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A B S T R A C T   

Haematococcus pluvialis can produce significant amounts of industrially important compounds belonging to lipids 
and starch classes, including various specific pigments such as β-carotene, lutein and astaxanthin, as well as 
lipids, carbohydrates and proteins. Their production can vary depending on environmental stress conditions like 
nutrient starvation. However, stress conditions lead also to undesired phenomena such as cell lysis, which is 
likely to be related to products loss. The microorganism develops towards smaller single cell volumes during the 
growth process, and eventually, more likely towards lysis when fission (i.e. cell division) slows down. The lysis 
process takes place simultaneously with nutrient depletion, so both growth and lysis are linked to the change of 
environmental conditions. In this work, we develop a novel multiscale segregated-structured model based on 
Population Balance Equations (PBEs) to describe the photoautotrophic growth of H.pluvialis, in particular cell 
growth, and lysis, making possible the description of the relationship between cell volume/transition, cell loss, 
and metabolic product availability. Cell volume is the internal coordinate of the population balance model, and 
its link with intrinsic concentrations is also presented. The model parameters are fitted against experimental 
data, extensive sensitivity analysis is performed and the model predictive capabilities are tested in terms of cell 
density distributions, as well as 0th and 1st order moments.   

1. Introduction 

Microalgae as biofactories of the future are currently facing an 
increasing interest by researchers and industrial biotechnologists, due to 
their potential to produce a wide range of high added-value products in 
a biorefinery context, such as biofuels, fertilizers, antioxidants, nutra-
ceuticals as well as anti-inflammatory, and antimicrobial substances [1, 
2]. Microalgal biotechnology is a viable candidate to help tackle the 
effects of fossil fuels depletion by producing third-generation biofuels 
and treating wastewater through the consumption of NH4

+, NO3
− , and 

PO4
3− . Moreover, microalgae metabolites can be an essential source of 

bio-derived products used in many industrial applications [3]. Photo-
autotrophic microalgae can also fixate carbon dioxide (CO2) by using it 
as a carbon source to produce cellular material macromolecules and 
metabolites. Hence, their cultivation is a promising tool for CO2 
sequestration [4] and can lead to a significant contribution towards 
reducing the effects of CO2 emissions from fossil fuels, which have been 
increasing during the last decades, especially in developing countries 

[5]. 
Nevertheless, microalgal biorefinery exploitation needs collective 

efforts from research and industry to improve economic viability and 
energy balance for the bioproduction of added-value products. The two 
main steps to tackle are cultivation and harvesting, so improvements 
have to be investigated to reduce high energy consumption, and total 
investment cost [5]. The choice of an appropriate target microorganism 
able to produce a multitude of added-value products is a critical starting 
point and can positively affect the probability of designing an 
economically sustainable process. 

Astaxanthin, lutein, and β-carotene are valuable products which 
have an essential role in various fields of industrial interest. The high 
excitement surrounding these compounds is mainly due to their wide 
range of applications, properties, and market opportunities [6–8]. All 
these pigments can be produced through microalgal cutlivation [9–11]. 
H.pluvialis is a freshwater microalga studied since the second half of the 
20th century, with particular emphasis on its carotenogenesis [12,13], 
which is still attracting both research and industrial interest. It can 
synthesise all of the three pigments mentioned above, and it is also able 
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to grow autotrophically by using CO2 as carbon source. These two as-
pects make it attractive for both bioremediation and production of 
added-value compounds. 

A particular feature of H.pluvialis cultivation is that it undergoes a 
transition under stress conditions, moving from a predominant protein 
cell content towards a prevalence of lipids, carbohydrates, and carot-
enoids, as schematically shown in Fig. 1. A phase where the cells are 
rapidly growing without stress can be referred to as the green phase, and 
the one where the cells are exposed to stress conditions can be referred 
to as the red phase. The differentiation above is mainly due to the cell 
colouration during the two phases, attributed to the green chlorophyll 
pigments during the growth and multiplication phase, and to astax-
anthin during the stress phase. Consequently, the valuable pigments 
produced during the green phase are lutein and β-carotene, while the 
main pigment produced during the red phase is astaxanthin. Fig. 2 

depicts the key morphological changes during the photoautotrophic 
cultivation of H.pluvialis as they transition from green to red phase. 

The green phase of the cultivation takes place when the environ-
mental conditions are “good enough” to favour cell growth and multi-
plication [15]. Stress conditions often lead to the formation of 
added-value products [16], and precise knowledge of these conditions 
can help in defining optimal production strategies. The H.pluvialis red 
phase has been linked to nutrient deprivation from lack of nitrogen, 
phosphorous, or sulphur. However, the mechanisms inducing the tran-
sition are not fully understood. The accumulation of carotenoids and 
lipids in this microalga seems to coincide with stress induction, and can 
lead to the simultaneous production of added-value products [14, 
17–19]. 

Stress conditions seem to be a trigger for stopping cell multiplication; 
the cells start the process of lysis/death, and simultaneously the dry 

Nomenclature 

CNO−
3

Ext Extracellular nitrates concentration, g L− 1 

CNO−
3

Int Intracellular nitrates concentration, g L− 1 

ĊNO−
3 

Nitrates transport rate, g h− 1 

fV Gaussian shape function, µm− 3 

fCNO−
3

Int Intracellular nitrates growth rate factor 

fIAve ,G Average light growth rate factor 
fCNO−

3
Int ,L Intracellular nitrates growth rate factor for low affinity 

kinetics 
fCNO−

3
Int ,H Intracellular nitrates growth rate factor for high affinity 

kinetics 
fcMed

NO− ,0
3 

Initial nitrates fission rate factor 

fI0 Incident light fission rate factor 
fCNO−

3
Ext ,Vc

Extracellular nitrates critical volume factor 

fCNO−
3

Int ,Vc
Intracellular nitrates critical volume factor 

hf1 Flex point initial nitrates fission inhibition, g L− 1 

hf2 Flex point incident light fission inhibition, µmol m− 2s− 1 

hmin Minimum fission factor for incident light 
hs1 Shape factor initial nitrates fission inhibition, g L − 1 

hs2 Shape factor incident light fission inhibition, µmol m − 2s− 1 

I0 Incident light intensity, µmol m− 2s− 1 

Iave Average light density, µmol m− 2s− 1 

KCNO−
3

Ext ,Vc
Saturation constant external nitrates critical volume, g 

L− 1 

KCNO−
3

Ext ,U Saturation constant nitrates uptake, g L− 1 

KCNO−
3

Int ,Vc
Saturation constant internal nitrates critical volume, g L− 1 

KCNO−
3

Int ,C Saturation constant nitrates consumption, g L− 1 

KCNO−
3

Int ,C:I Inhibition constant nitrates consumption, g L− 1 

KCNO−
3

Int ,H Saturation constant nitrates high-affinity growth and 

fission, g L− 1 

KCNO−
3

Int ,H:I Inhibition constant nitrates high-affinity growth and 

fission, g L− 1 

KCNO−
3

Int ,L:I Inhibition constant nitrates low-affinity growth and 

fission, g L− 1 

KCNO−
3

Int ,LG Saturation constant nitrates low-affinity growth and 

fission, g L− 1 

KIAve,c Saturation constant average light consumption, µmol 
m− 2s− 1 

KIAve ,c:I Inhibition constant average light consumption, µmol 

m− 2s− 1 

KIAve Saturation constant average light growth and fission, µmol 
m− 2s− 1 

KIAve :I Inhibition constant average light growth and fission, µmol 
m− 2s− 1 

kLys,0 Pre-exponential factor cell lysis, h− 1 

kLys,S Exponential factor cell lysis, h µm− 3 

nc Shape factor nitrates consumption 
nH Shape factor nitrates high-affinity growth and fission 
nI Shape factor average light growth and fission 
nIc Shape factor average light consumption 
nL Shape factor nitrate low-affinity growth and fission 
pi Partitioning continuous distribution function, µm− 3 

