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Mechanistic target of rapamycin (mTOR) complex 2
(mTORC2) regulates metabolism, cell proliferation, and cell
survival. mTORC2 activity is stimulated by growth factors, and
it phosphorylates the hydrophobic motif site of the AGC ki-
nases AKT, SGK, and PKC. However, the proteins that interact
with mTORC2 to control its activity and localization remain
poorly defined. To identify mTORC2-interacting proteins in
living cells, we tagged endogenous RICTOR, an essential
mTORC2 subunit, with the modified BirA biotin ligase BioID2
and performed live-cell proximity labeling. We identified 215
RICTOR-proximal proteins, including proteins with known
mTORC2 pathway interactions, and 135 proteins (63%) not
previously linked to mTORC2 signaling, including nuclear and
cytoplasmic proteins. Our imaging and cell fractionation ex-
periments suggest nearly 30% of RICTOR is in the nucleus,
hinting at potential nuclear functions. We also identified 29
interactors containing RICTOR-dependent, insulin-stimulated
phosphorylation sites, thus providing insight into mTORC2-
dependent insulin signaling dynamics. Finally, we identify the
endogenous ADP ribosylation factor 1 (ARF1) GTPase as an
mTORC2-interacting protein. Through gain-of-function and
loss-of-function studies, we provide functional evidence that
ARF1 may negatively regulate mTORC2. In summary, we
present a new method of studying endogenous mTORC2, a
resource of RICTOR/mTORC2 protein interactions in living
cells, and a potential mechanism of mTORC2 regulation by the
ARF1 GTPase.

The mTOR kinase senses nutrient availability and growth
factors to control cell metabolism, growth, proliferation, and
survival. Its functions are split between two multisubunit
protein complexes called mTOR complex 1 (mTORC1) and
mTORC2. While mTORC1 regulation has been extensively
defined (1, 2), primarily at the lysosome, a consensus model of
mTORC2 regulation and localization has yet to emerge. A
comprehensive list of functional mTORC2-interacting pro-
teins remains elusive due in part to a knowledge gap regarding
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proteins that interact with the complex. mTORC2 phosphor-
ylates specific AGC family kinases including AKT, stress-
induced serum and glucocorticoid kinase (SGK), and protein
kinase C (PKC)α (3–5), but whether additional biologically
relevant mTORC2 substrates exist is also unclear. Traditional
protein–protein interaction studies often rely on overex-
pressed proteins and/or harsh purification conditions in which
weak or transient protein interactions do not survive (6). To
overcome this challenge, we developed a proximity labeling
strategy to identify endogenous mTORC2-interacting proteins
in live cells.

Proximity labeling is a powerful alternative to affinity puri-
fication/mass spectrometry (MS) based strategies because it
provides higher sensitivity and biological relevance by utilizing
an enzymatic reaction to mark interacting proteins within
living cells (6). BioID2-based proximity labeling (6–8) utilizes a
modified BirA biotin ligase from Escherichia coli, which is
fused to a protein of interest and expressed in living cells. The
promiscuous BioID2 enzyme converts inert biotin that is
supplemented into the culture medium into highly reactive
and short-lived biotinoyl-50adenosine monophosphate, which
covalently attaches to lysine residues on proximal proteins
within a 10 nm radius (6). The amount of labeling correlates
with how long a protein is in proximity, negatively correlates
with its distance from the enzyme, and ends at membrane
boundaries. Biotinylated proteins are captured on a streptavi-
din affinity matrix and identified by MS. Proximity labeling has
successfully mapped protein interaction networks associated
with signal transduction pathways (e.g., MAPK (9), Hippo (10),
Ras (11, 12), Hedgehog (13), adrenergic (14), and GPCR (15)
signaling), organelles (16), and subcellular compartments (17).

mTORC2 includes the mTOR kinase, RICTOR, SIN1/
MAPKAP1, and mLST8 subunits. In the absence of mLST8,
RICTOR and SIN1 remain bound but no longer interact with
mTOR. Here, we engineered cells to express BioID2 fused
onto the amino terminus of endogenous RICTOR and
confirmed that it forms functional mTORC2 complexes.
Subsequent proximity labeling in the presence or absence of
mLST8 identified 215 BioID2-RICTOR interacting proteins
stratified as high, medium, and fair confidence interactors and
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Endogenous RICTOR/mTORC2 proximity labeling
either mTORC2 dependent (mLST8 present) or mTORC2
independent (mLST8 deleted). These included SIN1 and Bio-
ID2-RICTOR itself, as well as 80 proteins with previous links
to mTORC2 and/or AKT signaling, validating the strategy.
Unexpectedly, many BioID2-RICTOR interacting proteins are
predominantly nuclear. We confirmed the presence of
mTORC2 subunits in the nucleus suggesting an undefined
nuclear function. Finally, we identified ARF GTPases and their
regulators as mTORC2 proximal proteins. Functional studies
support a model in which GTP-bound ARF1 associates with
mTORC2 to inhibit AKT phosphorylation.
Results

