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Abstract: Background: PGT-based NGS revolutionized the field of reproductive medicine, becoming
an integrated component within current assisted reproductive technology (ART) protocols. Methods:
We searched the literature published in the last half a decade in four databases (PubMed/Medline,
ISI Web of Knowledge, ScienceDirect, and Scopus) between 2018 and 2022. Results: A total of
1388 articles were filtered, from which 60 met, initially, the eligibility criteria, but only 42 were
included (≥100 patients/couples—62,465 patients and 6628 couples in total) in the present mini-
review. In total, forty-two (70.0%) reported reproductive outcomes, while eighteen (30.0%) had
distinct objectives. Furthermore, n = 1, 1.66% of the studies focused on PGT, n = 1, 1.66% on pre-
implantation genetic testing for monogenic disorders (PGT-M), n = 3, 5.0% on pre-implantation
genetic testing for structural rearrangements (PGT-SR) and n = 55, 91.66% on pre-implantation genetic
testing for aneuploidies (PGT-A). Conclusions: PGT using NGS proved to be an excellent companion
that folds within the current ascending tendency among couples that require specialty care. We
strongly encourage future studies to provide a systematic overview expanded at a larger scale on the
role of the PGT-NGS.

Keywords: next-generation sequencing; pre-implantation genetic testing; aneuploidy; monogenic
disorders; structural rearrangements; in vitro fertilization; assisted reproductive technology

1. Introduction

Although there is a presumption concerning the intrinsic process of human repro-
duction, this inherited mechanism is still singular and inefficient. Fortunately, the field of
reproductive medicine incorporates an ascending trend, comprising methodologies that
brought novel insights [1].

Thus, the current method of choice surrounding assisted reproductive technologies
(ARTs) is IVF combined with PGT to minimize the risks of genetically abnormal em-
bryo(s) [2]. Retrospectively, PGT evolved from an experimental procedure performed by
Handyside et al. [3] more than three decades ago. The authors clarified the usefulness of
PCR amplification to detect repetitive Y sequences in determining the sex of the fetus in
families with a history as carriers of X-related malformations [3].

Distinct molecular biology techniques are optimized to respond to this constantly
growing trend of couples requiring help and emerge as a countermeasure to the rudi-
mentary protocols [4]. The European Society of Human Reproduction and Embryology
(ESHRE) recently updated the terminology. Therefore, pre-implantation genetic diagnosis
(PGD) and pre-implantation genetic screening (PGS) became PGT [5].

Diagnostics 2022, 12, 1911. https://doi.org/10.3390/diagnostics12081911 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics12081911
https://doi.org/10.3390/diagnostics12081911
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-6618-141X
https://orcid.org/0000-0002-4023-1765
https://orcid.org/0000-0002-4987-5049
https://doi.org/10.3390/diagnostics12081911
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics12081911?type=check_update&version=2


Diagnostics 2022, 12, 1911 2 of 16

Presently, PGT may target aneuploidies, monogenic disorders, and structural rear-
rangements [5], PGT focusing on the biopsy of a single or few cells from fertilized embryos
obtained in vitro and tested for potential genetic defects. Even though this procedure is
complex and requires resources, next-generation sequencing (NGS) revolutionized the field
of reproductive medicine [4].

Specialty societies such as PGD International Society (PGDIS), the American Society for
Reproductive Medicine (ASRM), and ESHRE PGT Consortium issued a guideline regarding
good practice. ESHRE further published an extent covering technical guidance on PGT
organization of biopsied embryos and genetic testing [6–9].

Therefore, the present manuscript aims to highlight the reproductive outcomes of
all studies conducted in the last five years (2018–2022) when combining PGT-NGS in
circumstances when equal to or more than 100 patients/couples were enrolled.

2. Methodology

The present narrative mini-review follows the standard procedures previously de-
scribed by Green et al. [10].

2.1. Database Search Strategy

The literature database explored for information until inception (April 2022) was
PubMed/Medline, ISI Web of Knowledge, ScienceDirect, and Scopus. Several combinations
of keywords such as “NGS” in combination with “pre-implantation genetic testing for
aneuploidy—PGT-A”, “pre-implantation genetic testing for monogenic disorders—PGT-
M”, and “pre-implantation genetic testing for structural rearrangements—PGT-SR” were
employed during the databases tracking.