Pi Normalised partitioning continuous distribution function, 
µm− 3 

rf Specific transition rate, µm3 h− 1 

rG,NO−
3 

Nitrates consumption rate, g h− 1 L− 1 

rV Cell volume growth rate, µm3 h− 1 

vc,max Maximum critical volume, µm3 

vc Critical fission volume, µm3 

VT
Cells Total intracellular cell volume, L 

VT
Med Total extracellular media volume, L 

VT
R Total reactor volume, L 

xA Affinity factor nitrate growth and fission 
yA Affinity factor critical volume 
v Cell volume, µm3 

z Vessel depth, m 

Greek letters 
α2 Hill-Ng Distribution 1st parameter, 2 Daughters 
α4 Hill-Ng Distribution 1st parameter, 4 Daughters 
β Light attenuation coefficient, L g− 1 m− 1 

Γf Transition rate, h− 1 

γf Gamma function, µm− 3 

δ2 Hill-Ng Distribution 2nd parameter, 2 Daughters 
δ4 Hill-Ng Distribution 2nd parameter, 4 Daughters 
Θ2 Probability of two daughter cells birth per mitotic event 
μmax Maximum specific growth rate, µm h− 1 

μ0 Mean initial value distribution, µm3 

ρC,Max Maximum rate of nitrates consumption, g h− 1 L− 1 

ρCells Density of the cell, g dm− 3 

ρU,Max Maximum rate nitrates uptake, g h− 1 L− 1 

σ0 Standard deviation initial distribution, µm3 

σc Standard deviation critical distribution, µm3 

ΨV Density distribution function, µm− 3mL− 1  
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weight keeps increasing [20,21]. Hence, lysis/death can lead to loss of 
products in the extracellular media making their retrieval infeasible. 
Consequently, cell multiplication and cell number play an important 
role in the production of added-value products, as multiplication trig-
gers cell phase transition. Cell number is vital as ideally as many cells as 
possible should undergo phase transition to enhance the production of 
added-value products. Mathematical models of various complexity and 
spanning different scales have been developed to describe the complex 
microalgal cultivation process [20]. Nevertheless, mathematical models 
that have been developed for H.pluvialis do not take into account 
lysis/death which can be responsible for product loss in the red phase 
where carotenoids accumulation takes place [22,23]. 

In this work, we construct a multi-scale model capable of predicting 
cell growth and lysis during the different cultivation phases of 
H. pluvialis. A segregated-structured model using a volume-structured 
population balance equation (PBE) coupled with a two-compartment 
structured model is proposed. The multi-scale model is able to predict 
cell density distribution, cell number, average cell volume, and extra-
cellular and intracellular concentrations of nitrates (the form of nitrogen 
evaluated). Furthermore, it forms a solid basis for a modelling tool that 
can be extended to include more nutrients as well as product concen-
trations. The PBE internal coordinate is the volume which increases 
during the light period in the microalgae cell-cycle. Previous research 
has established that the volume is one of the variables involved in 
microalgae fission (cell division), including binary or multiple fission. 
Microalgal cells grow until they reach a commitment point after which 
they undergo fission even without light energy supply. Fission is 
considered to take place during the night [24–26]. In addition, our 
PBE-based model takes into account cell lysis relating it with cell 
dimension and nutrient depletion. The model parameters are fitted 
against various experiments with different nitrate concentrations and 
light levels, and are tested thoroughly through sensitivity analysis 
studies. The model prediction capabilities are subsequently examined 

against different environmental conditions. 

2. Materials and methods 

2.1. Strain and cultivation 

The experimental campaign was performed through the cultivation 
of Haematococcus pluvialis strain FLOTOW (1844) CCAP 34/6 purchased 
from the Culture Collection of Algae and Protozoa (CCAP) Scotland, UK. 
The cells were maintained in photoautotrophic conditions by cultivating 
them in NIES-C (carbon-free) medium (rfs. Table 3) [27]. The micro-
algae were propagated prior to the experiments by inoculating them 
every 7 days in 200 mL of fresh NIES-C media at a constant concentra-
tion of 4240 cell mL− 1. The 500 mL bottles containing the media were 
closed using porous sponge caps and placed on an orbital shaker at 130 
rpm, and inside a growth cabinet at a constant top-side illumination of 
60 µmol m− 2 s− 1 (16 h/8 h dark/light cycle) provided from day-light 
fluorescent tubes placed on the top of the cabinet. Hence, the light is 
considered to predominantly reach the cultivation perpendicularly to 
the top surface of the cultivation broth. 

2.2. Lab-scale scale experiments 

One of the main objectives of this work was to evaluate the effect of 
initial nitrates concentration, and incident light intensity on the growth 
of H.pluvialis, in terms of cell number and size, and to investigate the 
phenomena taking place over long cultivation times when nutrient 
depletion is prevalent. A total of five different experiments were carried 
out with different nitrate and light conditions. All of the experiments 
had a duration of 56 days, and a sacrificial sample was collected every 7 
days. The NIES-C media [28] was used as a base case (BC) for the ex-
periments (N BC). Nitrates were present in the form of Ca(NO3)24H2O, 
and KNO3 giving a total nitrate content of 0.14 g L− 1 for the BC. The 
media was modified to comprise (i) a low nitrogen case (N - -), 
decreasing by 50% the nitrate concentration of both nitogen sources, 
resulting in a total nitrate concentration of 0.07 g L− 1 and (ii) a high 
nitrogen case (N ++) by increasing both nitrate sources by 50%, 
resulting in a total of 0.21 g L− 1 of nitrates. All of the above experiments 
were carried out at 60 µmol m− 2 s− 1 light irradiance. The fourth 
experiment was carried out starting with the base case media concen-
trations, increasing the light intensity up to 200 µmol m− 2 s− 1 (L + +). 
Finally, the last experiment considered a 25% reduced nitrate concen-
tration and a light intensity of 90 µmol m− 2 s− 1 (N -, L +). In order to 
have initial pH equal to 7 in all experiments, an appropriate quantity of 
3M HCl was added after media preparation. 

2.3. Analytical methods 

2.3.1. Cell number and size 
Cell number was quantified using a Nexcelom Cellometer Auto T4 

cell counter (Nexcelom Bioscience). The apparatus output gives the 
number histogram of the cells distributed in terms of size given the 
initial cell number. The average cell size was automatically calculated 
by the software provided. 

Fig. 1. Cell composition differences between the green and red cultivation 
stage of H. pluvialis (data adapted from Shah (2016) [14]). 

Fig. 2. Light microscope images (magnificication 100X) of photoautotrophic cultivation during the base case (BC) experiment.  
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2.3.2. Nitrate analysis 
Nitrate analysis was carried out by using a Metrohm ® 882 Compact 

IC plus. The apparatus allows measuring specific negative ions with the 
column Metrosep A Supp 5 150/4.0 mm. The standard was from Sigma- 
Aldrich, NO3

− ion solution at 1 g L− 1, and it was diluted in order to be 
used in the range of interest. 

3. The mathematical model 

A model able to predict microalgae growth and lysis, as well as the 
biosynthesis and accumulation of intracellular and extracellular com-
pounds was constructed in this work. As shown in Fig. 3a, the reactor is 
divided in two volume compartments, an intracellular (VT

Cells), and an 
extracellular (VT

Med) one. Species concentrations in both compartments 
can vary due to factors such as the transport between the two com-
partments (Ċj), and variation of the cell volume compartment. The 
intracellular compartment is where cell-level reactions take place, taken 
into account by a reaction term, rG,j. In Section (3.2) a full description of 
the model equations for the extracellular and intracellular compart-
ments is given. The intracellular volume, VT

Cells, changes during the 
microalgae cultivation and the PBE in Eq. (1) allows us to quantify its 
variation, by taking into ccount the growth and fission process, sche-
matically shown in Fig. 3b, and also the possibility of lysis/death taking 
place (Fig. 3c). 

