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Mouse MammaryTumorViruses are beta-retroviruses that exist in both exogenous (MMTV)
and endogenous (Mtv ) forms. Exogenous MMTV is transmitted via the milk of lactating ani-
mals and is capable of inducing mammary gland tumors later in life. MMTV has provided a
number of critical models for studying both viral infection as well as human breast cancer. In
addition to the horizontally transmitted MMTV, most inbred mouse strains contain perma-
nently integrated Mtv proviruses within their genome that are remnants of MMTV infection
and vertically transmitted. Historically, Mtv have been appreciated for their role in shaping
the T cell repertoire during thymic development via negative selection. In addition, more
recent work has demonstrated a larger role for Mtv in modulating host immune responses
due to its peripheral expression.The influence of Mtv on host response has been observed
during experimental murine models of Polyomavirus- and ESb-induced lymphoma as well
as Leishmania major and Plasmodium berghei ANKA infection. Decreased susceptibility to
bacterial pathogens and virus-induced tumors has been observed among mice lacking all
Mtv. We have also demonstrated a role for Mtv Sag in the expansion of regulatory T cells
following chronic viral infection. The aim of this review is to summarize the latest research
in the field regarding peripheral expression of Mtv with a particular focus on their role and
influence on the immune system, infectious disease outcome, and potential involvement
in tumor formation.
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INTRODUCTION
The integration of viral nucleic acid sequences into the host
genome is a hallmark of the retroviral life cycle. Integration in
somatic cells results in infection of the host and transmission of
the virus requires the production of infectious viral particles that
are passed on to a new host horizontally. On the other hand, inte-
gration in the germ line results in the generation of endogenous
retroviruses that become an inheritable part of the host genome.
Endogenous retroviruses constitute a significant fraction of vari-
ous vertebrate genomes, including both human and mouse (1–3).
Two of the more widely studied endogenous retroviruses within
the mouse genome are the murine leukemia virus (4) and the
mouse mammary tumor virus (5), which exist in both exogenous
(MMTV) and endogenous (Mtv) forms. While the exogenous
MMTV has been extensively studied for its role in the establish-
ment and transmission of mammary carcinomas (6, 7), much less
remains known about the influence of the endogenous Mtv on
the host. The aim of this review is to focus on recent advances in
understanding the role of endogenous Mtv, particularly in relation
to cancer, infection, and immunity.

Mice inherit Mtv that have integrated into the host genome
according to Mendelian inheritance patterns. Greater than 30
different endogenous Mtv have been identified (8). The most com-
mon inbred laboratory mice contain between two and eight copies
of endogenous Mtv, the majority of which are shared between
several different strains (Table 1) (5, 9). Certain wild-derived

(feral) strains of mice, including PERA/Ei and Czech II, are com-
pletely devoid of endogenous Mtv. Only a few of the endoge-
nous Mtv, including Mtv-1, -2, and -4 have retained the ability
of forming infectious viral particles (10, 11). Some proviruses,
including Mtv-2, are capable of both exogenous and endogenous
transmission (12).

Endogenous Mtv maintain a genetic structure similar to their
exogenous MMTV counterparts. For a detailed description of this
genetic makeup see the review by Ross (13). Briefly, MMTV is a
type B retrovirus of the Retroviridae family that contains a 9 kb
RNA genome encoding virion capsid (Gag) proteins, reverse tran-
scriptase and integrase enzymes necessary for viral replication
(Pol), and envelope (Env) proteins used for viral entry. Like all
other retroviruses, MMTV is flanked by 5′ and 3′ long terminal
repeats (LTRs). The 3′ LTR of MMTV contains an open read-
ing frame that encodes the viral accessory protein, superantigen
(Sag), a type 2 transmembrane glycoprotein (14, 15). More recent
data has demonstrated that the 3′ LTR of MMTV also encodes
another accessory protein, regulatory of export of MMTV (Rem).
Rem is required for efficient nuclear export of unspliced viral
RNA via interaction with a Rem-responsive element present in
MMTV RNA (16). Both Sag and Rem are encoded by alternatively
spliced mRNAs. Rem is related to the human immunodeficiency
virus (HIV) Rev protein, thus making MMTV a complex retro-
virus (17, 18). Endogenous Mtv have accumulated various point
mutations or deletions in their proviral genome (19–21). However,
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Table 1 | Expression of endogenous Mtv among common mouse

strains.