2.2. Inclusion Criteria

To emphasize the necessity of performing studies on a larger scale and the clinical
relevance, we found it suitable to include ≥100 participants and/or couples. Based on the
retrieved results, we created a time series (2018–2022) using Microsoft Excel® 2010 that
contains the number of studies per year of publication, number, and database searched.
Since PGT-NGS is mostly a human-targeted technique, experiences on experimental models,
mice, rats, zebrafish (Danio rerio), or other species were not further considered. There were
no restrictions concerning diagnosis (private clinics or hospital-based patients), nor in
terms of age, sex, religion, and nationality.

2.3. Exclusion Criteria

Case report(s)/series, meta-analyses, review(s), standard or systematic, articles written
in another language than English, letters to the Editor, conference posters, work protocols,
preprints, and computational simulations have not been considered suitable.

2.4. Study Selection

Three independent authors (B.D., O.-D.I., and T.A.) screened the titles and abstracts of
the retrieved result. We completed the assignment of all the relevant literature based on
title, abstract, and full content. Any discrepancy was solved by consent with the remaining
two authors (N.A., and C.I.).

2.5. Limitations of the Study

We concentrated on a mini-review rather than a quantitative meta-analysis due to the
scarcity and heterogeneity of existing evidence.

3. Results

In Figure 1 can be found a flowchart of the present study design.
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Figure 1. A flowchart of the present study design, strategy, results, and studies that met the
eligibility criteria.

A total of sixty manuscripts in the present manuscript were eligible, from which 75%
(n = 45) were retrospective studies, 13.33% (n = 8) prospective studies, 6.66% (n = 4) retrospective
observational studies, 3.33% (n = 2) randomized controlled trials (RCTs) and 1.66% (n = 1)
observational study. Only n = 42 articles reported reproductive/clinical outcomes, the remaining
n = 18 being used as informatic support since they differed by objective and results. Due to the
plethora of conditions introduced by the authors that define the study design of articles included
in this manuscript, we focus on specific data. Therefore, the main parameters of interest are:
implantation, pregnancy, clinical pregnancy, ongoing pregnancy, miscarriage, spontaneous
pregnancy loss, late pregnancy loss, biochemical pregnancy and ectopic pregnancy. Thus,
based on these considerations, we stratified these studies (with or without indications for PGT,
respectively, depending on the allocation per groups) according to the demographic information
and assignment in numerical order (Tables 1 and 2).



Diagnostics 2022, 12, 1911 4 of 16

Table 1. Stratification of studies based on the number of patients/couples grouped without indications for PGT.

No. of Patients or
Couples

Reproductive Outcomes

Reference
Implantation Pregnancy Clinical

Pregnancy
Ongoing

Pregnancy
Miscarriage/

Early Pregnancy Loss
Spontaneous

Pregnancy Loss
Late Pregnancy

Loss
Biochemical
Pregnancy

Ectopic
Pregnancy

NO ALLOCATION PER GROUPS

270
patients

63.10% (n = 53)
vs.

46.67% (n = 30)
[11]

314
patients 66.2% (n = 235) 52.4% (n = 186) 5.6% (n = 20) 2.3% (n = 8) 7.6% (n = 27) 0.6% (n = 2) [12]

330
patients

60% (n = 215)
vs.

40% (n = 8)

18% (n = 65)
vs.

40% (n = 8)
[13]

460
patients

69.7% (n = 159)
vs.

57.2 (n = 63)
[14]

31649 patients 62% [15]

100
couples 65.38% (n = 34) n = 8 2.94% (n = 1) 69.23% (n = 36) [16]

WITH ALLOCATION PER GROUPS

166
patients

29.0% (n = 9)
vs.

45.7% (n = 64)
vs.

24.0% (n = 6)

29.0% (n = 9)
vs.

40.7% (n = 57)
vs.

16% (n = 4)

30.9% (n = 4)
vs.

21.9% (n = 16)
vs.

42.8% (n = 3)

0% (n = 0)
vs.

0% (n = 0)
vs.

0% (n = 0)

[17]

228
patients

65.4% (n = 53)
vs.

67.4% (n = 99)

13.2% (n = 7)
vs.