3.1. Population balance equation (PBE) 

The PBE proposed in this work describes microalgae proliferation 
and lysis in a batch system by considering the volumetric growth of 
single cells G(v), the birth of new daughter cells B(v), the disappearance 
of mother cells M(v), and cell lysis, D(v) (Eq. (1)). The dynamic volume 
growth is considered to take place only during the light cycle phase of 
the cultivation. Hence, if the critical volume, vc, is reached, cells can 
undergo fission even without light input during the dark phase of the 
cycle (Fig. 3b). At lower nutrient availability, the critical volume be-
comes lower and vice versa at high nutrient availability (Fig. 3c). The 
lysis phenomena are related to nutrient availability, being more likely to 
occur at low nutrients levels where the fission rate is sharply reduced 
due to nutrient depletion (Fig. 3c). Eq. (2), and Eq. (3) are the initial and 
the boundary conditions respectively for the PBE given by Eq. (1). 

∂ΨV(v, t)
∂t

+ G(v) = B(v) − M(v) − D(v) (1)  

ΨV(v, t) = ΨV
0(v) for t = 0 and ∀v (2)  

ΨV(v, t) = 0 for t > 0 and v = 0 (3) 

Here, ΨV (v, t) is the density distribution function (DBF) of the cell 

concentration at cell volume v and time t, homogeneously distributed in 
the reactor space. The continuous term G(v) in Eq. (4) represents the 
growth of single cells as a function of volume with rate rV. 

G(v) =
∂(rV ΨV)

∂v
(4) 

Based on the work presented in [30], the growth rate of a single cell 
represents the anabolic part of the metabolism proportional to the cell 
surface, which is represented as a function of volume through a simple 
mathematical manipulation (Eq. (5)). The volume growth rate is also a 
function of the two main limiting factors: the intracellular nitrate con-
tent (CNO−

3

Int), and the average light intensity (IAve) in the reactor. 

rV

(
Iave,CNO−

3

Int, v
)
= μmax⋅fCNO−

3
Int

(
CNO−

3

Int
)

⋅fIAve ,G(IAve)⋅
(

3
4π

)2
3

v2/3 (5) 

Here μmax is the maximum specific growth rate. The kinetics for in-
ternal nitrogen evolution is given by a double affinity kinetic law (Eq. 
(6)), which takes into account how cells activate different mechanisms 
when exposed to high or low intracellular nitrates concentration. 

fCNO−
3

Int = (1 − xA)⋅fCNO−
3

Int ,L + xA⋅fCNO−
3

Int ,H (6) 

The term xA represents the affinity of the cell growth for high levels 
of intracellular nitrates, whereas (1 − xA) indicates the affinity for low 
levels of intracellular nitrates. Both low-, fCNO−

3
Int ,L (Eq. (7)) and high- 

affinity fCNO−3
Int ,H (Eq. (8)) nitrates kinetic functions contain an inhibi-

tion term which is a modification of the one proposed by [31], allowing 
for inhibition to take place when nitrates reach high concentrations [32, 
33]. 

fCInt
NO

3
,L =

(
CInt

NO3

)nL

(
KCInt

NO3
,LG

)nL
+
(

CInt
NO3

)nL
+

⎛

⎝

(
CInt

NO3

)2

KCInt
NO3

,L:I

⎞

⎠

nL (7)  

fCInt
NO

3
,H =

(
CInt

NO3

)nH

(
KCInt

NO3
,H

)nH
+
(

CInt
NO3

)nH
+

⎛

⎝

(
CInt

NO3

)2

KCInt
NO3

,H:I

⎞

⎠

nH (8)  

Here, CNO−
3

Int is the concentration of internal nitrates, KCNO−
3

Int ,LG and 

KCNO−
3

Int ,L:I are saturation and inhibition coefficients for the low affinity 

case, and KCNO−
3

Int ,H and KCNO−
3

Int ,H:I are saturation and inhibition constants 

for the high-affinity case, respectively, and nL, nH are shape factors. Eq. 
(6), therefore, represents a linear combination of the low- and high- 
affinity kinetics with xA being a fitting parameter, xA ∈ [0, 1],

Fig. 3. Main model features: (a). Intracellular and extracellular compartments, (b) growth and fission framework (adapted from Concas (2016)[29]), and (c) Cellular 
development behaviour based on nutrient availability. 

A. Usai et al.                                                                                                                                                                                                                                     



Biotechnology Reports 36 (2022) e00771

5

representing the affinity level for low and high nitrates concentration. 
The light kinetics (Eq. (9)) involved in the single-cell volume growth 

considers an Andrew modified law, taking into account the average light 
intensity, IAve, 

fIAve ,G =
IAve

nI

KIAve
nI + IAve

nI +
(

IAve
2

KIAve :I

)nI (9) 

KIAve being the light saturation constant, KIAve :I the light inhibition 
constant, and nI a shape factor. The average light intensity is calculated 
through the Lambert-Beer law considering light perpendicularly hitting 
the reactor surface: 

Iave =
I0

β⋅ρCells⋅
VT

Cells
VT

R
⋅Z

⋅

[

1 − e
− β⋅ρCells ⋅

VT
Cells
VT

R
⋅Z
]

(10)  

where I0 is the incident light, Z the depth of the vessel, β the absorption 

coefficient, and the global term, ρCells
VT

Cells
VT

R
, is the biomass concentration 

expressed as a function of the cell density (ρCells), the total cell volume 
(VT

Cells), and the reactor volume (VT
R). The cell density is assumed to be 

constant through the cultivation time [34]. 
M(v) in Eq. (11) is a sink term representing cell birth, and it expresses 

how mother cells with volume v′disappear due to a birth event. 

M(v) = Γf
(

v,CNO−
3

Int, Iav

)
⋅ΨV(v

′

) (11) 

Here Γf is the transition rate given by Eq. (12): 

Γf
(

v,CNO−
3

Int, Iav

)
= rf

(
CNO−

3

Int, v
)

⋅γf (v)⋅SF(Iav) (12) 

rf ( CNO−
3

Int , v) being the kinetic dependence of the transition rate on 
the limiting nutrient (internal nitrates), which takes the form presented 
in Eq. (14); γf (v) is a gamma function of the nutrients contained in the 
extracellular and intracellular compartments presented in Eq. (17)) and 
SF(Iav) a switch factor reported in Eq. (13), which ensures that Γf has a 
real positive value exclusively during the night time. 

SF(Iave)= {
SF = 1 Iave = 0
SF = 0 Iave > 0 (13)  

rf

(
CInt

NO3
, v
)
= μmax⋅fcMed

NO3 ,0

(
cMed

NO3 ,0

)
⋅fI0 (I0)⋅fCInt

NO3

(
CInt

NO3

)
⋅
(

3
4π

)2
3

v2/3 (14) 

In Eq. (14) the internal nitrates function fCNO−
3

Int (CNO−
3

Int) has the same 

form as the one for the volume growth rate presented in Eq. (6). 
fcMed

NO− ,0
3

(cMed
NO− ,0

3
) and fI0 (I0), given in Eq. (15) and Eq. (16), respectively, are 

S-shape functions of the initial extracellular nitrates and the incident 
light, and they express the inhibition effect of both parameters on 
microalgae fission. 

fcMed
NO− ,0

3

(
cMed

NO− ,0
3

)
=

1

1 + exp

[(

cMed
NO− ,0

3

− hf1

)/

hs1

] (15)  

fI0 (I0) =
1 − hmin

1 + exp[(I0 − hf2)/hs2 ]
(16) 

Here hf1 and hf2 are flex points of the corresponding functions, and 
hs1, hs2 are shape factors. The incident light function (Eq. (16)) has 
minimum value (hmin) representing the maximum inhibition achievable 
for high light concentration. 