Mouse strain Mtv provirus H-2 I-A I-E

A/J 6, 8, 13 H-2a I-Ak I-Ek

AKR/J 7, 8, 9, 17, 23, 30 H-2k I-Ak I-Ek

BALB/cJ 6, 8, 9 H-2d I-Ad I-Ed

C3H/HeJ 1, 6, 8, 11, 14 H-2k I-Ak I-Ek

C57BL/6J 8, 9, 17 H-2b I-Ab Null

C58/J 3, 7, 17 H-2k I-Ak I-Ek

CBA/CaJ 8, 9, 14 H-2k I-Ak I-Ek

CBA/J 6, 7, 8, 9, 14, 17 H-2k I-Ak I-Ek

DBA/2J 1, 6, 7, 8, 11, 13, 14, 17 H-2d I-Ad I-Ed

SJL/J 8, 29, 31 H-2S I-As Null

almost all Mtv have maintained functional Sag expression. While
other viral proteins play important roles (especially in terms of
viral particle assembly for MMTV), it is the expression of Sag by
both MMTV and Mtv that has been the most extensively stud-
ied. Sag expression plays an important role in the biology of
both forms of the virus that is best understood from a historical
perspective.

IMPORTANCE OF SAG IN EXOGENOUS MMTV INFECTION
As early as 1936, it was observed that certain strains of inbred
mice at Jackson Laboratories (ME, USA) displayed an inherent
susceptibility to spontaneous mammary carcinomas. The inci-
dence of tumor development ranged from high, intermediate, and
low depending on the particular strain of mouse (22). It became
readily apparent that the cancer-inducing agent was maternally
transmitted and present in milk, and subsequent experiments
demonstrated that the causative agent was a virus. Further work
led to the discovery and identification of MMTV, originally known
as Bittner virus, as the causative agent (23).

In order for MMTV to reach the mammary gland, a complex
series of events must occur in which the virus requires and sub-
verts cells of the immune system, particularly B and T cells, to
establish infection. The initial site of milk-borne MMTV infec-
tion is the gut-associated lymphoid tissue, specifically the Peyer’s
patches, where B cells represent the initial target cell (24). The ini-
tial round of B cell infection and activation occurs as a result of
the interaction between MMTV Env protein and Toll-like recep-
tor 4 (25). The ability of MMTV to disseminate from the gut to
the mammary gland is dependent upon this expression of the
virally encoded Sag (26). Infected B cells present Sag in conjunc-
tion with the major histocompatibility complex (MHC) class II
proteins to CD4+ T cells bearing a reactive T cell receptor (TCR)
Vβ chain. A polymorphic region within the carboxyl terminus of
MMTV Sag determines the TCR Vβ domain specificity (27–29).
Different MHC class II alleles display strikingly disparate Sag pre-
sentation capabilities, with MHC class II I-E inducing the most
efficient presentation to T cells (30). Stimulation of Sag-reactive
CD4+ T cells leads to their activation and production of various
cytokines and chemokines. In addition, activated T cells upregu-
late CD40 ligand (CD40L), which binds to the CD40 receptor on
B cells to further activate them (31). Such activation stimulates

and recruits additional B and T cells, thereby resulting in fur-
ther immune cell activation and the subsequent amplification of a
reservoir of MMTV infected cells (32). Infected B cells then travel
to the developing mammary gland and thereby enable the virus to
infect the tumor-susceptible target organ. The critical requirement
for an infected lymphocyte population during MMTV infection
and dissemination is demonstrated by the resistance of nude mice
which lack a functional T cell compartment (33), neonatal thymec-
tomized mice (34), mice lacking Sag-reactive T cells (26), or B
cell deficient mice (24) to milk-borne transmission of MMTV-
induced tumor development. Mice with inefficient presentation
of MMTV Sag due to MHC class II mutations are also resistant to
viral infection (35).

