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Abstract

Inherited ichthyoses belong to a large and heterogeneous group of mendelian disorders of cornification, and can
be distinguished by the quality and distribution of scaling and hyperkeratosis, by other dermatologic and
extracutaneous involvement, and by inheritance. We present the genetic analysis results of probands with X-linked
ichthyosis, autosomal recessive congenital ichthyosis, keratinopathic ichthyosis, and a patient with Netherton
syndrome. Genetic diagnostics was complemented by in silico missense variant analysis based on 3D protein
structures and commonly used prediction programs to compare the yields of these two approaches to each
other. This analysis revealed various structural defects in proteins coded by mutated genes while no defects
were associated with known polymorphisms. Two patients with pathogenic variants in the ABCA12 gene have
a premature termination codon mutation on one allele and a silent variant on the second. The silent variants
c.69G > A and c.4977G > A are localised in the last nucleotide of exon 1 and exon 32, respectively, and probably
affect mRNA splicing. The phenotype of both patients is very severe, including a picture harlequin foetus after birth;
later (at 3 and 6 years of age, respectively) ectropin, eclabion, generalised large polygonal scaling and erythema.
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Dear Editor,
Inherited ichthyoses are a heterogeneous group of dis-

orders classified by the quality and distribution of scaling
and hyperkeratosis, by other dermatologic and extracu-
taneous involvement, and by inheritance [1]. The aim of
our study was identify variants in genes related to an
ichthyosis phenotype and evaluate their pathogenicity.
From this reason, we introduced targeted sequencing of
180 genodermatosis related genes (20 of which associ-
ated with an ichthyosis – STS, ABCA12, ALOXE3,
ALOX12B, CERS3, CYP4F22, LIPN, NIPAL4, POMP,
PNPLA1, TGM1, KRT1, KRT2, KRT10, ABHD5, ALDH3A2,
GJB2, SLC27A4, SPINK5, ST14) and structural analysis of
3D proteins.

Overall, we found 47 probands with autosomal reces-
sive congenital ichthyosis (ARCI), 9 probands with kera-
tinopathic ichthyosis (KI), 2 probands with X-linked
ichthyosis (XLI, patients with the STS gene deletion are
not included), and one proband with Netherton syn-
drome (Table 1). The patients’ clinical findings are pre-
sented in Additional file 1. From 47 ARCI patients, 18
patients (38.3%) have pathogenic sequence variants in
ALOX12B, 9 patients (19.1%) in ALOXE3, 6 patients
(12.8%) in NIPAL4, 5 patients (10.6%) in CYP4F22, 6 pa-
tients (12.8%) in TGM1, and 3 patients (6.4%) in
ABCA12. Among analysed patients’ DNA, three atypical
sequence changes were identified: 1) a large gene deletion
determined by SNP array in patient 27 [p.(Pro630Leu) on
the second ALOXE3 allele]; 2) the variant c.69G > A,
p.(Pro23=), r.(spl?) in patient 45 [p.(Arg1881*) on the sec-
ond ABCA12 allele]; 3) the variant c.4977G >A,
p.(Glu1659=), r.(spl?) in patient 46 [c.483_484delCGinsT
on the second ABCA12 allele]. In silico analyses of
c.69G >A (the last nucleotide of exon 1) and c.4977G >A
(the last nucleotide of exon 32) using the mutation ana-
lysis software Alamut Visual v.2.10.0 revealed that these
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Table 1 Pathogenic sequence variants identified in Czech probands with ichthyosis

No. Gene 1st allele (cDNA level, protein level) 2nd allele (cDNA level, protein level)