A particular feature of this model is to describe γf (v) (Eq. (17)) as a 
function of the nutrients contained in the extracellular and intracellular 
compartments. 

γf (v) =
fV(v)

1 −
∫ v

0 fV(v′
)dv′

(17)  

Here fV(v) is a gaussian shape function (Eq. (18)) with variance σc, and 
an average critical volume vc. 

fV(v) =
1
̅̅̅̅̅̅̅̅̅̅
2πσ2

c

√ exp

[

− 1
2

(
v− vc

σc

)2
]

(18) 

As can be seen in Eq. (19), the critical volume is not constant, but is a 
function of the extracellular and intracellular nitrates concentration. 
The (fitted) coefficient, yA ∈ [0, 1] indicates how the kinetic contribu-
tions are split between external and internal nitrate functions. 

vc = vc,max

[
yA⋅fCNO−

3
Ext ,Vc

(
CNO−

3

Ext
)
+(1 − yA)⋅fCNO−

3
Int ,Vc

(
CNO−

3

Int
)]

(19) 

Two Monod [35] functions were adopted for extracellular (Eq. (20)) 
and intracellular (Eq. (21)) concentration, considering that the critical 
volume changes follow these laws: 

fCNO−
3

Ext ,Vc

(
CNO−

3

Ext
)
=

CNO−
3

Ext

KCNO−
3

Ext ,Vc + CNO−
3

Ext (20)  

fCNO−
3

Int ,Vc

(
CNO−

3

Int
)
=

CNO−
3

Int

KCNO−
3

Int ,Vc + CNO−
3

Int (21) 

KCNO−
3

Ext ,Vc 
and KCNO−

3
Int ,Vc 

are saturation constants for the extracellular 

and intracellular nitrate functions, respectively. 
The term B(v) in Eq. (1), reported in Eq. (22), represents the birth of 

microalgae by multiple fission, where a mother cell with volume v’ can 
generate two or four daughter cells, hence the i index, which can be 
equal to 2 or 4. This expression is adapted from the first work, where the 
multiple fission term for microalgae PBE models was presented [29]. Θi 
is the probability for the fission event i, hence Θ2 and Θ4 are the prob-
abilities for fission events generating two and four daughters, 
respectively. 

B(v) =
∑

i=2,4
iΘi

∫∞

v

Γf ( v,CMed
TN

)
Pi(v, v

′

)ΨV(v
′

, t)dv′ (22) 

The partitioning continuous distribution function respects the con-
dition of normalization (Eq. (23)) postulated by Fredrickson et al. [36]. 

∫v′

o

pi(v, v
′

)dv = 1 (23) 

pi(v,v
′

) given in Eq. (24) belongs to the beta family functions, and it is 
a generalized Hill-Ng distribution function [37]; αi and δi are specific 
parameters for the distribution which must satisfy the condition in Eq. 
(25) [38]; β(αi, δi) is a class beta function adapted for multiple fission as 
shown in [29]. 

pi(v, v
′

) =
1

β(αi, δi)

1
v′

(v
v′

)αi(
1 −

v
v′

)δi
i = 2, 4 (24)  

δi = αi(i − 1) (25) 

The main issue with this kind of distribution is to maintain the 
normalization condition of Eq. (23), so the normalised version of Eq. 
(24) is proposed: 

Pi(v, v
′

) =
pi(v, v

′

)
∫ v′

o pi(v, v′
)dv

(26) 

The lysis term, D(v), in Eq. (1) includes a lysis rate, L(v,CNO−
3

Int) and 
the density function, and is considered to be a first-order process (Eq. 
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(27)). 

D(v) = L
(

v,CNO−
3

Int
)

⋅ΨV(v, t) (27) 

The lysis rate is given in Eq. (28) and has an exponential form, 
including a pre-exponential factor kLys,0, and a negative exponential term 
where a parameter kLys,S is multiplied by the fission rate, rf ( CNO−

3

Int ,v). 

L
(

v,CNO−
3

Int
)
= kLys,0e

[
− kLys,S ⋅rf

(
CNO−

3
Int ,v

)]

(28) 

Eq. (28) expresses how lysis increases when the fission phenomena 
slow down, and the cells are more likely to undergo disruption. 

3.2. The extracellular and intracellular compartments 

Fig. 3a shows the subdivision of the reactor volume. The total reactor 
volume VT

R is the sum of the total intracellular cell volume VT
Cells and the 

total extracellular media volume VT
Med. 

VT
R = VT

Cells + VT
Med (29) 

The total volume of the cells is the 1st order moment of the cell 
population density ΨV(v, t). A significant advantage of utilising two 
compartments is to allow the use of two intrinsic concentrations in the 
media and in the cell compartments, defined as mMed

j /VT
Med and mCells

j 

/VT
Cell, respectively [39]. The material balances for the extracellular (Eq. 

(30)), and the intracellular compartment (Eq. (31)) consider the extra-
cellular and intracellular volume, respectively. The equation for the 
extracellular compartment considers a dilution term that includes the 

change of cell volume in time, dVT
Cells
dt , and a mass transfer term Ċj, which 

describes the mass transport of the jth species between the two 
compartments. 

dcMed
j

dt
=

1
VT

R − VT
Cells

(

cMed
j

dVT
Cells

dt
− Ċj

)

j = NO−
3 (30) 

Eq. (31) is developed in an analogous way to Eq. (30), with the mass 
transfer term having the opposite sign, signifying that mass disappearing 
from the extracellular compartment is appearing in the intracellular 
compartment and vice versa. Moreover, the time derivative of the total 
cell volume also has the opposite sign in Eq. (31). A positive derivative 
will lead to an increase in the intrinsic extracellular concentration and 
vice versa in the case of intracellular mass balance. 

dcCells
j

dt
= rG,j +

1
VT

Cells

(

Ċj − cCells
j

dVT
Cells

dt

)

j = NO−
3 (31) 

The material transport between the two compartments term is given 
by Eq. (32): 

Ċj = ĊNO−
3
= ρU,Max⋅

CExt
NO−

3

KCExt
NO−

3
,U + CExt

NO−
3

⋅4π
(

3
4π

)2
3

VT 2/3
Cell (32) 

Here ρU,Max indicates the maximum specific uptake rate for nitrates, 
and KCNO−

3
Ext ,U the saturation constant of the uptake Monod function. The 

last right hand-side term represents the total surface of the cell mem-
brane, which depends on the amount of channels/transport proteins on 
the cell membrane. The nitrate reaction consumption rate, rG,NO−

3
, is 

present only in the intracellular material balance Eq. (31), and depends 
on the consumption rate presented in Eq. (33). 

rG,NO−
3
= ρC,Max⋅

(
CInt

NO−
3

)nc

(

KCInt
NO−

3
,c

)nc

+
(

CInt
NO−

3

)nc
+

⎛

⎜
⎝

(
CInt

NO−
3

)2

KCInt
NO−

3
,C:I

⎞

⎟
⎠

nc

⋅
InIc

Ave

KInIc
Ave,c

+ InIc
Ave +

(
I2

Ave

KIAve ,c:I

)nIc

(33) 

The expression includes two Andrew modified laws for the kinetics of 
consumption, which take into account that (a) high nitrates concentra-
tion can inhibit nitrate consumption and (b) the average light has a 
similar effect, where nitrates consumption is favoured until the light 
reaches a certain level after which it is negatively influenced. ρC,Max is the 
maximum nitrate consumption rate, KCNO−

3
Int ,c and KIAve,c are saturation 

coefficients, and KCNO−
3

Int ,C:I and KIAve ,c:I are inhibition coefficients for ni-

trate and light respectively. Finally, nc and nIc are shape factors for the 
nitrate and light functions. 