15.2% (n = 15)

14.8% (n = 9)
vs.

15.4% (n = 18)
[18]

260
patients

67.8% (n = 124)
vs.

63.6% (n = 49)

75.4% (n = 138)
vs.

70.1% (n = 54)

57.9% (n = 106)
vs.

58.4% (n = 45)
[19]

275
patients

*
31.5%

vs.
28.8%

**
16.40%

vs.
20.50%

[20]
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Table 1. Cont.

No. of Patients or
Couples

Reproductive Outcomes

Reference
Implantation Pregnancy Clinical

Pregnancy
Ongoing

Pregnancy
Miscarriage/

Early Pregnancy Loss
Spontaneous

Pregnancy Loss
Late Pregnancy

Loss
Biochemical
Pregnancy

Ectopic
Pregnancy

364
patients

***
64.29% (n = 63)

vs.
50.38% (n = 134)

****
64.12% (n = 84)

vs.
51.60% (n = 226)

***
3.17% (n = 2)

vs.
11.94% (n = 16)

****
4.76% (n = 4)

vs.
12.39% (n = 28)

***
6.12% (n = 6)

vs.
11.26% (n = 17)

****
8.70% (n = 8)

vs.
9.96% (n = 25)

[21]

525
patients

68.0% (n = 221)
vs.

55.5% (n = 111)

13.1% (n = 29)
vs.

11.7% (n = 13)

16.9% (n = 45)
vs.

20.1% (n = 28)
[22]

1152 patients
3.2%
vs.

6.8%

4.2%
vs.

3.9%

1.1%
vs.

0.4%
[23]

142
couples

45.77% (n = 65)
vs.

29.41% (n = 5)

59.15% (n = 84)
vs.

47.10% (n = 8)

42.96% (n = 61)
vs.

17.65% (n = 3)

6.15% (n = 4)
vs.

40.0% (n = 2)

13.38% (n = 19)
vs.

17.65% (n = 3)
[24]

150
couples

3.4% (n = 1)
vs.

14.7% (n = 8)

6.9% (n = 2)
vs.

1.8% (n = 1)
[25]

180
couples

n = 9
vs.

n = 2
vs.

n = 2

[26]

779
couples

*****
67.9% (n = 106)

vs.
69.6% (n = 117)

vs.
75.6% (n = 68)

******
86.8% (n = 33)

vs.
78.4% (n = 29)

vs.
46.4% (n = 13)

*****
51.2% (n = 66)

vs.
47.4% (n = 65)

vs.
62.2% (n = 51)

******
44.7% (n = 17)

vs.
64.7% (n = 22)

vs.
69.2% (n = 18)

[27]

1418 couples
50.5% (n = 341)

vs.
41.7% (n = 228)

15.5% (n = 54)
vs.

22.8% (n = 52)
[28]

*—Chromosome translocation patients, **—aneuploidy patients, ***—FET with or without aneuploidy screening in the first ET attempt, ****—FET with or without aneuploidy screening
in all transfer attempts, *****—<40 y, ******—≥40 y.
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Table 2. Stratification of studies based on the number of patients/couples with indications for PGT.

No. of
Patients or

Couples

Reproductive Outcomes

Reference
Implantation Pregnancy Clinical

Pregnancy
Ongoing

Pregnancy
Miscarriage/

Early Pregnancy Loss
Spontaneous

Pregnancy Loss
Late Pregnancy

Loss
Biochemical
Pregnancy

Ectopic
Pregnancy

NO ALLOCATION PER GROUPS

296 patients

85.7% (n = 12)
vs.

84.0% (n = 84)
vs.

80.0% (n = 44)
vs.

80.0% (n = 8)

7.1% (n = 1)
vs.

6% (n = 6)
vs.

5.4% (n = 3)
vs.

10% (n = 1)

[29]

783 patients

12.0% (n = 29)
vs.

11.0% (n = 15)
vs.

12.7% (n = 8)

10.7% (n = 29)
vs.

12.3% (n = 19)
vs.

13.7% (n = 10)

[30]

1531 patients 44.4% (n = 8) 38.9% (n = 7) [31]

WITH ALLOCATION PER GROUPS

206 patients
64.71% (n = 22)

vs.
65.71% (n = 23)

n = 1
vs.

n = 3
[32]

108 patients 51.8% (n = 43)
vs.