Since MMTV does not encode an oncogene, mammary tumori-
genesis occurs after insertion of proviral DNA near cellular proto-
oncogenes and activation of transcription (36–38). Analysis of
genes activated by integration of the MMTV provirus using the
viral genome as a molecular tag enabled the identification of a
number of MMTV-tagged genes. Of these genes, the Wnt [relat-
ing to the Drosophilia segmented polarity gene wingless (Wg )]
and fibroblast growth factor (Fgf) family of genes represent major
targets of mutagenic effects (36, 39–41). However, the frequency
of gene activation responsible for mammary tumor development
is dependent on both the strain of the mouse and the virus.

HISTORY OF ENDOGENOUS Mtv
Retrospectively, evidence of Mtv Sag expression was first observed
in experiments demonstrating non-reciprocal lymphocyte acti-
vation/proliferation in mixed lymphocyte cultures from MHC-
identical strains of mice (42). Before it was known that Mtv Sag was
the culprit, the antigens responsible for inducing lymphocyte acti-
vation/proliferation were termed minor lymphocyte stimulating
(Mls) antigens. For example, Mlsa expressed by DBA/2 mice results
in T cell activation of BALB/c splenocytes when co-cultured. Once
monoclonal antibodies to the Vβ regions of the TCR were made
available, it became apparent that Mlsa resulted in the activation of
BALB/c T cells expressing Vβ6 and that Vβ6+ T cells were largely
absent in the repertoire of DBA/2 mice. Subsequent genetic stud-
ies linked various Mls antigens to Mtv loci (43–46) and Sag as
the element responsible for Vβ-specific T cell interaction (14, 15).
Therefore, an important consequence of Mtv Sag expression is
the ultimate alteration of the peripheral adaptive T cell reper-
toire mediated by intrathymic deletion of Sag-reactive T cells, the
extent and kinetics of which vary depending on the specific Sag
(47–49). For example, the Sag associated with Mtv-7 stimulates
and deletes T cells bearing Vβ 6, 7, 8.1, and 9 (50, 51), while that
of Mtv-9 induces complete deletion of TCR Vβ5, 11, and 12 (44,
46, 52). Table 2 provides the chromosomal location and TCR Vβ

specificity/deletion for a few of the more commonly encountered
endogenous Mtv among different mouse strains (53, 54).

The fact that endogenous retroviruses in general, and Mtv in
specific remain present in high percentage within the host genome
over a long portion of evolution would provide the opportu-
nity for interaction with host genes and subsequent influence of
cellular function. Although a large portion of such proviruses
no longer encode for functional products, thereby supporting
the idea that these endogenous retroviruses are simply genomic
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Table 2 |TCR Vβ specificity and deletion by endogenous Mtv.

Mtv provirus Chromosome TCR Vβ specificity/deletion

Mtv-1 7 3

Mtv-2 18 14, 15

Mtv-3 11 3, 17

Mtv-6 16 3, 5, 17

Mtv-7 1 6, 7, 8.1, 9

Mtv-8 6 11, 12

Mtv-9 12 5, 11, 12, 17

Mtv-11 14 11, 12, 17

Mtv-13 4 3, 17

This list is not comprehensive of all Mtv.

“fossils,” there do exist viral elements that have retained activ-
ity. The question is therefore what is the evolutionary role or
advantage for maintaining these proviruses within the genome?
One hypothesis that has been proposed is that Mtv are retained
by certain mouse strains to serve as an evolutionary means of
protection against exogenous milk-borne MMTV infection and
MMTV-induced mammary tumors (55). This protection would
result from the deletion of Mtv-encoded Sag-specific T cells
and the subsequent loss of a reactive pool of T cells necessary
for infection. In support of this idea, the transgenic expres-
sion of the Sag gene of the C3H strain of MMTV has been
shown to protect against exogenous MMTV encoding the same
Sag specificity (26). However, it is unlikely that this is the
only evolutionary role for endogenous Mtv, since wild-derived
mice lacking Mtv are not overwhelmed by mammary carcino-
mas. Therefore, the question remains, what evolutionary advan-
tage does the maintenance of these endogenous proviral genes
impart to the mouse? A number of models have demonstrated
that Mtv have the capacity to modulate the immune response,
thereby providing either a selective disadvantage or advantage
in regards to cancer, infection, and immunity. Some of these
models require Sag expression and some may require other com-
ponents of the proviral genome via mechanisms that are not fully
understood.