3.3. Parameter fitting and sensitivity analysis 

The model presented in Eqs. (1) to (33) consists of one partial-integro 
differential equation (PIDE) to describe the intracellular compartment, 
and two ordinary differential equations (ODEs) to represent the extra-
cellular compartment. The model includes a parameter set P consisting 
of 34 parameters, which are estimated through fitting to a range of ex-
periments. All estimated parameters are given in Table 1, while addi-
tional parameters obtained from the literature or from other calculations 
are shown in Table 2. Parameters are estimated by minimising the error 
between the vector of state variables of the model outputs, yMod

i,j (P) ∈
R NV , and the vector of variables of the experimental measurements 
yExp

i,j (P) ∈ R NV, NV being the number of experimentally measured vari-
ables, for a number of experiments j = 1, NExp and time sampling points 
i = 1, Ntj. The corresponding objective function, Obj(P), is given by: 

Obj(P) =
∑NExp

j=1

∑Ntj

i=1

[
yExp

i,j − yMod
i,j (P)

]T
W − 1

i,j

[
yExp

i,j − yMod
i,j (P)

]
(34) 

We use a combination of stochastic and deterministic optimisation to 
minimise Obj(P), namely a genetic algorithm, exploiting the ga function 
in Matlab with multiple restarts to obtain a family of solutions around 
the (global) optimum and nonlinear programming (NLP) using fmincon 
function in Matlab to pinoint the actual optimum solution. The sparse 
magnitude of the fitting variables suggests the use of weights (Wi,j) in the 
objective function. Specifically, the weight matrix Wi,j is diagonal 
consisting of the values of the NV experimentally measured variables for 
the ith sampling time and the jth experiment. 

Wi,j = diag
((

yExp
1

(
ti,j
))2

,…,
(
yExp

NV
(
ti,j
))2

)
(35) 

Extensive sensitivity analysis was subsequently performed to reduce 
parameter space by identifying the least sensitive parameters. The 
following expression is the normalized local sensitivity for the mth 

parameter and the nth variable at time t. Sensitivities are normalized 
with respect to the initial value of the parameter Pm, and the initial value 
of the variable sn around which the linearization is carried out. 

Snm(P̂, t) =
∂sn

∂Pm

Pm

sn
(t) (36) 

A concatenated matrix containing all the normalised sensitivities is 
constructed as shown in previous research [40]. The matrix has the same 
number of columns as the number of parameters. The number of rows, 
nrows, is calculated as shown in Eq. (37), where Nvarj is the number of 
variables for the jth experiment. 
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nrows =
∑NExp

j
NvarjNtj (37) 

The L2 norm for each column was calculated by using the norm 
function in Matlab, obtaining a vector with size equal to the number of 
parameters, its elements ranked in ascending order. Through sensitivity 

Table 1 
Model parameter values.  

Parameter 
n◦

Symbol Parameter 
description 

Value 
M34 

Value 
M29 

Unit 

1 β Light attenuation 
coefficient 

1.44 ×
101 

1.64 ×
101 

L g− 1 m− 1 

2 μmax Maximum specific 
growth rate 

0.45 ×
10◦

0.41 ×
10◦

µm h− 1 

3 kLys,0 Pre-exponential 
factor cell lysis 

1.75 ×
10− 3 

1.46 ×
10− 3 

h− 1 

4 kLys,S Exponential factor 
cell lysis 

0.51 ×
10◦

– h µm− 3 

5 ρU,Max Maximum rate 
nitrates uptake 

7.72 ×
10− 2 

7.53 ×
10− 2 

g 
µm− 2h− 1 

6 KCNO−
3

Ext ,U Saturation constant 
nitrates uptake 

5.44 ×
10− 2 

5.19 ×
10− 2 

g L− 1 

7 Θ2 Probability of two 
daughter cells birth 
per mitotic event 

5.29 ×
10− 1 

4.72 ×
10− 2 

– 

8 KCNO−
3

Int ,LG Saturation constant 
nitrate low-affinity 
growth and fission 

2.85 ×
10− 4 

2.87 ×
10− 4 

g L− 1 

9 KCNO−
3

Int ,L:I Inhibition constant 
nitrate low-affinity 
growth and fission 

6.90 ×
10− 5 

8.74 ×
10− 5 

g L− 1 

10 nL Shape factor nitrate 
low-affinity growth 
and fission 

0.87 ×
10◦

1.08 ×
10◦

– 

11 KCNO−
3

Int ,H Saturation constant 
nitrate high-affinity 
growth and fission 

1.97 ×
101 

1.54 ×
101 

g L− 1 

12 KCNO−
3

Int ,H:I Inhibition constant 
nitrate high-affinity 
growth and fission 

1.08 ×
103 

– g L− 1 

13 nH Shape factor nitrate 
high-affinity 
growth and fission 

6.88 ×
10− 1 

6.06 ×
10− 1 

– 

14 xA Affinity factor 
nitrate growth and 
fission 

6.65 ×
10− 1 

5.98 ×
10− 1 

– 

15 KIAve Saturation constant 
average light 
growth and fission 

3.36 ×
101 

4.24 ×
101 

µmol 
m− 2s− 1 

16 KIAve :I Inhibition constant 
average light 
growth and fission 

2.32 ×
102 

2.90 ×
102 

µmol 
m− 2s− 1 

17 nI Shape factor 
average light 
growth and fission 

7.86 ×
10− 1 

9.00 ×
10− 1 

– 

18 KCNO−
3

Int ,C Saturation constant 
nitrate 
consumption 

6.80 ×
101 

5.51 ×
101 

g L− 1 

19 KCNO−
3

Int ,C:I Inhibition constant 
nitrate 
consumption 

2.88 ×
102 

2.82 ×
102 

g L− 1 

20 nc Shape factor nitrate 
consumption 

1.13 ×
10◦

1.13 ×
10◦

– 

21 KIAve,c Saturation constant 
average light 
consumption 

5.44 ×
101 

6.08 ×
101 

µmol 
m− 2s− 1 

22 KIAve ,c:I Inhibition constant 
average light 
consumption 

7.39 ×
102 

– µmol 
m− 2s− 1 

23 nIc Shape factor 
average light 
consumption 

1.20 ×
10◦

1.01 ×
10◦

– 

24 ρC,Max Maximum rate of 
nitrate 
consumption 

2.28 ×
101 

1.96 ×
101 

g h− 1 L− 1 

25 vc,max Maximum critical 
volume 

1.21 ×
104 

1.10 ×
104 

µm3 

26 yA Affinity factor 
critical volume 

2.29 ×
10− 1 

– – 

27 KCNO−
3

Ext ,Vc 
Saturation constant 
external nitrate 
critical volume 

5.91 ×
10− 2 

– g L− 1  

Table 1 (continued ) 

Parameter 
n◦

Symbol Parameter 
description 

Value 
M34 

Value 
M29 

Unit 

28 KCNO−
3

Int ,Vc 
Saturation constant 
internal nitrates 
critical volume 

5.31 ×
10◦

6.11 ×
10◦

g L− 1 

29 hf1 Flex point initial 
nitrates fission 
inhibition 

1.90 ×
10− 1 

1.72 ×
10− 1 

g L− 1 

30 hs1 Shape factor initial 
nitrates fission 
inhibition 

3.90 ×
10− 2 

4.80 ×
10− 2 

g L− 1 

31 hf2 Flex point incident 
light fission 
inhibition 

5.03 ×
101 

4.32 ×
101 

µmol 
m− 2s− 1 

32 hs2 Shape factor 
incident light 
fission inhibition 

1.32 ×
101 

1.53 ×
101 

µmol 
m− 2s− 1 

33 hmin Minimum fission 
factor for incident 
light 

4.37 ×
10− 1 

4.73 ×
10− 1 

– 

34 σc Standard deviation 
critical distribution 

3.37 ×
103 

3.37 ×
103 

µm3  

Table 2 
Literature and measurable parameters.   