52% (n = 13)

47% (n = 39)
vs.

52% (n = 13)

47% (n = 39)
vs.

36% (n = 9)

5.1% (n = 2)
vs.

30.7% (n = 4)
[33]

108 patients

79.4% (n = 50)
vs.

66.7% (n = 16)
vs.

25.0% (n = 5)

76.2% (n = 48)
vs.

62.5% (n = 15)
vs.

25.0% (n = 5)

68.3% (n = 43)
vs.

62.5% (n = 15)
vs.

10.0% (n = 2)

[34]

155 patients 80% (n = 68) 66% (n = 56) [35]

283 patients 52.3% (n = 148) [36]

554 patients 63.9% (n = 186) 19.3% (n = 36) [37]
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Table 2. Cont.

No. of
Patients or

Couples

Reproductive Outcomes

Reference
Implantation Pregnancy Clinical

Pregnancy
Ongoing

Pregnancy
Miscarriage/

Early Pregnancy Loss
Spontaneous

Pregnancy Loss
Late Pregnancy

Loss
Biochemical
Pregnancy

Ectopic
Pregnancy

661 patients
50.0% (n = 137)

vs.
45.7% (n = 143)

9.9% (n = 27)
vs.

9.6% (n = 30)

10.6% (n = 29)
vs.

8.3% (n = 26)
[38]

974 patients
69.9%

vs.
64.9%

n = 472
vs.

n = 94

n = 21
vs.

n = 6
[39]

1051 patients 14.5% (n = 100) n = 68 n = 11 [40]

1513 patients
51.34% (n = 306)

vs.
49.56% (n = 227)

10.07% (n = 60)
vs.

6.33% (n = 29)

9.56% (n = 57)
vs.

10.48% (n = 48)
[41]

648 couples

64.7% (n = 202)
vs.

0% (n = 0)
vs.

68.8% (n = 11)
vs.

30.8% (n = 12)

73.1%
vs.

23.5%

7.4% (n = 23)
vs.

23.5% (n = 24
vs.

12.5% (n = 2)
vs.

5.1% (n = 2)

9% (n = 28)
vs.

16.7% (n = 17)
vs.

12.5% (n = 2)
vs. 12.8% (n = 5)

1.0% (n = 3)
vs.

0% (n = 0)
vs.

0% (n = 0)
vs.

0% (n = 0)

[42]
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We also tried to retrieve information related to the sequencer by strictly using article-
related data and the supplementary materials section.

(1) Illumina

(1) twelve with MiSeq [11,13,14,16,24,27,29,33,34,38,43,44];
(2) three with HiSeq [15,28,32];
(3) two with NextSeq [31,41];
(4) one with sequencing-by-synthesis [45];

(2) Ion Torrent [42]

(1) four with Ion S5 [17,30,40,46];

Following the allocation of the articles that met the eligibility criteria, we extracted
several strong points:

(1) The body mass index (BMI) and obesity influence the chances of implantation and
amplify the risk of miscarriage [40,46], also dependent on the couple’s age [27],
cesarean section (C-section) [22], and ovarian reserve [23], rather than correlated with
previous unsuccessful pregnancies [36];

(2) While age exerts a detrimental effect, it is mitigated through SNP-based PGT-A [39], and
the embryos’ morphology possesses a significant threat with greater impact [11,37,47],
but contradicted on several occasions [21,29,38]; Embryo morphokinetic [11,34,37] and
inner cell mass (ICM) morphology constitute an optimal predictor of sustained implan-
tation [48];

(3) Mitochondrial DNA (mtDNA) copy numbers are higher in day 5 blastocysts of older
women than day 6 blastocysts, further associated with a low chance of ongoing
pregnancies [14,24]; The content of mtDNA is unable to predict the miscarriage
risk [12] and additionally refuted when comparing the outcome differences between
them [19] despite the cryo-storage [49];

(4) Despite the sensitivity of platforms, errors still might occur, and their optimization
is mandatory; PGT-NGS significantly improves the clinical outcomes in mosaic em-
bryos [28,41,50], FAST-SeqS being a reliable and scalable PGT-A method [15];