INFLUENCE OF ENDOGENOUS Mtv ON CANCER
Evidence exists that Mtv can influence the development of MMTV-
induced mammary carcinomas via a mechanism that does not
require interaction with CD4+ T cells expressing a Sag-reactive
TCR Vβ region. A number of mouse strains, including GR, C3H,
BR6, and R111 have been selectively inbred for a high incidence
of mammary tumors due to their transmission of MMTV to off-
spring via milk. Two of these strains, GR and C3H, additionally
contain endogenous copies of Mtv that also generate infectious
viral particles. Among weanlings of GR mice, the incidence of
pregnancy-independent tumors occurs at a similar frequency
whether nursed on GR mothers or foster-nursed on MMTV-
free mothers (56). Mtv-2 was later identified as the dominant
gene responsible for tumor development as well as responsi-
ble for the expression of MMTV within the milk of GR mice.
When C3H mice are freed of their corresponding exogenous C3H-
MMTV via foster-nursing, mammary tumors still develop, yet

with varying incidence and increased latency. This tumor devel-
opment was determined to be dependent on the expression of
Mtv-1 (10).

Another tumor model where Mtv has been shown to be impor-
tant is infection with Polyomaviruses (PyVs) – a family of small
non-enveloped, double-stranded DNA viruses with potent onco-
genic capacity to induce epithelial and mesenchymal cell-derived
tumors (57). Susceptibility to PyV-induced tumors has been
shown among certain strains of H-2k expressing mice (58, 59).
A previously identified PyV susceptibility gene (PyvS) (60) was
later identified to encode the Sag from Mtv-7 among H-2k mice
(C3H/BiDa mice) resulting in the intrathymic deletion of TCRVβ6
expressing T cell populations (59). Among other mechanisms (61),
preferential usage of H-2k-restricted CD8+ T cells expressing TCR
Vβ6 that were specific for an immunodominant peptide derived
from the viral middle T protein were demonstrated to provide the
necessary antitumor immunity against PyV (62). Susceptibility to
PyV is transmitted as a dominant trait due to the requirement
of only a single copy of the superantigen being necessary for the
deletion of T cells expressing specific Vβ TCRs. H-2k-identical
C57BR/cdJ (BR mice) retain this cytotoxic CD8+ TCR Vβ6 pop-
ulation due to the lack of Mtv-7 and are therefore highly resistant
to tumor development.