Parameter description Value Unit Refs. 

α2 Hill-Ng distribution 1st 
parameter, 2 daughters 

4.00 ×
101 

– [29] 

α4 Hill-Ng distribution 1st 
parameter, 4 daughters 

1.34 ×
101 

– [29] 

δ2 Hill-Ng distribution 2nd 
parameter, 2 daughters 

4.00 ×
101 

– [29] 

δ4 Hill-Ng distribution 2nd 
parameter, 4 daughters 

4.00 ×
101 

– [29] 

σ0 Standard deviation initial 
distribution 

2.31 ×
103 

– This work (Initial 
Distribution Fitting) 

μ0 Mean initial value 
distribution 

6.94 ×
103 

µm3 This work (Initial 
Distribution Fitting) 

ρCells Cell average density 1.09 ×
10− 12 

g 
µm− 3 

(T. [34]) 

VT
R Culture volume 2.15 ×

102 
mL This work (Measurable 

parameter) 
Z Culture depth 5.00 ×

10− 2 
m This work (Measurable 

parameter)  

Table 3 
NIES-C media composition.  

Species Concentration (g L− 1) 

Ca(NO3)24H2O 0.225 
KNO3 0.15 
β − Na2glycerophosphate 5H2O 0.05 
MgSO47H2O 0.04 
Vitamin B12 0.000001 
Biotin 0.000001 
Thiamine HCl 0.0001 
Tris (hydroxymethyl)aminomethane 0.5 
FeCl36H2O 0.003 
Na2 EDTA 2H2O 0.000588 
MnCl24H2O 0.000108 
ZnSO47H2O 0.000066 
CoCl26H2O 0.000012 
Na2MoO42H2O 0.0000075  
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analysis the 34 parameters of the model were reduced to 29 as discussed 
in the next section. 

4. Results and discussion 

4.1. Experimental results 

The results obtained from different experiments carried out as 
explained in Section 2.2 show particular features for all the different 
runs. Generally, a cultivation time of around 28 days is where the 
highest cell number (calculated as the 0th order moment of the cell 
density multiplied by the total reactor volume, Appendix B, Eq. B1) is 
achieved, excluding the case with high initial nitrates concentration 
(N++) in which the peak seems to be approximately around 35 days. As 
shown in Fig. 4b, the initial nitrates content of 0.14 g L− 1, N(BC), leads 
to the highest maximum cell number, after which, increasing nitrates 
concentration to 0.21 g L− 1 (N++), leads to a decrease of the maximum 
cell number by about 26%. As also depicted in Fig. 4b, incident light of 
200 µmol m− 2s− 1 (L++) strongly inhibits cell growth, leading to a 
decrease of the maximum cell number value of around 45%, compared 
with the base case scenario. The obtained cell number maximum values 
are of the same order of magnitude with comparable works in the 
literature for photoautotrophic cultivation, despite the fact that all the 
systems in the literature have air or air/CO2 mixture feeding. Only two 
cases in the literature are comparable with our experiments in terms of 
nitrogen content, and they both exhibited a max cell number of about 
46% and 61% lower than our experiments, respectively [41,20]. The 
rest of the systems in the literature have a higher nitrogen content of 
1.09 g L− 1, and the highest cell content without considering enhancing 
multistage strategies is lower by 7% to 74% respectively [42,18] 
compared to our base case with a maximum cell number of 6.46 × 105 

cells mL− 1. 
A single microalgae cell grows in size until the achievement of a 

commitment point after which it undergoes fission if exposed to dark-
ness [24,43,25]. Hence, the expectation in terms of cell average volume 
(calculated as the 1st order moment of the cell density divided by the 0th 
order moment of the cell density, Appendix B, Eq. B2) should be a rapid 
adaptation, after some multiplication cycles, to a steady average size 
also called balanced growth. The initial average size was the same for all 
the experiments, as the inoculum always came from a 7-day base case 

(BC) experiment in terms of nitrates concentration (N) and incident light 
intensity (L), (N (BC) L (BC)). Fig. 4c illustrates that there is a steady and 
gradual decrease in the average cell volume during the growth stage. We 
can also see that the average cell volume is generally lower in the case 
with the lowest initial nitrates concentration (N (–) L (BC)), and in-
creases as the initial nitrate concentration increases. As depicted in 
Fig. 4c, at late cultivation stages the average cell volume will decrease, 
by approximately 75% in the case of N (–) L (BC), compared to the initial 
value (8412 µm3), while in the base case N (BC) L (BC) the cell volume 
decreases by approximately 56%, and in the case of N (++) L (BC) by 
around 52%. This indicates a significant variation of the average cell 
volume in the final stages of growth compared with the values at time 
zero. The high incident light experiment N (BC) L (++) reveals a higher 
average cell volume compared with the base case scenario, and the trend 
is both during the growth phase (up to day 30) and beyond. Predomi-
nantly during the first stages of the cultivation, for all of the experi-
ments, oscillations of the average cell volume can be observed (Fig. 4c). 
They represent the oscillatory growth of the cells in terms of average size 
due to the light/dark cycles they are exposed to. During the light cycles, 
cells grow in terms of size, but they do not undergo fission. On the 
contrary, cells undergo fission during the dark cycle(s), which leads to 
an increase in the number of daughter cells, causing a decrease to the 
average volume of the cell population. 

In is worthwhile to mention that the strict correlation between cell 
size and nutrient levels discussed in the literature involves mainly yeast 
cells, showing that nutrient-rich media induces bigger cell sizes, and 
nutrient-poor media leads to smaller cell sizes [44]. The hypothesis is 
that cells in an abundant nitrogen environment grow more in the G2/M 
phase of the cell cycle, consequently leading to larger daughter cells, and 
to a larger average cell size during growth [45,46]. The lysis phase as 
depicted in Fig. 4b takes place during the transition of cells into the red 
stage (cf. Fig 1). The cell number values at day 56, are smaller than the 
maximum values achieved during the growth phase, due to lysis. The 
cell loss fraction is between 0.47, and 0.83 for the different experiments, 
compared to the cell number at day 56, with the maximum cell number 
value achieved during the growth phase. In this view, cell biomass does 
not follow the same trend as the cell number. When cell lysis starts 
taking place, the content of biomass measured by conventional methods 
such as dry cell weight does not decrease like the cell number does, but it 
keeps increasing or it reaches a steady value (data not shown). The 

Fig. 4. (a) Initial density distribution (solid 
line), and initial cell cumulative number 
(dashed line) for all experiments. (b) Cell 
number vs time (days). Experimental data 
(symbols), 34P model fitting (solid lines), 29P 
model fitting (dashed lines) (c) average cell 
volume (d) extracellular nitrates. Black tri-
angles and solid/dashed lines N(–) L(BC), red 
circles and solid/dashed lines N(BC) L(BC), blue 
squares and solid/dashed lines N(++) L(BC), 
magenta stars and solid/dashed lines N(BC) L 
(++)).   
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measurements of dry cell weight were considered in this case as biased 
by debris and residuals of the cell lysis, which were considerable taking 
into account the cell loss fractions obtained by direct image measure-
ments. Due to these considerations, the cell number measurements were 
considered more reliable than biomass measurements. 

As shown in Fig. 4d, extracellular nitrates are fully depleted in all of 
the experiments between the 7th and the 21st day of cultivation. Spe-
cifically, the nitrates concetration drops to zero before seven days for N 
(–) L (BC), between 7 and 14 days for N (BC) L (BC), N (BC) L (++), and 
N (-) L (+), and finally between 14 and 21 days for the case with the 
highest initial nitrates content N (++) L (BC). However, the cell number 
growth continues beyond day 21 in all experiments, indicating the 
ability for microalgae to store nitrates, or more generally nitrogen, as it 
is needed for maintaining the cell metabolism. The above phenomena 
have been also widely demonstrated for phytoplankton and diatoms 
[47–49]. 