Endogenous BioID2-RICTOR forms functional mTORC2
complexes

CRISPR/Cas9 engineering was used to insert a 3xFlag-Bio-
ID2 sequence upstream of exon 1 at the endogenous RICTOR
loci generating an �232 kDa BioID2-RICTOR fusion protein
(Fig. S1, A and B, and Experimental procedures). Two inde-
pendent BioID2-RICTOR HEK293E clonal cell lines were
Figure 1. Flag-BioID2-RICTOR HEK293E cells have functional mTORC2 com
from control (C, black), Flag-BioID2-RICTOR (BR, red), and Flag-BioID2-RICTORm

Flag-BioID2-RICTOR only in the presence of mLST8. Red arrows point to Flag-Bio
time course in control and two Flag-BioID2-RICTOR clonal cell lines. Cells w
stimulation in each of the two clones of Flag-BioID2-RICTOR and Flag-BioID2-R
and mTOR inhibitor Torin1 were added. N = 3. D, torin dose response curve b
RICTOR cells. Points are plotted as mean ± SEM. N = 3 for each experiment.
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generated in which homozygously tagged BioID2-RICTOR is
distinguishable from control (untagged RICTOR) by its
�32 kDa band shift (Fig. S1B). To serve as a control for
mTORC2 complex formation, we also generated BioID2-
RICTOR clonal lines deleted for MLST8 (BioID2-
RICTORmLST8Δ cells), which encodes an mTOR-binding WD
repeat protein required for mTORC2 assembly but not
mTORC1 assembly (18–20) (Fig. S1C).

To gauge whether BioID2-RICTOR forms functional
mTORC2 complexes, several key complex formation and
signaling experiments were performed. Complex integrity was
determined by coimmunoprecipitation (co-IP) of endogenous
proteins. Endogenous mTOR co-IPs with RICTOR, SIN1
(mTORC2 subunit), mLST8 (mTORC1 & mTORC2), and
RAPTOR (mTORC1) to a similar extent in control and Bio-
ID2-RICTOR cells, the latter indicated by blotting for both
RICTOR or the Flag epitope (Fig. 1A). As expected, the mTOR
interaction with BioID2-RICTOR and SIN1, but not RAPTOR,
is lost in BioID2-RICTORmLST8Δ cells (Fig. 1A). Reciprocal co-
IPs of endogenous RICTOR with either RICTOR or Flag an-
tibodies confirm endogenous BioID2-RICTOR binds with
plexes. A, Western Blots of mTOR, RICTOR, and Flag immunoprecipitation
LST8Δ (Δ, blue) demonstrating mTORC2 complex formation with RICTOR and
ID2-RICTOR; black arrows point to WT RICTOR. B, insulin stimulation (10 nM)
ere put in serum-free DMEM for 5 h before stimulation. N = 3. C, insulin
ICTORmLST8Δ cell lines. Cells were starved for 5 h and then insulin or insulin
ased on densitometry of p-AKT S473/total AKT in control and Flag-BioID2-



Endogenous RICTOR/mTORC2 proximity labeling
mTOR only in the presence of mLST8 (Fig. 1A). Moreover,
RICTOR and SIN1 interact independently of mLST8, also
consistent with previous reports (18). Notably, recent cryo-EM
studies suggest the RICTOR N terminus projects away from
the complex (21, 22) consistent with its ability to accept the N-
terminal BioID2 tag without disrupting complex integrity.

Phosphorylation of AKT and NDRG1 (an SGK substrate)
were examined to assess BioID2-RICTOR/mTORC2 function.
Insulin time course experiments (10 nM) indicate similar
insulin-stimulated kinetics of AKT S473 and NDRG1 T346
phosphorylation between control and clonal knock-in cells
(Fig. 1B). AKT T308 phosphorylation is also induced with
similar kinetics, while AKT T450 phosphorylation, a consti-
tutive, cotranslational mTORC2-dependent phosphorylation
site is stable in the knock-in cells (Fig. 1B). Moreover, insulin
stimulated AKT S473 phosphorylation but not 4E-BP1 S65
phosphorylation (an mTORC1 target) is inhibited by MLST8
deletion (Fig. 1C). Pretreatment with the mTOR kinase in-
hibitor Torin1 (100 nM) inhibits both (Fig. 1C), confirming
that mLST8 loss specifically disrupts mTORC2. Both RICTOR
and BioID2-RICTOR containing mTORC2 complexes also
have a similar IC50 for Torin1 (6.407 versus 5.747 nM for
control and BioID2-RICTOR cells, respectively) (Fig. 1D).
These data confirm that BioID2-RICTOR forms functional
mTORC2 complexes and that these complexes are disrupted
by mLST8 loss without affecting BioID2-RICTOR expression
or its interaction with SIN1.
BioID2-RICTOR proximity labeling detects both known and
novel interactions

To identify proteins proximal to mTORC2 in living cells,
50 μM biotin was supplemented into the culture medium of
actively growing control, BioID2-RICTOR, and BioID2-
RICTORmLST8Δ cells. After a 24 h incubation period, bio-
tinylated proteins were purified using streptavidin-conjugated
resin, eluted, and identified by LC-MS (Fig. S1C and
Experimental procedures). For each labeling experiment, in-
dividual peptide counts and protein abundances (iBAQ values)
were calculated based on their prevalence in three technical
replicates for each individual cell line. Complete proximity
labeling experiments were performed twice with each clonal
line and for each cell type (control, BioID2-RICTOR, and
BioID2-RICTORmLST8Δ), totaling four biological replicates for
each of the three conditions, thus allowing for high stringency
in setting cutoffs for positive interactions.