1 ALOX12B c.467_470dupATGT, p.(His158Cysfs*20) c.1562A > G, p.(Tyr521Cys)

2 ALOX12B c.581A > T, p.(Lys194*) c.1562A > G, p.(Tyr521Cys)

3 ALOX12B c.665A > T, p.(Lys222Ile) c.1562A > G, p.(Tyr521Cys)

4 ALOX12B c.787_789delTTC, p.(Phe262del) c.1562A > G, p.(Tyr521Cys)

5 ALOX12B c.1034-1035delTT, p.(Phe345Trpfs*28) c.1790C > A, p.(Ala597Glu)

6 ALOX12B 1071G > C, p.(Gln357His) c.1654 + 3A > G, r.(spl?)

7 ALOX12B c.1156C > T, p.(Arg386Cys) c.1654 + 3A > G, r.(spl?)

8 ALOX12B c.1156C > T, p.(Arg386Cys) c.1790C > A, p.(Ala597Glu)

9 ALOX12B c.1157G > A, p.(Arg386His) c.1265C > T, p.(Pro422Leu)

10 ALOX12B c.1157G > A, p.(Arg386His) c.1562A > G, p.(Tyr521Cys)

11 ALOX12B c.1294C > T, p.(Arg432*) c.1562A > G, p.(Tyr521Cys)

12 ALOX12B c.1405C > T, p.(Arg469Trp) c.1454_1455delTT, p.(Phe485Cysfs*16)

13 ALOX12B c.1448A > G, p.(Asn483Ser) c.1562A > G, p.(Tyr521Cys)

14 ALOX12B c.1496G > A, p.(Arg499His) c.1496G > A, p.(Arg499His)

15 ALOX12B c.1562A > G, p.(Tyr521Cys) c.1688 T > C, p.(Leu563Pro)

16 ALOX12B c.1562A > G, p.(Tyr521Cys) c.1790C > A, p.(Ala597Glu)

17 ALOX12B c.1562A > G, p.(Tyr521Cys) c.1790C > A, p.(Ala597Glu)

18 ALOX12B c.1918delG, p.(Asp640Thrfs*23) c.1918delG, p.(Asp640Thrfs*23)

19 ALOXE3 c.36_39delACCT, p.(Tyr13*) c.700C > T, p.(Arg234*)

20 ALOXE3 c.700C > T, p.(Arg234*) c.700C > T, p.(Arg234*)

21 ALOXE3 c.700C > T, p.(Arg234*) c.700C > T, p.(Arg234*)

22 ALOXE3 c.700C > T, p.(Arg234*) c.700C > T, p.(Arg234*)

23 ALOXE3 c.700C > T, p.(Arg234*) c.1889C > T, p.(Pro630Leu)

24 ALOXE3 c.700C > T, p.(Arg234*) c.1889C > T, p.(Pro630Leu)

25 ALOXE3 c.1392 + 2 T > A, r.spl? c.1889C > T, p.(Pro630Leu)

26 ALOXE3 c.1889C > T, p.(Pro630Leu) c.2097C > T, p.(Tyr699*)

27 ALOXE3 c.1889C > T, p.(Pro630Leu) gross deletion

28 NIPAL4 c.527C > A, p.(Ala176Asp) c.527C > A, p.(Ala176Asp)

29 NIPAL4 c.527C > A, p.(Ala176Asp) c.527C > A, p.(Ala176Asp)

30 NIPAL4 c.527C > A, p.(Ala176Asp) c.1010_1015dupTCAGCA,
p.(Ser338_Thr339insIleSer)

31 NIPAL4 c.527C > A, p.(Ala176Asp) c.1193dupT, p.(Val401Argfs*36)

32 NIPAL4 c.1063delC, p.(Leu355Trpfs*93) c.1063delC, p.(Leu355Trpfs*93)

33 NIPAL4 c.1112C > G, p.(Ser371Leu) c.1112C > G, p.(Ser371Leu)

34 CYP4F22 c.1A > G, (p. Met1?) c.59dupG, p.(Ile21Hisfs*59)

35 CYP4F22 c.59dupG, p.(Ile21Hisfs*59) c.59dupG, p.(Ile21Hisfs*59)

36 CYP4F22 c.59dupG, p.(Ile21Hisfs*59) c.59dupG, p.(Ile21Hisfs*59)