4.2. Model fitting 

One important purpose of the model was to be able to accurately 
describe the nutrient depletion phase including cell lysis during the late 
stage of cultivation, as that phase is the one where cells are more likely 
to give added-value products. The initial density distributions of the 
microalgae cells (ΨV

0(v)) were considered as a Gaussian shape function, 
and were derived from an experimental histogram fitting (data not 
shown). The initial density distribution is shown in Fig 4a and is the 
same for all the fitting and prediction simulations, based on the fact that 
the inoculum at time zero always comes from an experiment at day 7 
with N (BC) L (BC) conditions. The initial cell number is 911,400, as the 
cumulative number reveals in Fig. 4a. Fig. 4b–d, which show the fitting 
results for four different experiments with three different initial nitrogen 
concentrations (N (–) L (BC), N (BC) L (BC), N(++) L (BC)), and two 
different incident light intensities (N (BC) L (++)). Moreover, these 
figures depict the fitting for both the cases of the model with 34 and 29 
parameters, respectively. The parameter number reduction from 34 to 
29 was possible by carrying out a sensitivity analysis, which is a crucial 
tool to evaluate how model parameters influence the model outputs. 
Sensitivity analysis, in microalgae modelling has been used to reveal the 
impact of a parameter change on the model outputs [2,50–52]. Dynamic 
sensitivity analysis in particular, can also help to determine which parts 

of the model are more significant ([53]; del [54]) and can allow the 
implementation of criteria to eliminate parameters [52,2]. Here we have 
used the L2 norm as our criterion of choice as explained in Section 3.3. 

In Fig 5a the L2 norm of each column of the sensitivity matrix cor-
responding to each of the 34 parameters is shown. All of the parameters 
numbered in Fig. (5) are reported in Table (1). Five parameters with L2 
norm below 2.5 (see threshold in Fig. (5a)) were considered for elimi-
nation as they were assumed to be “less” sensitive to input changes, 
resulting in a 29-parameter model. The L2 norms of the remaining 29 
parameters are depicted in Fig. (5b). It should however be pointed out 
that parameters 27 and 28 are the saturation constants for intracellular 
and extracellular nitrates critical volume variation (Eq. (18), Eq. (19)), 
respectively, and 26 is the affinity regulator for the critical volume 
variation (Eq. (17)). The estimate for parameter 26 is around 0.22, as 
indicated in Table (1), and at this value the intracellular nitrate con-
centration has a larger effect on the model outputs than the extracellular 
nitrate concentration. However, the elimination of all of the parameters 
related to the critical volume variation implies a constant value for the 
critical volume, and it negatively influences the fitting and prediction 
capabilities for the average cell volume. Hence, the affinity factor was 
set to zero, and the extracellular dependence eliminated (Eq. (19)), 
reducing the critical volume dependence on intracellular nitrates only. 
Parameter 22 is related to the inhibition of nitrates consumption due to 
high light levels. Its value in the 34-parameter model of 738.8 seems to 
be clearly beyond the range of incident light used in this work and it has 
a small influence on the model outputs taking in to account the corre-
sponding sensitivity in Fig. 8a. Based on these considerations, the light 
inhibition part in Eq. (31) was eliminated. Parameter 12 is related to the 
intracellular nitrate single-cell growth inhibition, and it has a small in-
fluence on the model results. Hence, the inhibition part for the high- 
affinity intracellular nitrates growth (Eq. (7)) is not considered in the 
29-P model. Finally, parameter 4 is related to the lysis functionality. Due 
to its low sensitivity it was set to 1, without seeing any significant 
variation on the results. Further parameter eliminations leads to sub-
stantial changes in the model outputs, and in some cases could imply 
structural model modifications, which were avoided in this work. 

The model parameters were hence successfully reduced to 29, and 
parameter estimation was carried out again to update their values, 
which can also be seen in Table 1. The estimation of the new parameters 
was necessary as after the elimination of the parameters, the model 

Fig. 5. L2 Norm sensitivity (green bars) for all the parameters in (a) Model 34-P and (b) Model 29-P.  
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outcomes in terms of fitting and predictive capabilities were slightly 
deviating from original results. The new estimation could not have been 
necessary if the model was fully insensitive to the parameters elimina-
tion. However, the choice of a threshold in terms of sensitivity analysis 
for the model parameters number reduction is not a trivial matter, and 
the new estimation was necessary to evaluate if the reduced model after 
sensitivity analysis was still sufficiently able to describe the system 
considered. 

The results in Fig. 4b, 4c, and 4c for the 29-parameter model high-
light the good fit of the reduced parameter model. The predicted profiles 
of the 29-P model, especially for the first phase of the cell number 
growth, are slightly better than those obtained with the 34-P model as 
can be seen in Fig. 7a–c. This is also reflected in the improved prediction 
performance for cell densities depicted in Fig. 8. 

In Table 2 the parameters derived from the literature are presented 
involving the partitioning function (Eq. (22)). The model results show 
good fitting and prediction capabilities for the whole range of the 
environmental conditions considered, including cell number predictions 
which are consistent with both the growth and the lysis phase. 

Comparing the dynamics of cell number growth, with nitrates con-
sumption it is evident that the growth does not stop as soon as the ni-
trates are depleted. Our model, by implementing Eq. (29), simulates the 
internal nitrates content, which is responsible for cell growth and de-
pends mainly on the nitrates transported from the extracellular envi-
ronment. As shown in Fig. 6a, higher internal nitrates content 
corresponds to higher external nitrates concentration. The consumption 
of the internal nitrates partially regulates, in the simulations, the dura-
tion of the growth process. The delay in the growth exhibited for the N 
(++) L (BC) case seems to be related to the inhibition of the nitrates 
consumption process, mainly controlled by the parameter KCNO−

3
Int ,C:I 

which has a value clearly in the range of the internal concentration for 
the high nitrates (N (++) L (BC)) case. 

Interestingly, in both simulation and experiment with high light in-
tensity (N (BC) L (++) growth seems to stop before the other cases, 
which in the simulation is related with higher consumption of intra-
cellular nitrates, implemented by using a Monod function with satura-
tion and inhibition kinetics (Eqs. (31) and (32)) for the average light 
intensity. KIAve ,c:I has a high value out of the range of the light intensities 
used in all of the experiments, indicating that probably light does not 
inhibit the intracellular nitrates consumption. Furthermore, as 
mentioned above, following sensitivity analysis the inhibition of the 
nitrate consumption due to the light intensity has been eliminated from 
the model in favour of a more straightforward Hill saturation function 
which works equally well. 

The internal nitrogen concentration was not an a priori choice but 
was established based on modelling considerations. Microalgae can 
accumulate intracellular inorganic nitrogen [47,49] and also diatoms 
are able to do so [48]. This specific aspect allows microalgae to grow 

even when the nitrogen is depleted in the extracellular compartment. 
Consequently, this represents an important assumption when using ki-
netic models, because a direct proportionality to the depleted nutrient 
would cause the growth to stop earlier than it should. In light of this fact 
many researchers have utilised an expression derived from Droop [55] 
which considers an internal nutrient quota as the term responsible for 
growth, enabling the growth to continue even when the extracellular 
nitrogen content reaches zero. The droop model was successfully used 
both in structured and segregated models to describe the growth of 
microalgae in the case of nitrogen depletion ([2,50,52,56–58]). How-
ever, the definition of nitrogen quota as the dynamic ratio between the 
nitrogen transferred in the intracellular compartment, and the biomass 
concentration implies that when the biomass content is decreasing due 
to cell death or lysis, the nitrogen quota increases. The latter does not 
have physical meaning if the nitrogen from the lysing cells will not go 
towards the remaining cells. Therefore, using the assumption that 
intrinsic nitrate concentration is conserved in the intracellular 
compartment, and considering this intrinsic concentration per unit 
volume, allows us to give a more appropriate physical meaning to the 
relation between nitrate content and cellular growth. As we can see in 
Fig. 6a, the intracellular nitrate contents drop to zero quickly after the 
rapid transport of nitrates ceases, and the use of double affinity kinetics 
(Eq. (6)) allows the growth to continue even in the low internal nitrates 
regime. Nevertheless, considering the intracellular nitrates concentra-
tion creates the need to perform dynamic intracellular concentration 
measurements, which further underpins the relevance of this work. 
Fig. 6b, depicts the gamma function (Eq. (15)) variation with time. 
When the intracellular concentrations are higher, the probability of 
having daughters is higher for larger cell volumes, and when the intra-
cellular concentrations decrease, the probability becomes higher at 
lower cell volume values. 