Protein interactions were considered “high confidence” if
>1 peptide was present in at least three of four replicates and
in no controls, “medium confidence” if >1 peptide was present
in two replicates or one peptide was present in multiple rep-
licates and in no controls, and “fair confidence” if peptides
were enriched (iBAQ experimental/control >10) in at least
two replicates of experimental samples compared to control
samples (Table S1). An interacting protein was considered
mTORC2-dependent if it was more abundant in BioID2-
RICTOR cells compared to BioID2-RICTORmLST8Δ cells by
> 2-fold. These criteria identified 52 high, 118 medium, and 45
fair confidence RICTOR-interacting proteins (215 total in-
teractions). Of these, 181 proteins were mTORC2 dependent
(detected in BioID2-RICTOR cells but not in control or Bio-
ID2-RICTORmLST8Δ) (Fig. 2A), indicating that most of the
BioID2-RICTOR protein interactions require intact mTORC2.

Applying STRING (Search Tool for the Retrieval of Inter-
acting Genes/Proteins) analysis to the BioID2-RICTOR inter-
actome reveals more edges (704) than would be expected (369)
from an unrelated protein interaction list (p = 1 × 10−16),
indicating significant connectivity among proteins within the
BioID2-RICTOR interactome (Fig. S2). Importantly, the
mTORC2 subunits RICTOR, SIN1, PRR5, and PRR5L were
detected in BioID2-RICTOR cells (Fig. 2B and Table S2).
RICTOR and SIN1, but not the other mTORC2 components,
were also detected in BioID2-RICTORmLST8Δ cells (Fig. 2B),
consistent with RICTOR and SIN1 interacting independent of
mTORC2 assembly (Fig. 1A). There was no mTOR labeling
detected in any samples; however, structural studies suggest
mTOR is out of range of the BioID2 tag (21) and may not have
lysine residues accessible to the BirA biotin ligase. These data
provide strong validation of the strategy.

Gene ontology analysis of biological function of the 181
mTORC2-dependent proteins indicates mRNA splicing, cell
cycle control, chromatin dynamics, TOR signaling, and DNA
repair among the over-represented functional classes (Fig. 2C).
Among the mTORC2-dependent BioID2-RICTOR inter-
actome, 44% of the proteins (80) also have known connections
to mTORC2 (Fig. 2D and Table S2). For example, 32 protein
interactors have previously been reported to co-IP with either
RICTOR, SIN1, mTOR, or mLST8, 8 are reported regulators
of an mTORC2 subunit, 15 interact with AKT, and 25 regulate
AKT S473 phosphorylation (Fig. 2D and Table S2). In addition,
eight proteins in the BioID2-RICTOR interactome share a
previously reported common interacting protein with RICTOR
(Fig. 2E and Table S2). For example, RICTOR interacts with
BRCA1 (23), which forms the BRCA1-A complex with the
RICTOR-interacting protein UIMC1 (RAP80) identified in this
study. These previous connections are further annotated in
Table S2. The identification of biologically meaningful
mTORC2 interactions demonstrates that this technique suc-
cessfully elucidates functional mTORC2 connections in
disparate biological pathways.
BioID2-RICTOR interacting proteins are cytoplasmic and
nuclear

The high number of BioID2-RICTOR interactor proteins
that have functional roles in a nuclear biological process (e.g.,
RNA splicing, chromatin remodeling, DNA damage repair)
was unexpected. Moreover, classifying the BioID2-RICTOR
interactome by predicted intracellular localization indicates
that 47 interactors are exclusively nuclear, and 90 interactors
are both nuclear and cytoplasmic (Figs. 3A and S3A). We
recently observed a pool of nuclear RICTOR in brown adi-
pocytes (24), while other studies reported nuclear RICTOR in
J. Biol. Chem. (2022) 298(10) 102379 3