(5) Mosaic embryos have poor reproductive potential but retain the ability to result in
live births [13,33], further sustaining that TE biopsy did not add detectable adverse
effects [42] but as a supplement for the management of recurrent implantation failure
(RIF) [45]; However, zona pellucida opening combined with TE biopsy increases the
risk of mosaicism [32], TE mosaicism deriving after TE and ICM differentiation [30],
while re-biopsy may rescue those with developmental potential [31];

(6) Routine endometrial receptivity (ERA) is not supported in patients undergoing first
autologous transfer, estradiol (E2) variation before progesterone (P4) initiation without
influencing the transfer’s outcome; Estrogen is inversely associated with gestational
age [18,51];

(7) NGS-based PGT-A ensures good prognosis in patients [35,52] that suffer or are affected
by distinct genetic abnormalities such as SMF [43], with structural rearrangements
carriers [16,25,26], Turner syndrome [17], and iRPL [44];

(8) Public coverage of ART should be strongly encouraged [20].

Although the true potential of the PGT has yet to be elucidated and fully transposed
into current protocols, there is still controversy regarding this topic. Fortunately, there
are currently 16 RCTs underway, from which six are observational (n = 3790 estimated
participants) (NCT04734769, NCT04878991, NCT04976920, NCT04732013, NCT04711239,
NCT03520933) and 10 are interventional (n = 3414 estimated participants) (NCT04414748,
NCT04856696, NCT04000152, NCT03900780, NCT05009745, NCT04577560, NCT04485910,
NCT04989348, NCT04654741, NCT03530254) (accessed on 4/12/2022) that may offer insight
on this matter. Among the observational studies, (n = 1) is multicenter, (n = 3) reports the
experience from a single center, whereas in the remaining (n = 2) no center is attributed.
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Analogous observations are also valid for those interventionals since (n = 2) are multicenter,
while (n = 8) are from a single-center.

3.1. Pre-Implantation Genetic Testing for Monogenic Diseases

Unfortunately, between the pre-established timeframe, we could identify only one ar-
ticle aiming to assess the role of aneuploidy in PGT-M in young women. From 364 patients
enrolled and subsequently divided into two unequal groups (n = 98/n = 266), a total
of 569 frozen embryo transfer (FET) cycles (n = 131/n = 438) resulted from 385 oocytes.
The aneuploidy screening significantly improved ongoing pregnancy/live birth rates fol-
lowing the first frozen embryo cycles and reduced the associated time for achieving a
pregnancy [21].

3.2. Pre-Implantation Genetic Testing for Structural Rearrangements

From 1857 blastocysts following 528 cycles in 403 couples enrolled, 216 blastocysts
were transferred through FET. There is some controversy regarding the results obtained
since there is a significantly higher rate of balanced reciprocal translocation in women than
in their counterparts. Additionally, it marks an improvement in transferable blastocysts
rate in couples treated with gonadotropin-releasing hormone antagonist (GnRHa) com-
pared with agonist groups [16]. Another study refutes this possible association among the
assessed parameters [53]. Similar observations are outlined in a report of unbalanced chro-
mosomal abnormalities, independently of the maternal age and gonadotropin dosage [26].
The risk of unbalanced rearrangement in paracentric and pericentric carriers is in a sex-
associated pattern correlated with the ratio of inverted segment size [25].

3.3. Pre-Implantation Genetic Testing for Aneuploidy

The prevalence of de-novo segmental aneuploidies is relatively low [54]. Recent
evidence brought us closer to resolving the true value of PGT-A [52] despite the necessity
of future studies [42]. Four chromosomes (15, 16, 21, and 22) [55] are frequently reported,
and identified in abnormalities [56]. SNP-based PGT-A possesses the ability to mitigate the
negative effects of maternal age on IVF outcomes [39].

One way to expand this field of research is to optimize the work protocols and increase
the accessibility to the general population through distinct national programs. Public cov-
erage of ART procedures could represent a viable option compared with privately funded
institutions [20], while different biopsy protocols of the TE may impact the mosaic blasto-
cyst rate [32]. The transfer at the blastocyst stage is preferred, the long-term cryo-storage
for more than 36 months remaining a safe alternative that ensures a good prognosis [35,49].