Mtv-7 has also been shown to influence the immune response
among H-2d-expressing mice in a murine model of aggressive lym-
phoma. Although DBA/2 and B10.D2 strains of mice are syngeneic
at the MHC and therefore immunologically compatible, they
demonstrate varied immune response and outcome upon chal-
lenge with the highly malignant DBA/2-derived ESb cell line (63).
B10.D2 mice are able to prevent metastasis of such tumors by gen-
erating and sustaining a sufficient humoral and cellular immune
response. This response is evident by the increased sensitivity of
B10.D2 following irradiation or depletion of CD4+ and CD8+ T
cells (64). In contrast, naïve DBA/2 mice are highly susceptible
to ESb-induced lymphoma (65). The generation of recombinant
inbred (RI) mouse strains from the cross of B10.D2 and DBA/2
facilitated the identification of potential genes segregating with
ESb-related tumor susceptibility and resistance (63). Genotyping
for Mtv among several of the tumor-resistant RI strains revealed
similarity to the parental DBA/2 strain except for the loss of a par-
ticular LTR that corresponded to the Mtv-7 provirus. It was further
demonstrated that ESb tumor cells themselves express proviral
Mtv-7 at both the mRNA and protein level (66). Instead of induc-
ing anergy among the Sag-reactive cells, the ESb tumor-associated
Mtv-7 -encoded Sag was demonstrated to induce activation of
Sag-specific cytotoxic T lymphocytes. TCR Vβ6 cells were demon-
strated to facilitate specific killing of tumor cells expressing the
endogenous Mtv-7 in vitro. Furthermore, treatment of tumor-
bearing DBA/2 mice with TCR Vβ6 T cells from naïve B10.D2 mice
led to a significant increase in survival and concurrent reduction
in tumor growth (66). It is important to note that the reduction
in tumor growth and delay in death lasted only 10 days, suggesting
the potential and eventual loss of the TCR Vβ6 T cell population.
Therefore, in models of both PyV and ESb-induced lymphoma,
the presence of Mtv-7 affords a selective disadvantage in terms of
deleting a protective population of lymphocytes that are necessary
for tumor immunity.
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In contrast to the deletion of Sag-reactive T cells, Mtv-encoded
Sag may further modulate tumor susceptibility via activation of
Sag-reactive T cells. Spontaneous reticulum cell sarcoma (RCS),
a form of B cell lymphoma, has been observed to arise in >90%
of SJL mice older than 12 months of age. The development of
such RCS requires the presence of host T cells and specifically
that of T cell-derived cytokines, such as IL-5 and IFN-γ (67,
68). The strong proliferative response of previously unsensitized
CD4+ T cells to RCS cells (69) and the biased usage of such
responding cells expressing TCR Vβ16 imply a role for super-
antigen in this model (70). CD4+ TCR Vβ16 cells have been
shown to be capable of supporting RCS growth via the pro-
duction of IL-2, IL-4, and IL-5. Additional analysis revealed the
high expression of a novel MMTV-LTR among mRNA from RCS
cells (70). It was subsequently determined that the B cell lym-
phomas of SJL mice contained Mtv-29, which via the Mtv-29-
encoded Sag were capable of stimulating TCR Vβ16 cells that
are required to support the development of spontaneous B cell
lymphomagenesis (71).

Although a majority of the research examining the role of Mtv
in modulation of the immune response has mainly focused on
Sag-dependent processes, evidence does exist to support Mtv-
associated, Sag-independent mechanisms. BALB/c mice harbor
three distinct Mtv (Mtv-6, -8, and -9) all on separate chromo-
somes,which in the context of MHC class II I-E induce intrathymic
deletion of reactive T cells expressing TCR Vβ3, 5, 11, and 12.
The generation of BALB/c congenic mice lacking all endogenous
Mtv (BALB/Mtv-null) enabled the unique opportunity to exam-
ine the influence of Mtv on host response to a variety of models
(72). In the absence of endogenous Mtv, the incidence of mam-
mary tumors in response to exogenous MMTV infection was
reduced from 100% (in BALB/c) to 10% (in BALB/Mtv-null).
This drastic reduction in tumor incidence was independent of
the infection route, whether milk-borne infection or following
intraperitoneal injection of a stable cell line expressing the infec-
tious cloned MMTV provirus. Unlike some mouse strains that
demonstrate resistance to exogenous MMTV infection via the pro-
duction of neutralizing antibodies (73), such was not the case
with the BALB/Mtv-null mice. BALB/Mtv-null mice also demon-
strated resistance to infection with the MMTV variant type B
leukemogenic virus (TBLV) (74), which due to a truncated Sag
protein lacks the ability to induced Sag-mediated T cell deletion
and thereby induces T cell lymphoma rather than MMTV-induced
mammary cancers.

The C3H strain of MMTV that was shown to have reduced
capacity to induce tumorigenesis in BALB/Mtv-null mice (72)
encodes a weak Sag resulting in a slow and marginal deletion of
CD4+ T cells expressing the C3H Sag-reactive TCR Vβ14 (48).
This would suggest that endogenous Mtv-encoded Sag are nec-
essary during the early stages of infection for exogenous Sag
presentation and cognate T cell deletion. In contrast to C3H-
MMTV, infection with FM-MMTV, which encodes a stronger
Sag (75, 76) and therefore results in a much larger response
by the cognate TCR Vβ8.2+ population, resulted in a similar
magnitude and kinetics of Sag response between BALB/c and
BALB/Mtv-null mice. These findings imply that the extent of

deletion associated with the exogenous MMTV-encoded Sag dic-
tates the impact of endogenous Sag during MMTV infection.
While endogenous Sag appear essential during the early stages
of infection with C3H-MMTV, a stronger Sag such as the FM-
MMTV strain can overcome this requirement in terms of estab-
lishing the initial infection. Regardless of this early and initial
infectivity, the absence of Mtv in BALB/Mtv-null mice affords
them high resistance to FM-MMTV-induced tumorigenesis and
such mice are further incapable of transmitting the virus via their
milk (76).