Figure 2. BioID2-RICTOR interactome identifies known and novel mTORC2 interactors and functions. A, table showing the number of proximal
proteins for each confidence level in Flag-BioID2-RICTOR (mTORC2 dependent, red) and Flag-BioID2-RICTORmLST8Δ (mTORC2 independent, blue) after data
processing from N = 4 separate experiments. B, mTORC2 components that appear in the BioID2-RICTOR interactome with or without mLST8. Biotin-labeled
proteins shown in blue; unlabeled proteins are shown in white. C, gene ontology of the mTORC2-dependent interactome demonstrating TOR signaling as
one of the top significant hits as well as several nuclear processes (RNA processing/splicing, nucleocytoplasmic transport, chromatin changes, and DNA
repair) and cytoplasmic processes (cell cycle regulation and establishment of endothelial barrier). FDR, false discovery rate. D, pie graph showing that 80
interactors have previously been associated with mTORC2 components, AKT, or AKT activation (phosphorylation of S473). These interactors are plotted
below in different regions corresponding to their previously reported functions. The dark blue center cloud indicates mTORC2 components. White proteins
are those not labeled by BioID2-RICTOR. E, interactome proteins (black) that share a common interactor (white) with RICTOR. Straight lines represent
previously published interactions. Curved lines represent novel interactions discovered in this RICTOR interactome study.
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fibroblasts (25) and prostate cancer cells (26). To determine
the broader relevance of these observations, we fractionated
our clonal HEK293E cells as well as MCF7 breast cancer, A549
lung adenocarcinoma, Panc1 pancreatic cancer, and U87
glioblastoma cells and probed for mTORC2 subunits in the
cytoplasm and the nucleus. In all cases, a fraction of the total
RICTOR, mTOR, and SIN1 (α isoform) protein was detectable
in the nuclear fraction (Fig. 3, B and C). Additionally, we
examined HEK293E cells following serum deprivation and
stimulation conditions (Fig. S3D) and did not observe changes
in nuclear Rictor localization, suggesting growth factor
signaling does not influence Rictor translocalization, at least
under the conditions tested here. Consistently, immunostain-
ing for endogenous RICTOR (27) suggests 39% of total RIC-
TOR is in the nucleus (Fig. S3, A and B), while transiently
expressing YFP-RICTOR similarly indicates 30% to 40% of the
total YFP-RICTOR is nuclear, independent of mLST8 (Fig. 3,
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D–F). These data are consistent with RICTOR/mTORC2 be-
ing present in the nucleus of many cell types.
The mTORC2-independent BioID2-RICTOR interactome
indicates RICTOR associates with the ribosome

How RICTOR might function independent of its association
with mTORC2 is unclear. Only 34 interacting proteins (32 in
addition to BioID2-RICTOR itself and SIN1) passed the
stringency cutoff in BioID2-RICTORmLST8Δ cells, which
cannot form mTORC2 complexes (Fig. 1A). Both cytoplasmic
and nuclear proteins are among these mTORC2-independent
RICTOR interactors (Fig. S3C). Interestingly, 8 of these pro-
teins (24%) are ribosomal proteins (Fig. S3C). Previous studies
suggest an interaction between mTORC2 and the ribosome
(28, 29). The enrichment of ribosomal proteins in the BioID2-
RICTORmLST8Δ interactome may indicate a role for mTORC2



Figure 3. Flag-BioID2-RICTOR localization and subcellular localization of its interactors. A, pie chart of the localization of the mTORC2-dependent
RICTOR interactors. B, cytoplasmic and nuclear fractionation of HEK293E cells. T, total cell lysate; C, cytoplasm; N, nuclear. BR = Flag-BioID2-RICTOR. SIN1
isoforms are labeled according to Frias et al. (65). N = 3. C, cytoplasmic and nuclear fractionation of four cancer cell lines. N = 4. D, immunofluorescence of
YFP-RICTOR overexpressed in HEK293E cells costained with RPS25 ribosomal marker and DAPI nuclear marker. The scale bar represents 20 μM. E, total YFP-
RICTOR expressed per cell in arbitrary units (A.U.). F, Mander’s colocalization coefficient for YFP-RICTOR that appears in the nucleus of each cell. N = 13, 12.
ns, not significant. G, Pearson correlation coefficient corresponding to the amount of overlap between YFP-RICTOR and RPS25.

Endogenous RICTOR/mTORC2 proximity labeling
in determining ribosome abundance or an increased affinity
for free RICTOR (independent of mTORC2) for ribosomes.
The amount of ribosomal protein RPL4 and RPS25 is unaf-
fected by mLST8 loss (Fig. S3F) arguing against increased
ribosome abundance. We also colocalized RICTOR and
the ribosomal protein RPS25 with and without mLST8. The
Pearson coefficient in control cells is 0.45 ± 0.22 and the
mLST8 KO cells is 0.50 ±0.24, indicating the association be-
tween RICTOR and RPS25 is unaffected by mLST8 (Fig. 3G).
Because RICTOR in mLST8-deficient cells associates with ri-
bosomes at about the same amount as RICTOR that can
complex with mTOR, we reason that RICTOR may be able to
associate with ribosomes outside of the mTORC2 complex.
BioID2-RICTOR interacting proteins contain insulin-sensitive,
Rictor-dependent phosphorylation sites

We next crossreferenced the BioID2-Rictor interactome
with four published proteomics datasets from studies investi-
gating either mTOR-sensitive phosphorylation sites (30, 31),
Rictor-dependent phosphorylation sites (32), or insulin-
stimulated phosphorylation sites (Fig. 4A) (33). Intriguingly,
86 BioID2-RICTOR interacting proteins appear in one or
more of these studies (Table S3). For example, 13 BioID2-
RICTOR interacting proteins contain phosphorylation sites
sensitive to an mTOR kinase inhibitor and at least 8 of these
phosphoproteins are also Rictor dependent (Fig. 4A and
Table S4) (30–32).
J. Biol. Chem. (2022) 298(10) 102379 5



Figure 4. Interactome proteins that have mTOR, Rictor, or insulin-
dependent phosphosites. A, summary of four previous phosphoprotein
datasets used is analyzed in this figure. B, Venn diagram showing the
overlap of BioID2-RICTOR interactome proteins that appeared in the insulin-
stimulated (yellow) and Rictor KO phospho-proteomes (red). C, Venn dia-
gram showing the overlap of BioID2-RICTOR interactome proteins that
appeared in the two mTOR inhibitor studies. D, phosphoproteins that are
both insulin sensitive and Rictor dependent (overlap between red and yel-
low ovals from (B)). Proteins were separated by localization and function.
Each phosphosite is represented with a P in a gray circle. Those that are not
shared between insulin sensitive and Rictor dependent have an asterisk after
them. The phosphosite text that is blue and underlined represents phos-
phosites that also overlap with one of the mTOR inhibitor studies. E, STRING
diagram of potential mTORC2 substrates that are dependent on both RIC-
TOR and insulin. These are significantly enriched for RNA binding, cadherin
binding, cell junction proteins, which are color coordinated accordingly.
This protein List is also found in Table S4.