Several parameters modulate the quality of blastocysts by variances of mtDNA content.
Interestingly, the associated level did not differ between non- and pregnant women [12],
with a mean copy number of 0.0016 ± 0.0012 per genome. Variants of mtDNA can be found
in both coding and non-coding regions, affecting the rate of reproductive outcomes, but
independently on the maternal age and day of the biopsy [24]. The mtDNA, euploidy rate,
and clinical pregnancy rate are superior for D5 compared with D6 blastocysts [14,24], with
comparable results in rates between GnRHa and human chorionic gonadotropin (hCG) [57].

There is no relationship between BMI and ploidy, but rather upon semen morphol-
ogy [27] of the embryo with the mention that the live birth rate can be low to the detriment
of high miscarriage rate in obese patients [40,46,58] per BMI classification issued by the
World Health Organization (WHO). The BMI and serum P4 had an insignificant impact on
the copy number. The level of mtDNA is above the mean by comparison with abnormal
chromosomal number phenomenon and following TE biopsy [59]. The clinical outcomes
are similar between D5 and D6 blastocysts [19].

Relative telomere length of white blood cells (WBC) could offer insight. There is a
correlation between telomere shortening once with aging with the rate of aneuploidy [60]
and controlled ovarian stimulation (COS) [61]. This argument is antithetical to the actual
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rates of euploidy, aneuploidy, mosaicism, or blastocyst formation in men stratified by
age [62].

The current body of knowledge does not support the routine of ERA [18] and the E2
supplementation before P4 initiation, being discovered an inverse correlation between E2
priming and pregnancy duration [51].

MALBAC-NGS-PGT-A outweighs MDA-SNP-PGT-A in terms of costs and support [28].
Despite the effectiveness of NGS, aCGH, and SNP array-based PGT in the modern era [41],
there is a discrepancy in the applicability and results between the sexes, with often mini-
mum conclusions [43] and errors still might occur [50]. Morphokinetic characteristics of
embryos are insufficient [34,63], while cell-free DNA in spent blastocyst culture media
might be a reasonable non-invasive approach [64]. Therefore, algorithms such as KID-
score D5 and mathematical models to predict the number of transferable blastocysts begin
to be relevant in clinical practice. High platforms with over 95% sensitivity and speci-
ficity [15] could ease the effort of clinicians to conduct a genetic consultation [65]. PGT-A
not only shortens the time of obtaining a pregnancy and the live birth [66], but oocyte
donors ≤25 have similar cycle blastocyst euploidy, formation, and oocyte number retrieved
as those between 26 and 30 years [67].

Current PGT-A methods can detect amalgams of euploid and aneuploid cells, which
is why several teams of authors had it as an objective to evaluate the benefit of embryo
selection. Inner cell mass (ICM) remains the most valuable predictor of sustained implan-
tation [48], alongside pronuclear for [68] ploidy at all ages for euploid embryos of good
quality at D5 [47], especially in younger patients. Poor quality does not always imply inad-
equate competence [29], considering that the STAR offered novel directions that marked
the IVF practice worldwide [38].

Data suggest that aneuploid embryos and TE factors of miscarriage even after PGT-A,
women still might suffer a pregnancy loss [36] or as direction for RIF management [45].
One can only speculate that patients with iRPL may be prone to clinical miscarriages. This
argument highlights two scenarios: either these innovative platforms miss defects within
chromosomes, especially at the level of IMC that subsequently leads to miscarriage, or the
lack of diagnostic tests for RPL [44]. Moreover, there is a marked reduction of implantation
and implicitly of ongoing pregnancies and live birth in women that had a C-section [22].

Despite the scarcity of data in the current literature regarding the impact of ovarian
reserve and response on the chromosome status, the odds decline for a biopsied blastocyst
to be euploid by 24% in the diminished ovarian reverse (DOR) group compared to non-
DOR. The euploidy rates are not affected by the patient’s status and no differences between
DOR and non-DOR with regard to living births per transfer were observed [23,69].