INFLUENCE OF ENDOGENOUS Mtv ON INFECTION
In the experimental murine model of Leishmania major infection,
differences in susceptibility have been attributed to the host’s abil-
ity to generate a sufficient Th1-biased, IFN-γ-dominated, CD4+

T cell response (77). This is most evident upon analysis of the
highly susceptible and Th2/IL-4-prone BALB/c strain compared
to the highly resistant C57BL/6 strain that is prototypical of a
Th1/IFN-γ response. Although certainly much more resistant
to disease compared to the BALB/c strain, the CBA/CaJ and
CBA/J strains of mice differ in their responses to L. major infec-
tion. In contrast to CBA/CaJ mice that develop only transient
lesions upon infection, persistent inflammatory lesions and 10-
fold higher parasite density are observed in CBA/J mice (78). A
quantitative reduction in the production of IFN-γ in the CBA/J
was determined to account for the persistent lesions upon infec-
tion. This reduction in cytokine production further correlated
with the presence of Mtv-7 in the CBA/J strain that is absent
in the CBA/CaJ mice. However, unlike the above models of PyV
and ESb-induced lymphoma, Mtv-7 -specific TCR Vβ6 T cells
do not constitute the predominant responding population dur-
ing L. major infection. Furthermore, the overall magnitude and
heterogeneity of the CD4+ T cell response was similar between
the two strains (78). Such findings would suggest that T cells
in general, regardless of their TCR Vβ repertoire commit some-
what poorly to a Th1-biased, IFN-γ-producing subset in the
presence of Mtv-7 during leishmaniasis. This L. major-specific
effect in the presence of Mtv-7 was determined to be mediated
via alteration of the T cell priming ability of antigen presenting
cells. Although no difference was observed in L. major-infected,
bone marrow-derived dendritic cells (BMDCs) between CBA/CaJ
and CBA/J in terms of their expression of various cell surface
and co-stimulatory markers, CD4+ T cells from CBA/J mice did
produce increased IFN-γ if primed in the presence of L. major-
infected BMDCs from CBA/CaJ mice compared to their own
BMDCs (78). Since impairment of the CBA/J immune response
is not due to a specific TCR Vβ subset, these findings would
suggest a Mtv-7 -dependent, Sag-independent mechanism respon-
sible for modulating T cell priming during the pathogenesis of
leishmaniasis.

The murine model of Plasmodium berghei ANKA infection
constitutes a widely used model that reflects some experimen-
tal similarities to that of human cerebral malaria (CM). The
neurological symptoms of genetically susceptible mice infected
with P. berghei ANKA have been shown to be immune medi-
ated, mainly dependent on CD4+ and CD8+ T cells (79, 80).
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In this model, the high production of Th1-derived cytokines,
including IFN-γ and TNF-α, via interferon regulatory factor-1
(IRF-1) has been implicated in malarial neuropathogenesis (81,
82). The peripheral expansion of a restricted T cell population
expressing TCR Vβ8.1 and Vβ8.2 was observed in the highly sus-
ceptible B10.D2 (H-2d) strain that manifest severe neurological
symptoms but not in infected mice that failed to develop CM.
The occurrence of CM was significantly reduced following treat-
ment with a monoclonal antibody against TCR Vβ8.1 specific T
cells. Furthermore, the endogenous presence of Mtv-7 in con-
genic BALB.D2 mice, or the exogenous counterpart MMTV-SW
that encodes the same Sag as Mtv-7 and is present in BALB.SW
mice, results in Sag-mediated deletion or anergy of a variety of
Vβ-specific populations including Vβ8.1 that has been demon-
strated to provide protection against CM (83). To investigate
whether the presence of Mtv-7 was sufficient to induce resistance
to CM, RI strains derived from a cross between the susceptible
BALB/c (negative for Mtv-7 ) and resistant DBA/2 (positive for
Mtv-7) were examined for their response during P. berghei ANKA
infection. A strong correlation was identified between the pres-
ence of Mtv-7 and protection against neuropathogenesis of CM
(84). The similar levels of parasitemia observed between Mtv-
7+ and Mtv-7− mice would suggest that integration of the viral
genome did not have any effect on at least the initial stages of par-
asite growth and development (84). Overall, it was concluded that
deletion of T cells expressing TCR Vβ8.1 among H-2d express-
ing strains of mice, whether via the exogenous or endogenous
presence of Mtv-7 -encoded Sag was sufficient to confer resis-
tance to CM. Unlike the models of PyV, ESb-induced lymphoma,
and L. major infection, in which the presence of Mtv confers
a selective disadvantage to the host and increases susceptibility,
Mtv appears to provide protection during the neuropathogen-
esis of P. berghei ANKA infection, by an as of yet unidentified
mechanism.