37 CYP4F22 c.844C > T, p.(Arg282Trp) c.1085G > A, p.(Arg362Gln)

38 CYP4F22 c.1085G > A, p.(Arg362Gln) c.1085G > A, p.(Arg362Gln)

39 TGM1 c.376C > T, p.(Arg126Cys) c.919C > T, p.(Arg307Trp)

40 TGM1 c.377G > A, p.(Arg126His) c.377G > A, p.(Arg126His)

41 TGM1 c.425G > A, p.(Arg142His) c.1184C > T p.(Thr395Ile)

42 TGM1 c.425G > A, p.(Arg142His) c.2000 T > G, p.(Leu667Arg)

43 TGM1 c.968G > A, p.(Arg323Gln) c.1135G > C, p.(Val379Leu)
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Table 1 Pathogenic sequence variants identified in Czech probands with ichthyosis (Continued)

No. Gene 1st allele (cDNA level, protein level) 2nd allele (cDNA level, protein level)

44 TGM1 c.1310 T > G, p.(Val437Gly) c.2307C > G, p.(Ser769Arg)

45 ABCA12 c.69G > A, p.(Pro23=), r.(spl?) c.5641C > T, p.(Arg1881*)

46 ABCA12 c.483_484delCGinsT, p.(Ala162Hisfs*10) c.4977G > A, p.(Glu1659=), r.(spl?)

47 ABCA12 c.2634C > G, p.(Phe878Leu) c.4139A > G, p.(Asn1380Ser)

48 KRT1 c.532 T > C, p.(Ser178Pro)a –

49 KRT1 c.593C > T, p.(Val198Gly)b –

50 KRT1 c.1016delT, p.(Met339Argfs*23) –

51 KRT10 c.467G > A, p.(Arg156His)b –

52 KRT10 c.467G > A, p.(Arg156His)b –

53 KRT10 c.1373 + 1G > C, r.spl? –

54 KRT10 c.1374-1G > C, r.spl? –

55 KRT2 c.1435A > C, p.(Thr479Pro)c –

56 KRT2 c.1459G > A, p.(Glu487Lys)c –

57 STS c.1330C > T, p.(His444Tyr) –

58 STS c.1338C > G, p.(Cys446Trp) –

59 SPINK5 c.81 + 1G > A, r.spl? c.1431-12G > A, r.(spl?)

Variants in bold letters were detected only in Czech patients (31 patients were mentioned in our previous study [2]). Genes, reference sequences: ALOX12B,
NM_001139.2; ALOXE3, NM_021628.2; CYP4F22, NM_173483.3; NIPAL4, NM_001099287.1; TGM1, NM_000359.2; ABCA12, NM_173076.2; KRT1, NM_006121.3; KRT10,
NM_000421.3; KRT2, NM_000423.2; STS, NM_000351.5; SPINK5, NM_006846.3. The localisation of variants in a keratin molecule: athe head domain, subdomain H1;
bthe central rod domain, subdomain 1A, helix initiating motive; cthe central rod domain, subdomain 2A, helix terminating motif (www.interfil.org)

Fig. 1 Photos of patient 45 at the age of 3 months (a) and 3 years (b, c)
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variants probably affect splicing on the basis of a weaken-
ing of the authentic 5′ donor splice sites of exon 1 (−
25.4%) and exon 32 (− 69.4%), respectively.
ABCA12 disease-causing variants have been described