Endogenous RICTOR/mTORC2 proximity labeling
Remarkably, 68 BioID2-RICTOR interacting proteins
contain an insulin-sensitive phosphorylation site (Fig. 4B).
Among these sites, 29 are also Rictor dependent, 8 are sensitive
to an mTOR kinase inhibitor, and 5 are Rictor dependent and
sensitive to an mTOR kinase inhibitor (Fig. 4, B and C)
(30–32). The 29 insulin-sensitive and Rictor-dependent phos-
phoproteins were examined more closely to determine if the
phosphorylation sites observed were conserved across both
studies. This showed that 82% (24/29) have at least one
common phospho site shared under conditions of insulin
6 J. Biol. Chem. (2022) 298(10) 102379
stimulation and Rictor loss. These may reflect mTORC2 sub-
strates or substrates phosphorylated by other kinases in the
PI3K/mTOR pathway and should be investigated in the future.
Examining the subcellular localization category (Uniprot) of
these proteins finds that approximately half are predominantly
nuclear and half are predominantly cytoplasmic or cytoskel-
etal. Interestingly, several of these phosphoproteins are
important for different steps of mRNA processing by the
spliceosome (Figs. 2C, 4, D and E). These phosphoproteins are
also enriched for cadherin binding, which occurs at the plasma
membrane, and cell junctions which could reflect a role for
mTORC2 in barrier function and cell permeability (Fig. 4E).
These data suggest new spatial connections of mTORC2 to the
insulin-stimulated phosphoproteome.
ARF1 is a RICTOR-interacting protein that attenuates mTORC2
signaling

BioID2-RICTOR interacting proteins were also classified by
enzymatic function, which includes proteins with defined
functional domains (e.g., kinase, phosphatase, GTPase, ace-
tyltransferase) and proteins that regulate these enzymes (e.g.,
GTPase activating proteins and exchange factors) in the
analysis. This uncovered 48 proteins classified by kinase (n=
12), phosphatase (n= 4), acetylation/deacetylation (n= 8),
methylation/demethylation (n= 6), GTPase (n= 10), or ubiq-
uitination (n= 8) pathway function (Fig. 5A). Among these
proteins, we identified nodes of interaction. These include the
following: a sterile-20–like kinase network containing the
MST4, STK24, and STK24 kinases and a phosphatase regu-
latory subunit (Fig. S4A); a chromatin remodeling node con-
taining HAT1, RBBP4, RBBP7, TRIM28, SMARCAD1, and
SIRT2 (Fig. S4B); and a ubiquitination network containing
NEDD8, UBE2M, CUL4A, CUL4B, DCAF7, and FBOX30
(Fig. S4C). Notably, treating cells with the NEDD8 activating
enzyme 1 (NAE1) inhibitor MLN4924 (which blocks transfer
of NEDD8 to UBE2M) increases the level of RICTOR and its
known substrates CUL4A/B (34) (Fig. S4, D and E). Treating
cells with the proteosome inhibitor MG132 alone has no effect
on Rictor levels (Fig. S4F). Overexpressing His-UBE2M (which
transfers NEDD8 to substrates) conversely decreases RICTOR
levels (Fig. S4E). Additionally, overexpressed His-UBE2M in-
teracts with RICTOR and mTOR by co-IP (Fig. S4H), collec-
tively suggesting the NEDD8 pathway may contribute to
mTORC2 regulation.

Particularly interesting among the enzyme RICTOR inter-
actors is the identification of a GTPase network containing the
ARF1, ARF3, and ARF5 GTPases, the ARFGEF1 and ARF-
GEF2 guanine nucleotide exchange factors, and the GTPase-
activating protein GIT1 (Fig. 5B). The ADP ribosylation fac-
tor (ARF) family GTPases are small guanine nucleotide-
binding proteins in the RAS superfamily best known for
roles in vesicle trafficking (35, 36). ARFGEFs activate ARF
proteins by promoting ARF GDP exchange for GTP (36), and
GIT1 is a GTPase-activating protein that stimulates ARF GTP
hydrolysis (36). Overexpression of ARF1-HA in HEK293E cells
and pulldown with the HA antibody demonstrates that ARF1