Recent studies showed that the transfer of mosaic embryos could give rise to healthy
pregnancies, but are risks associated, precisely reduced implantation and high miscarriage
rate concomitantly with fetal abnormalities. Therefore, they should not be treated as a
priority [33]. Interestingly, low-medium mosaicism in TE arises after the differentiation
of TE and ICM [30]. Re-biopsy constitutes the approach that may rescue blastocysts with
developmental potential [31] if they exhibit direct or reverse cleavage and are morpho-
logically eligible [11] with approximately half of the live birth rates by comparison with
those euploids [13,37]. Recipients of donated oocytes subjected to an embryo transfer at
blastocyst stage should be opted instead of cleavage stage embryo transfer as recently
demonstrated [70], indicated choice in females with Turner Syndrome in cases with or
without mosaicism [17], biopsy not adding additional risks to the neonatal outcomes [71].

4. Discussions

We hope this manuscript is a launching pad and may aid different teams of researchers
in using it as a support pillar for future large-scale studies and in designing the protocol,
possibly, which categories of patients to be enclosed. Although we have tried to cover in
both tables as best as possible the reproductive outcomes based on the conditions implied
by the authors, several of them had a unique design, while others confirm or refute the
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previous results of another team. Conclusively, numerous factors may impact reproductive
outcomes in a double-edged sword manner, which is why clear inclusion criteria are
compulsory to obtain optimal results. Despite the usefulness of predictors to reflect the
reproductive potential, risks, and arguably outcome, errors still might occur, relying on
sensitivity and specificity of working platforms. Even though national programs should
become a priority regardless of the institution, specific interventions have associated risks.
In this context, NGS is a groundbreaking research tool with substantial potential in various
fields of interest. Thus, the presence of NGS became imperative in all laboratories that
conduct ARTs. From our point of view, NGS now stands as the main barrier toward a new
stage in our understanding of genetic defects.

Mechanically speaking, NGS is a cluster of novel technologies with a broad spectrum
of utility; DNA and RNA sequencing, variants and mutations. It highly surpasses the
Sanger sequencing, allowing simultaneous or massively parallel sequencing. Templates
equivalent to eight human genomes (25 gigabases) can be sequenced because it does not
involve target-specific primers. The foremost advantage by comparison with Sanger is
the ability to target multiple sites in a single reaction in contrast to one target per reaction.
Platforms designed over the years are 454 pyrosequencing, Illumina, SOLiD, the Polonator,
HeliScope Single Molecule Sequencer, Ion Torrent, and PacBio RS. However, NGS involves
the fulfillment of five distinct steps; (1) fragmentation, (2) library preparation, (3) massive
parallel sequencing, (4) bioinformatic analysis, and (5) interpretation and variant/mutation
annotation [72–75].

Due to its high potential and interest coupled with the recent discoveries, NGS comes
tangent with the uprising trend in understanding disease-associated mutations and ge-
netic alterations. The advancements, in particular, target enrichment methods resulted in
evidence of variations responsible for dozens of rare genetic diseases; syndromes Schinzel-
Giedion, Sensenbrenner, Miller, Kabuki, Fowler, and mutations attributed to hyperphos-
phatasia mental retardation and neonatal diabetes mellitus [76], but it has certain limitations
in studying neurological diseases [77]. The two noninvasive prenatal testing (NIPT) modal-
ities are cell-based/free and assay [78,79]. This technique involves the use of genetic
material from maternal blood. Actual options include NGS of cell-free fetal DNA (cffDNA),
polymerase-chain-reaction (PCR)-based methods, and microarrays, all attributed to aneu-
ploidy detection and single fetal cell genome analysis. However, certain limitations must be
overwhelmed. The possible clinical applications of both qualitative and quantitative NIPT
are: qualitative—autosomal dominant and recessive disorders either when the father carries
a mutation or compound heterozygosity is present, X-linked and newborn’s preclusion of
hemolytic diseases; quantitative—disorders when the mother carriers a mutation or for
both parents when they are suspected to be carrying the same mutation [80,81].