In addition to modulation of the conventional population of
CD8+ and CD4+ T cells, Mtv have been demonstrated to influ-
ence the immune system during viral infection via expansion
of a particular subset of CD4+ T cells expressing the transcrip-
tion factor Foxp3. Murine infection with the clone 13 isolate of
lymphocytic choriomeningitis virus (LCMV) represents a model
of chronic viral infection, in which T cell exhaustion results in
infection virtually for life (85, 86). Infection of mice with LCMV
clone 13 resulted in the selective expansion of a TCR Vβ spe-
cific population of Foxp3+ regulatory T cells (Treg) (87). The
expansion of TCR Vβ5+ Treg was determined to be MHC class II-
dependent, CD4-independent, and secondary to stimulation by
the Mtv-9-encoded Sag. Treg play a key role in immune sup-
pression and control of organ-specific autoimmune diseases via
a variety of mechanisms. Whether this specific Mtv-encoded Sag-
mediated expansion of Treg influences the pathogenesis of viral
or other infectious agents remains to be determined. Neverthe-
less, it does demonstrate the wide range of influence Mtv has
on the immune system, influencing both effector and suppressor
lymphocyte populations.

In addition to the reduction in tumorigenicity via both a
Sag-dependent and Sag-independent manner, the absence of Mtv

provided further resistance to inoculation with the gram-negative
bacterium Vibrio cholerae, as demonstrated by decreased bacterial
replication and mortality in BALB/Mtv-null mice. However, the
absence of Mtv did not provide absolute resistance to bacterial
challenge, as infection with Salmonella typhimurium resulted in
similar mortality between BALB/c and BALB/Mtv-null mice. The
reintroduction of any single Mtv provirus into the BALB/Mtv-
null mice (generating congenic mice positive for either Mtv-6,
-8, or -9) was sufficient to restore susceptibility to both select
viral (MMTV-induced mammary tumors) as well as bacterial (V.
cholera) challenge. Interestingly, the difference in susceptibility to
V. cholera was observed as early as 48 h following infection, suggest-
ing Mtv may function to regulate processes of innate immunity.
However, the exact mechanism for this increased susceptibility to
disparate pathogens among mice expressing at least one or more
Mtv remains to be elucidated. One clue may resolve around the
unique fact that unlike Mtv-8 and -9, Mtv-6 lacks a >6 kb portion
of sequence encoding most of the viral Gag, Env, and Pol proteins.
Mtv-6 does encode functional Sag, which would suggest that a
Sag-mediated or as of yet unidentified Mtv-encoded product may
modulate an immune response that is uniquely shared between
MMTV and V. cholera.