Figure 5. ARF1 binds with mTORC2 and dampens mTORC2 signaling. A, pie chart of the BioID2-RICTOR interactome categorized by enzymes and their
regulators. Numbers within the chart are actual numbers of proteins in each category. B, STRING diagram of GTPases and their regulators in the RICTOR
interactome. Circles represent the proteins and connecting lines represent previously known interactions (thicker corresponds to amount of evidence in the
literature). C, immunoprecipitation of overexpressed HA-tagged ARF1 with mTOR and RICTOR. TCL, total cell lysate. N = 3. D, RICTOR IP of ARF1 from serum
deprived (-) and 30 min insulin-stimulated (Ins) conditions. ARF1 binds more strongly with RICTOR and mTOR when the cells are in a serum-deprived state.
N = 3. E, ARF1-CA (GTP bound) binds more strongly with RICTOR than ARF1 or ARF1-DN (GDP bound). CA, constitutively active; DN, dominant negative. N =
3. F, insulin (left) and EGF (right) time course in empty vector (EV) or ARF1-HA expressing cells. Overexpression of ARF1-HA inhibits maximal mTORC2
signaling stimulated by insulin/EGF. N = 4. G, GTP-bound ARF1 inhibits maximal mTORC2 signaling stimulated by insulin (top) or EGF (bottom). N = 3. H,
CRISPR KO of Arf1 enhances maximal EGF-stimulated AKT and NDRG1 phosphorylation. Cells were serum deprived then stimulated with EGF over a time
course. Results were confirmed with two independent guides (Fig. S5). Model of ARF1 inhibition of mTORC2 through direct binding to the complex when it
is in its GTP-bound state during serum-starved conditions. All experiments were done in HEK293E cells. IP, immunoprecipitation.

Endogenous RICTOR/mTORC2 proximity labeling
binds with both RICTOR and mTOR (Fig. 5C). This interac-
tion with ARF1 is growth factor modulated. Endogenous
RICTOR co-IPs with the mTORC2 components mTOR, SIN1,
and mLST8 under both serum deprivation (5 h) and insulin
stimulation (30 min, 10 nM); however, ARF1-HA is only
detectable in RICTOR immunoprecipitations (IPs) under
serum deprivation (Fig. 5D). GTP-bound ARF1 better associ-
ates with membranes (37, 38) and often ARFs interact with
their targets in their active state (39), so we tested if being in a
GTP-bound state increases the RICTOR-ARF1 interaction. To
this end, we overexpressed ARF1-HA, constitutively active
ARF1-HA (Q71L) (CA), or dominant negative ARF1-HA
(T31N) (DN) and performed endogenous RICTOR IPs under
basal medium conditions that destabilize RICTOR binding to
WT ARF1-HA (Fig. 5E). In these experiments, constitutively
active but not dominant negative ARF1 co-IPs with
J. Biol. Chem. (2022) 298(10) 102379 7
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endogenous RICTOR consistent with GTP-bound ARF1 more
stably associating with immunopurified mTORC2 complexes.

We next asked whether ARF1 functionally regulates
mTORC2 signaling by gain and loss of function analysis. First,
we find that overexpressing ARF1-HA attenuates both insulin-
and EGF-stimulated AKT S473 as well as NDRG1 T346
phosphorylation via SGK compared to expressing of empty
vector (Fig. 5F). Moreover, overexpressing constitutively active
ARF1-HA (Q71L) has an even greater inhibitory effect espe-
cially on EGF-stimulated AKT S473 phosphorylation
compared to WT ARF1-HA (Fig. 5G). Next, we deleted Arf1 by
CRISPR-Cas9 genome editing to ask whether losing ARF1
enhances EGF signaling. Indeed, in an EGF1 stimulation time
course, deleting Arf1 with either of two unique guides en-
hances both AKT S473 and NDRG1 T346 phosphorylation
within 5 min post stimulation, when the signaling response is
maximally induced (Figs. 5H and S5). Collectively, these data
suggest a model in which ARF1 is proximal suppressor of
mTORC2 (Fig. 5I).
Discussion

Protein interaction networks help define the regulatory
landscape of a particular protein or protein complex. Because
the regulation and intracellular localization of mTORC2 is not
well understood, we developed a BioID2-based proximity la-
beling strategy to map the endogenous RICTOR/mTORC2
protein interaction network in living cells. Our approach un-
covered an extensive list of known and novel RICTOR-
interacting proteins highlighting potential connections be-
tween mTORC2 and both known and novel cytoplasmic and
nuclear processes. Overall, we provide both a method of
tagging endogenous mTORC2 and a detailed resource of
RICTOR-interacting proteins that can be further used to un-
cover biologically meaningful mTORC2 regulatory networks
and functions.

A main advantage of BioID2 proximity labeling is the ability
to identify protein interactions that occur in living cells. This
can overcome the challenge of detecting weak or transient
interactions that are often difficult to maintain in more
traditional protein interaction discovery methods such as af-
finity purification MS. Another advantage of our strategy is the
use of CRISPR engineering to insert the BioID2 proximity
labeling enzyme into the RICTOR genomic locus, thus main-
taining RICTOR gene expression from its endogenous pro-
moter and regulatory elements. In theory, a similar strategy
could be performed by tagging endogenous Sin1; however, N-
terminal Sin1 could not be tagged probably because it disrupts
protein function. The existence of multiple Sin1 isoforms with
variable ends poses a challenge to tagging the endogenous C
terminus. Regarding cell line choice, we selected human em-
bryonic kidney cells both because they are amenable to
CRISPR engineering and because they have been used exten-
sively to study the mTOR complexes. The fact that nearly half
of the BioID2-RICTOR interacting proteins we discovered
have a connection in the literature to mTORC2 signaling
supports the overall reliability of this strategy, though rigorous
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follow-up of each interaction detected is required to confirm
individual functional relevance.