The above result is in line with the consideration that the fission 
critical volume increases in the presence of rich media composition as 
suggested in previous literature works for yeast [45,46]. 

4.3. Model predictive capabilities 

The prediction capabilities of the model are tested against an inde-
pendent experiment with different nitrates concentration and light in-
tensity (N (-) L (+)), and the results are shown in Fig. 7a–c. Furthermore, 
a comparison between the experimental and the model cell density 
distributions is given in Fig. 8. To the best of our knowledge, microalgae 
cultivation modelling using population balances has only been used in a 
few research works. The majority of these consider single-cell growth in 
terms of mass and mass/age [59,56,60,29], while this work considers 
microalgae cultivation by using a volume-structured PBE. The cell 
number and the dry cell weight show two different patterns in batch 
cultivation systems. The cell number tends to decrease during nutrient 

Fig. 6. (a) Intracellular nitrates temporal profiles, black line N (–) L (BC), red line N (BC) L (BC), blue line N (+) L(BC), magenta line N(BC) L(++), and green line N 
(-) L (+)and (b) gamma function (Eq. (17)) variation with average cell volume and time. 
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depletion, and the dry cell weight continuously increases even after 
starvation occurs [61], which is also confirmed by our experiments (data 
not shown). The use of mass as a variable to descibe cell fission could 
lead to the wrong conclusion that cells are growing even in terms of cell 
number to increase the biomass content. The use of volume-based PBEs 
seems to be more appropriate from this point of view. Hence, as we can 
see in Fig. 7a, the cell number increases up to the point where there are 
enough intracellular nitrates to drive the growth process. When nitrates 
concentration goes towards depletion, both single-cell volume growth 
and fission phenomena slow down, until they stop due to complete ni-
trates depletion. These results are reflected in the kinetic expression in 

Eq. (8), which is included in the single-cell volume growth rate (Eq. (5)) 
and in the fission transition rate (Eq. (13)). The cell number achieves a 
peak after which the lysis period starts between 21 and 28 days. From a 
modelling point of view, the lysis phenomena are due to the kinetic term 
in Eq. (26), where the fission rate includes a negative exponential term, 
meaning that the lower the fission rate, the higher the lysis term will be. 
This explains the concept that when the cells face an environment where 
the multiplication is difficult, in this case, nutrient depletion, they are 
more likely to lyse. As we can see in Fig. 7a, the model results for the 
lysis phase, are in good agreement with the experimental data, leading 
to good prediction results for long cultivation times. As far as we know, 

Fig. 7. Experimental data against model predictions (Model P34 solid line, Model P29 dashed-line) for the experimental conditions N (-) L (+) for (a) cell number, (b) 
average volume, (c) extracellular nitrates concentration and (d) simulation results for intracellular nitrates profile and variance of cell density distribution. 

Fig. 8. Predicted density distributions for model 34P (red lines) and 29P (dashed red lines) against experimental distributions (light blue bars) for 7, 14, 21, 28, 35, 
42, 49, 56 days of cultivation. 
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lysis model-experimental data comparison results have not been re-
ported in previous works on PBE modelling of microalgae cultivation 
[59,62,60,29]. Also, Fig. 7b reveals that the average cell volume de-
creases through the cultivation time and simulation data agree well with 
experiental results. Model predictions work well both in the initial and 
final phases of the cultivation stage, emphasizing the concept that cells 
modify their size depending on the environmental conditions they are 
exposed to. 

The average cell volume decreases as the critical volume, vc, de-
creases through the cultivation time (Eq. (17)), and the outcomes of this 
consideration are in agreement with previous research. Still, changes in 
the critical volume are related to the environmental conditions, and they 
cannot be reliably represented as a linear function of the average cell 
mass [62]. So, this work aims to give an explanation of the phenomena 
involved in the change of the critical cell volume. As it can be seen, the 
extracellular nitrate prediction in Fig. 7c agrees very well with experi-
mental data. As depicted in Fig. 7d, the variance of the cell density 
distribution tends to increase during the growth phases, and to decrease 
during the lysis/stationary phases, indicating how the cells concentrate 
around a specific value of the cell volume. It can be also observed that 
during the first phase of the growth (growth phase in which internal 
nitrates concentration is higher, day 0–10) the variance grows quicker 
than during the second phase of the growth (phase in which the internal 
nitrates concentration is lower, day 10–25). 

On the other hand, observing both Fig. 7b and d, the decrease in the 
variance in Fig. 7d corresponds to the phase where the average volume 
of the cells reaches a stationary value (Fig. 7b) indicating how the cells 
during the lysis phase tend to concentrate around the stationary value of 
the average volume. Fig. 8 depicts the model predictions in terms of 
density distributions against experimental data. The figure shows a good 
agreement in terms of number density. As can be seen in Fig. 7b, the 
average volume deviates more from experimental data for samples at 
day 14, 21, and 28. The cell lysis phase starting from day 35 onwards 
exhibits excellent agreement between experimental density distribu-
tions and model predictions. The calculation of the experimental cell 
densities is explained in the final part of Appendix B, Eq. B3 and B4. 
Overall, results including density distributions in terms of 0th and 1st 

order moments, and extracellular and intracellular nutrients concen-
trations, were presented in this section, which show a general good 
agreement with experimental results. The model demonstrates the 
ability to predict different phases of the microalgae cultivation, specif-
ically the growth and lysis, which are both crucial parts of the cultiva-
tion process. Hence the model is not only useful for predicting 
microalgal growth at the cell population level, but can also be readily 
expanded to incorporate the prediction of microalgae metabolite 
concentrations. 

5. Conclusions 

A novel segregated-structured multi-parameter model was devel-
oped in this work. The objective was to describe growth and lysis phe-
nomena during photoautotrophic growth of H. pluvialis, with particular 
emphasis on the phases where added-value compounds are produced. 
The model proposed a link between volume-based PBE and volume- 
based structure, also considering the influence of nutrient depletion on 
the microalgae growth and lysis. Model predictions for different culti-
vation conditions showed a good agreement with experiments for cell 
number and average cell volume. Moreover, predictions of the density 
distribution functions dynamics were shown, demonstrating the poten-
tial of the model for even microscopic scale applications. The inclusion 
of metabolites in the model, whose accumulation is inextricably linked 
to cell volume changes, is the next natural step in the development of 
this kind of structured-segregated models, and a more exhaustive anal-
ysis of intracellular concentrations could help to enforce the structured 
material balance concept. The model is aimed as a new tool for photo-
autotrophic cultivation design, and provides useful information for 

future implementation of optimisation of the cultivation processes for 
the bioproduction of targeted compounds. The efficient scale-up of 
microalgal cultivation systems is a particularly useful objective for 
future enhancements of the current modelling framework, which should 
also include considerations of the hydrodynamics of the cultivation 
apparatus, as well as light distribution efficiency, which is relevant for 
large-scale cultivation equipment. 
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