 82%

Cluster 2 Terpene 1,124,835–1,145,348

Cluster 3 Lanthipeptide-class-i 1,699,549–1,725,648

Cluster 4 transAT-PKS,PKS-
like,T3PKS,transAT-PKS-like,NRPS

1,747,915–1,862,664 Bacillaene 100%

Cluster 5 NRPS, betalactone 1,920,534–2,002,654 Fengycin 100%

Cluster 6 Terpene 2,073,306–2,095,204

Cluster 7 T3PKS 2,142,940–2,184,037

Cluster 8 NRPS 3,179,833–3,229,574 Bacillibactin 100%

Cluster 9 lanthipeptide-class-i 3,377,840–3,404,065 Subtilin 100%

Cluster 10 CDPS 3,523,308–3,544,054

Cluster 11 Sactipeptide 3,768,784–3,790,395 Subtilosin A 100%

Cluster 12 Other 3,797,486–3,838,904 Bacilysin 100%

Cluster 13 RiPP-like 4,040,385–4,053,116

TABLE 5 | Genes responsible for nitrogen, phosphorous, and potassium assimilation identified in the strain YB-04 genome.

Function Gene UniProt accession No. Description Best hit in YB-04 Identity

Phosphate assimilation phoA P19406 Alkaline phosphatase 4 orf00986 99.35%

phoR P23545 Alkaline phosphatase synthesis sensor protein PhoR orf03027 99.48%

phoP P13792 Alkaline phosphatase synthesis transcriptional regulatory protein PhoP orf03028 99.58%

phoD P42251 Alkaline phosphatase D orf00275 99.49%

Phosphate transport pstS P46338 Phosphate-binding protein orf02500 99.67%

pstC A0A6M4JLF7 Phosphate transport system permease protein orf02499 99.35%

pstB1 P46342 Phosphate import ATP-binding protein PstB 1 orf02496 99.62%

pstB2 P46341 Phosphate import ATP-binding protein PstB 2 orf02497 99.63%

pstA A0A6M3ZE53 Phosphate transport system permease protein orf02498 100.00%

Nitrate/nitrite assimilation nasD P42435 Nitrite reductase orf00344 99.26%

nasE P42436 Assimilatory nitrite reductase [NAD(P)H] small subunit orf00343 100.00%

nasA P42432 Nitrate transporter orf00347 99.50%

nasC P42434 Assimilatory nitrate reductase catalytic subunit orf00345 98.03%

nasB P42433 Assimilatory nitrate reductase electron transfer subunit orf00346 97.54%

nasF P42437 Uroporphyrinogen-III C-methyltransferase orf00342 97.30%

Potassium assimilation ktrC P39760 Ktr system potassium uptake protein C orf01561 100.00%

ykqA P39759 Putative gamma-glutamylcyclotransferase YkqA orf01560 96.75%

ktrD O31658 Ktr system potassium uptake protein D orf01445 100.00%

yugO Q795M8 Putative potassium channel protein YugO orf03270 100.00%

ktrB O32081 Ktr system potassium uptake protein B orf03241 99.10%

ktrA O32080 Ktr system potassium uptake protein A orf03240 99.10%

(Glick, 2012; Saeed et al., 2021). B. subtilis YB-04 produced
siderophores that can improve iron uptake and alleviate harmful
effects of iron on plants that have been associated with enhanced
plant growth (Haas, 2003; Dimkpa et al., 2009). The genome of
B. subtilis YB-04 also contained genes responsible for nitrogen,
phosphorous, and potassium assimilation. Plant growth and
development depend on macronutrients, such as nitrogen,
phosphorous, and potassium, that are mostly obtained from the
soil and can be made more available to plants by soil microbes
that have the ability to solubilize nutrients and transfer them to
plants (Glick, 2012; Rana et al., 2020). Finally, B. subtilis YB-04
produced IAA, which may be taken up by the cucumber seedlings
stimulating the transcriptional expression of IAA responsive

genes and enhancing biomass (Spaepen et al., 2014; Jiang et al.,
2020).

In summary, B. subtilis YB-04 appears to be an effective
BCA against cucumber Fusarium wilt and an effective PGPB
of cucumber seedlings. The BCA mechanisms could include
induced systemic host resistance as indicated by greater
host defense-related enzyme activities, and direct pathogen
inhibition through secretion of extracellular enzymes and
antibiotics. The PGPB mechanisms could include nutrient
acquisition via siderophores and enzymes for fixing nitrogen
and solubilizing potassium and phosphorus, and direct plant
growth enhancement through increased amounts of indole acetic
acid. Compared to other B. subtilis strains used as cucumber
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Fusarium wilt BCAs and PGPBs in cucumber, B. subtilis YB-
04 is a more effective BCA than all those reported thus far and
is a more effective PGPB than most reported so far. Thus, it
appears to be a very promising novel beneficial B. subtilis strain
for cucumber production.
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