It is interesting that 20% of the BioID2-RICTOR interacting
proteins exclusively localize to the nucleus. While it is possible
that BioID2-RICTOR could interact with these proteins in the
cytoplasm or transiently following nuclear envelope break-
down during mitosis, nuclear localization of mTORC2 sub-
units is observed in this study, and previously by others in
HEK293, IMR-90, and NIH3T3 cells (25, 40). Consistent
among this and previous studies is that only a fraction of the
total cellular amount each mTORC2 core component (i.e.,
mTOR, RICTOR, SIN1) is nuclear (i.e., �30% for RICTOR)
and nuclear RICTOR does not depend on mLST8 or growth
factor signaling. However, a nuclear function for mTORC2 has
yet to be defined. In Schizosaccharomyces pombe, TORC2
functions in genome stability and recovery from DNA damage
repair (41). Thus, it is interesting that 16 BioID2-RICTOR
interacting proteins function in the DNA damage response
pathway. If and how mTORC2 translocates to the nucleus and
functions in nuclear processes warrants further investigation.

Many BioID2-RICTOR interacting proteins contain phos-
phorylation sites sensitive to an agonist (e.g., insulin) and/or
antagonists (e.g., mTOR kinase inhibitors, Rictor deletion) of
mTORC2 kinase activity. Because AKT positively regulates
mTORC1, some of BioID2-RICTOR interacting phosphopro-
teins could be direct substrates of either mTORC2 or
mTORC1 (42–44). One example of an mTORC2 substrate in
our dataset is the AGC family kinase PKN2, which was
recently shown to be phosphorylated by mTORC2 in its turn
motif (45, 46). Another possibility is that interacting phos-
phoproteins function downstream in the mTORC2 signaling
cascade. For instance, FLNC (47) and RANBP3 (Fig. 4D) are
AKT substrates, the latter of which regulates nuclear transport
(48). It is also possible that some of these phosphoproteins
require active mTORC2 in a different kinase or phosphatase
pathway. Although the phospho-proteomics datasets that we
crossreferenced our dataset with were generated in different
cell types (MEFs, HEK293E, brown adipocytes, 3T3L1 adipo-
cytes) (Fig. 4A), the resultant phosphoprotein mTORC2
interactome is likely an under representation of what is bio-
logically important. For example, AKT2 and AKT3 were
identified as medium confidence BioID2-RICTOR interacting
proteins in only one biological replicate of the interactome
studies (Table S1), excluding AKT from the final high-
stringency list and from the list of substrates obtained.
Nevertheless, these data provide new insight into the phospho-
proteomics landscape proximal to mTORC2 and may indicate
the presence of mTORC2 signaling hubs at new subcellular
places like the cytoskeleton or spliceosome.

This study also identified potential novel mechanisms of
RICTOR/mTORC2 regulation. For example, the finding that
UBE2M interacts directly with RICTOR, mTOR, and to a
lesser extent with RAPTOR (Fig. S4G) suggests it may balance
the protein levels and/or activity of mTORC2 and mTORC1.
Consistently, the Cullin4 (CUL4) E3 ligases, which require
UBE2M-dependent neddylation to become active, reportedly
regulate the mTOR complex inhibitor protein DEPTOR (34)
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and bind with RAPTOR and mLST8 (49). More commentary
on a potential mechanism is included in Fig. S4. The BioID2-
RICTOR interactome also contained DCAF7, a substrate re-
ceptor protein for the CUL4 ligases. Interestingly, the Wnt1-
Cre;Rictorl/l mouse (Mus musculus), which has Rictor
deleted in the neural crest, and the dcaf7−/− zebrafish (Danio
rerio) share a similar pattern of craniofacial dysmorphia (50,
51), indicating overlapping biological function in development.

The ARF1 GTPase was also identified as a proximal RIC-
TOR protein that may regulate mTORC2. Our BioID2-
RICTOR interactome additionally includes GEFs (ARFGEF1,
ARFGEF2) and a GAP (GIT1). ARF1 has previously been
implicated in AKT signaling (52, 52–55); however, the mech-
anism is unknown. ARF1 may translocate to the plasma
membrane upon insulin signaling (56) and bind the insulin
receptor (54), possibly functioning in receptor trafficking by
endocytosis. A recent publication also found that mTORC2
localization to endosomes is required for its signaling activity
in glioma cells (57). Thus, regarding the mechanism of
mTORC2 suppression by ARF1, one hypothesis is that ARF1
encounters mTORC2 on endosomes to help downregulate
mTORC2/AKT activity, possibly by disrupting mTORC2
localization or substrates interactions, following receptor
stimulation and internalization. ARF1 overexpression could
also enhance the kinetics of receptor trafficking, turnover from
the membrane to endosomes, where receptor-mediated
signaling is turned off, or Golgi–endoplasmic reticulum traf-
ficking, which is also regulated by ARFs. Another possibility is
that ARF1 suppresses mTORC2 kinase activity by directly
inhibiting its catalytic activity. If this is the case, understanding
the mechanism will require detailed structural information
about the interaction. Notably, ARF3 and ARF5 are also Rictor
proximal proteins raising the possibility that there is
compensatory function between different ARFs. Whether re-
ceptor internalization or Golgi-endoplasmic reticulum traf-
ficking is required for ARF1 to attenuate mTORC2 signaling
and other details of the mechanism are important areas for
future investigation.