Compared with all NGS platforms developed following the fulfillment of the Human
Genome Project (HGP) in 2003, only two are operated in clinical laboratories: Ion Torrent
and Illumina systems. The remaining were either phased out due to the time/cost ratio or
had limitations that could not be confounded. The principle behind Ion Torrent implies
exploiting the emulsion PCR utilizing the aboriginal chemistry of deoxyribonucleoside
triphosphate (dNTP) that discharge ions during base incorporation by DNA polymerase
and a modified silicon chip detecting the pH modification. Illumina implies a concept
on the existing Solexa sequencing-by-synthesis chemistry and use of the small flow cells,
decreased imaging period, and rapid sequencing [73]. Illumina might outweigh the Ion
Torrent in sequencing applications, but Ion Torrent could compensate Illumina in filling
the gaps in the assembly produced. The main limitation of Illumina except the time
required per run is the acquirement of variable fragments in length due to a phase shift
of the analyzed sequences and consequently a reduced accuracy in the three ends of the
segments. Concerning the Ion platforms, the total data output due to a higher error rate and
sequence truncation could be improved [76]. Płoski [82] already provided a comprehensive
comparison between Illumina and Ion Torrent platforms. A brief description of the NGS
utility is presented in Figure 2.



Diagnostics 2022, 12, 1911 12 of 16

Diagnostics 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

outweigh the Ion Torrent in sequencing applications, but Ion Torrent could compensate 
Illumina in filling the gaps in the assembly produced. The main limitation of Illumina 
except the time required per run is the acquirement of variable fragments in length due 
to a phase shift of the analyzed sequences and consequently a reduced accuracy in the 
three 'ends of the segments. Concerning the Ion platforms, the total data output due to a 
higher error rate and sequence truncation could be improved [76]. Płoski [82] already 
provided a comprehensive comparison between Illumina and Ion Torrent platforms. A 
brief description of the NGS utility is presented in Figure 2. 

 
Figure 2. NGS broad utility in genetic disorders diagnosis. 

5. Conclusions 
In conclusion, this manuscript may be valuable to other groups in designing the 

working protocol, the allocation of patients, and the previous outcomes in cases of a more 
extensive study. NGS-PGT may be improved and suitable to respond to other classes of 
patients that seek specialty care. Fortunately, experiences on obese patients, at an ad-
vanced age, based on their history, or suffering from genetic abnormalities start to gain 
significant interest. We successfully argue that NGS-based PGT revolutionized this field 
despite the cases where there are no statistically significant differences between the ana-
lyzed groups and parameters evaluated. More specifically, genetic testing increases the 
chances within all parameters of interest established by us, but the possible involvement 
of stimulation cycle treatment is still studied. The success is sex- and age-dependent, in 
some situations proving efficient even in >35 years old women. Although biopsy proto-
cols might impact the embryo’s morphology and morphogenetic, coupled with the health 
status, algorithms and non-invasive protocols to respond to each hypothetical scenario 
have been created over the years. Cumulatively, PGT using NGS folds on the constantly 
increasing trend of couples that seek specialty help. In summary, molecular biology 
techniques should be viewed as integrative components, reflected by the rates of im-
plantation, clinical and ongoing pregnancy and live birth, accompanied by reduced 
miscarriage. 

Author Contributions: B.D., O.-D.I. and T.A. (Conceptualization, data curation, investigation, 
formal analysis, methodology, writing—original draft); N.A. and C.I. (conceptualization, method-
ology, supervision, validation, project administration, writing—review and editing); B.D. (con-
ceptualization, methodology, supervision, validation, project administration). All authors have 
read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Figure 2. NGS broad utility in genetic disorders diagnosis.

5. Conclusions

In conclusion, this manuscript may be valuable to other groups in designing the
working protocol, the allocation of patients, and the previous outcomes in cases of a more
extensive study. NGS-PGT may be improved and suitable to respond to other classes of
patients that seek specialty care. Fortunately, experiences on obese patients, at an advanced
age, based on their history, or suffering from genetic abnormalities start to gain significant
interest. We successfully argue that NGS-based PGT revolutionized this field despite the
cases where there are no statistically significant differences between the analyzed groups
and parameters evaluated. More specifically, genetic testing increases the chances within
all parameters of interest established by us, but the possible involvement of stimulation
cycle treatment is still studied. The success is sex- and age-dependent, in some situations
proving efficient even in >35 years old women. Although biopsy protocols might impact
the embryo’s morphology and morphogenetic, coupled with the health status, algorithms
and non-invasive protocols to respond to each hypothetical scenario have been created
over the years. Cumulatively, PGT using NGS folds on the constantly increasing trend
of couples that seek specialty help. In summary, molecular biology techniques should
be viewed as integrative components, reflected by the rates of implantation, clinical and
ongoing pregnancy and live birth, accompanied by reduced miscarriage.
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