in ARCI including harlequin ichthyosis (HI), congenital
ichthyosiform erythroderma (CIE), and lamellar ichthy-
osis (LI) [3]. HI shows the most severe phenotype and
most mutations associated with this phenotype create a
premature termination codon (PTC). CIE and LI are
clinically characterized by fine, whitish scales on a back-
ground of erythematous skin, and large, thick, dark
scales over the entire body without a serious background
erythroderma, respectively. We have three patients with
pathogenic variants in ABCA12, two of them have a
PTC mutation and a silent variant as a second mutation,
but probably affecting mRNA splicing. The phenotype of
both patients is very severe, including a picture harlequin
foetus after birth; later (at 3 and 6 years of age, respect-
ively) ectropin, eclabion, generalised large polygonal scal-
ing and erythema (Fig. 1). To explore the possible
association of the disease with the ABCA12 gene, immu-
nohistochemical ABCA12 protein analysis was performed
in the case of patient 45. This analysis revealed deficient
ABCA12 expression in the patient compared with normal
skin tissue (Fig. 2). Patient 47, with two ABCA12 missense
mutations, has a milder phenotype with clinical findings
corresponding to classical CIE.
From 9 KI patients, 3 patients have a pathogenic se-

quence variant in KRT1, 4 patients in KRT10, and 2 pa-
tients in KRT2. Mutations in the mentioned KRT genes
have autosomal dominant inheritance. Unfortunately,
the parent’s DNA was not available in patients 48, 51,
and 52 (but in all cases the identified variants were
already described in HGMD as disease-causing). In pa-
tients 49, 53, and 56, a pathogenic variant was present in
one of the parents in agreement with clinical symptoms.
In patient 50, 54, and 55 pathogenic variants arose as a
de novo event.
As multiple genes are linked to an ichthyosis pheno-

type, massive parallel sequencing is effective technique
for molecular genetic diagnostics. This methodical ap-
proach generates a large amount of data which need to
be interpreted from the point of view of their potential
disease association. We performed in silico analysis of
sequence variants based on 3D protein structures and
commonly used prediction programs (such as SIFT,
PolyPhen-2, and MutationTaster) to evaluate the effect
of 76 pathogenic and 9 benign missense variants and
compare the yields of these two approaches to each
other. Suitable 3D protein structures from the Protein
Data Bank (https://www.rcsb.org/) were found for the
STS, ALOX12B, ALOXE3, and TGM1 proteins. Patho-
genic sequence variants were either identified in our
patients or reported in the Human Gene Mutation

Database. Benign sequence variants were described in lit-
erature and/or indicated in the ExAC database (http://
exac.broadinstitute.org) with an allele frequency > 1%. This
strategy has been used in our previous studies [4–6].
Based on 3D protein structures, we were able to ex-

plain a deleterious effect of 74 pathogenic variants
(97.4%). The structural defect of sequence variants was
caused by a loss of structural contacts (i.e. direct
H-bonds, salt bridges, stacking interactions), a change in
physico-chemical properties, or their combinations.
Considering benign variants, we observed that they are
associated with no structural defects, and they are
mostly localised on the protein’s surface. The structural
analysis is described in more detail in Additional file 2.
When we used SIFT, PolyPhen-2, and MutationTaster,
the degree of compliance in prediction programs and
phenotype status was 85.7% for pathogenic variants and
55.5% for benign variants, assuming that the results of
all three prediction programs agree. Based on published
recommendations [7], the combination of predictions
from different prediction programs are considered as a
single piece of evidence in sequence interpretation. If all

Fig. 2 Immunohistochemical detection of the ABCA12 protein in skin
tissue of the patient 45 (a) and a control (b), original magnification × 100
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of the prediction programs tested agree on the predic-
tion, then this evidence can be counted as supporting.
However, if predictions disagree, then this evidence
should not be used in classifying a variant. Our results
show that the detailed structural analysis of proteins is a
better approach to interpret sequence variants (if an ap-
propriate 3D protein structure is available) – the degree
prediction compliance and phenotype status was 97.4%
for pathogenic variants and 100% for benign variants (in
contrast to 85.7% and 55.5% in commonly used predic-
tion programs).

Additional files

Additional file 1: Table S1. Patients’ clinical findings. (XLSX 23 kb)

Additional file 2: In silico analyses. Methods and results related to in
silico analyses. (DOCX 71 kb)
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