INFLUENCE OF ENDOGENOUS Mtv ON IMMUNITY
In addition to the above models, Mtv-7 was implicated to modu-
late the immune response during the progression of graft-versus-
host disease (GVHD). In this model, the transfer of either parental
C57BL/6 or DBA/2 lymphoid cells into F1 offspring (B6D2F1)
yields opposing disease outcome. Donor lymphoid cells from
C57BL/6, which are associated with a Th1-biased, IFN-γ-mediated
cytokine response, induce an acute form of GVHD. On the other
hand, the Th2-prone, IL-4-mediated response characteristic of
DBA/2 yields a more chronic disease. Although C57BL/6 and
DBA/2 differ in MHC haplotype, such a difference between the
induction of an acute and chronic response was attributed to a
non-MHC-related mechanism (88). Mtv-7, or that of a closely
linked locus to Mtv-7 was implicated in the relative develop-
ment of acute and chronic GVDH based on data from congenic
C57BL/6 mice containing DBA/2-derived alleles at the region sur-
rounding Mtv-7 on chromosome 1 (89). When lymphoid cells
from the congenic C57BL/6 (H-2d) were transferred to recipient
B6D2F1 mice, the mice developed signs more consistent with that
of chronic GVDH than that of the acute disease normally asso-
ciated after transfer of C57BL/6 cells (89). Furthermore, transfer
of the congenic C57BL/6 lymphoid cells containing the DBA/2-
derived alleles around Mtv-7 resulted in decreased expression
levels of IFN-γ and increased levels of IL-4 compared to the
control C57BL/6 transfer. Although these data would suggest a
Mtv-7 -mediated influence on disease outcome, depletion of Mtv-
7 -encoded Sag-reactive cells from the donor population did not
impact the development of acute GVHD. As such, the possibil-
ity remains that a locus near that of Mtv-7 on chromosome 1
can influence host immune response and the eventual outcome
of GVHD.

Collectively, the above models demonstrate the range of influ-
ence endogenous Mtv have in their ability to modulate host
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FIGURE 1 | Influence of endogenous Mtv on host response to
infection and disease. Potential mechanisms by which endogenous
Mtv influence host response during infection and disease. Solid lines

represent known mechanisms, dashed lines represent potential
mechanisms. Question marks represent outcomes that remain to be
determined.

susceptibility to a variety of infections and diseases in seemingly
opposite manners (Figure 1). In the case of PyV infection and ESb-
induced lymphoma, Mtv-encoded Sag induce deletion of tumor-
reactive T cells thereby facilitating tumor development and pro-
gression. At the same time, Mtv-mediated activation/stimulation
of Sag-reactive T cells appears to promote neuropathogenesis
during P. berghei ANKA infection as well as induce B cell lym-
phoma. In addition to conventional T cells, Mtv has been shown
to modulate the population of Foxp3+ regulatory T cells via a
Sag-dependent manner during the course of chronic viral infec-
tion. The activation of Treg can combat and limit the extent of
autoimmune disease while at the same time facilitate tumor pro-
gression by suppressing tumor immunity. The potential ability
to modulate such a dynamic population of T cells can there-
fore have important implications on host outcome. In addi-
tion to Sag-dependent mechanisms, other as of yet unidentified
genes from the Mtv provirus may be capable of influencing Sag-
independent immune responses, such as during L. major infec-
tion. Furthermore, Mtv-mediated influence may not be restricted
to the adaptive immune system, as evidence using BALB/Mtv-
null mice may suggest modulation of potential innate immune
responses.

CONCLUSION
The co-evolution of Mtv and its murine host has allowed ample
time for the virus to develop various mechanisms to modulate
immune regulatory mechanisms. While many endogenous provi-
ral gene sequences have acquired mutations that have led them
to be non-functional, Sag expression has remained intact sug-
gesting some benefit for the host. Recent advances suggest that
these advantages go beyond the initial idea that Mtv exist solely
as a way to prevent exogenous MMTV-induced mammary carci-
noma. While the exact mechanisms by which Mtv function in all
of these various models are not fully known, further insight into
how endogenous Mtv, and in particular Mtv Sag, influence the
immune system can provide potential benefit. Such knowledge
may prove useful for therapeutic modifications of lymphocytes
using retroviral-based vectors for gene therapy (90). In addition,
although there are differences in terms of the activity of viral and
bacterial superantigens, the knowledge gained from endogenous
retroviruses may prove potentially useful for the targeting of Sag-
reactive lymphocytes to tumor cells (91). Ultimately, understand-
ing the mechanisms underlying retroviral integration and interac-
tion with the immune system could provide benefits to a multitude
of disease processes, including infectious diseases and cancers.
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