There are some limitations of this study. One disadvan-
tage of using BioID2 is that the labeling period is 12 to 24 h
long. While this increases the chances of detecting a tran-
sient interaction, it may also increase the chance of
nonspecific interactions. Setting stringent cutoffs for MS
data, stratifying the interactome by confidence, and
including an MLST8 KO control help mitigate against false
positive interactors. Moreover, newer BioID2 variations,
such as TurboID, which can label interacting proteins within
minutes, can be used in the future to circumvent this
caveat, especially when combined with acute treatments that
affect mTORC2 signaling, such as growth factor stimulation.
The BioID2 tag itself is 26 kDa in size and placing any
epitope tag on a protein could disrupt certain interactions.
BioID2 labeling also requires that a protein have a lysine
residue exposed in the labeling radius, which may not be the
case for all real interactors. Finally, our strategy is also
limited to the interactions that exist in the clonal cell lines
we used. It is important that novel interactions identified are
validated in diverse cell types and with endogenous proteins
for determining functional relevance.

To conclude, we developed a method of tagging endogenous
mTORC2andmapping itsproximalprotein interactionnetwork in
living cells. This strategy can be applied with other epitope tags
while the protein interaction network generated here can guide
future investigations intomTORC2 regulation, including byARF1.

Experimental procedures

Cell lines

HEK293E, PANC-1, HeLa, U87, and MCF7 cells were
grown in 5% CO2, humidity at 37 �C in 10% fetal bovine serum
(FBS), penicillin/streptomycin, Dulbecco’s modified Eagle’s
medium. A549 cells were grown in 5% CO2, humidity at 37 �C
in 10% FBS, penicillin/streptomycin, RPMI. All cell lines were
originally from ATCC, used up to a maximum of 15 passages,
and routinely checked for mycoplasma contamination. Clonal
HEK293E cells with Flag-BioID2-RICTOR tag were authenti-
cated by sequencing the region upstream and downstream of
the RICTOR start site for correct insertion of the tag and by
band shift on Western blot using Flag and RICTOR antibody.
MLST8 deletion was verified by its absence by Western blot.

Cloning and knock-in cell generation

pX330 Cas9-Puro targeting the RICTOR start codon with
the sequence 50-ACTGAAACCCGTCAATATGG-30 was
transfected in with pBABE-donor where the donor plasmid
was comprised of and 427 bp 50 homology arm, a 3×Flag tag,
the BioID2 tag, a flexible linker made of 3xGGGS repeats, and
a 371 bp 30 homology arm. Cells were selected with puromycin
for 2 days and then individual colonies were grown until there
were enough cells for genotyping and Western blot. Individual
clones were checked for protein expression and their RICTOR
genomic locus was PCR amplified and sequenced.

Proximity labeling

About 3 × 15 cm dishes were used for each replicate. Briefly,
cells were grown to �90% confluence in 10% FBS and 1%
penicillin/streptomycin (complete media). Then they were
treated with 50 μM biotin in complete media for 24 h. Cells
were lysed in a 1% Triton buffer, sonicated, and immunopre-
cipitated overnight in streptavidin magnetic beads (NanoLink).
These were washed 4 × 8 min each in a series of buffers as
described (58). They were eluted in 10 mM biotin, 50 mM
Tris, pH 8.0, 2% SDS, and boiled off the beads. Samples were
frozen until their final preparation to precipitate them to be
cleaned of SDS and run on MS.

Label-free LC-MS/MS analysis

Pull downs were analyzed on a Q-Exactive Plus quadrupole
Orbitrap mass spectrometer (ThermoScientific) equipped with
an Easy-nLC 1000 (ThermoScientific) and nanospray source
(ThermoScientific). Peptides were resuspended in 5% meth-
anol/1% formic acid and loaded on to a trap column (1 cm
length, 100 μm inner diameter, ReproSil, C18 AQ 5 μm 120 Å
J. Biol. Chem. (2022) 298(10) 102379 9
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pore [Dr Maisch, Ammerbuch, Germany]) vented to waste via
a microtee and eluted across a fritless analytical resolving
column (35 cm length, 100 μm inner diameter, ReproSil, C18
AQ 3 μm 120 Å pore) pulled in-house (Sutter P-2000, Sutter
Instruments) with a 45 min gradient of 5% to 30% LC-MS
buffer B (LC-MS buffer A: 0.0625% formic acid, 3% acetoni-
trile; LC-MS buffer B: 0.0625% formic acid, 95% acetonitrile).
The Q-Exactive Plus was set to perform an Orbitrap MS1 scan
(R = 70K; AGC target = 1e6) from 350 to 1500 m/z, followed
by higher-energy collisional dissociation (HCD) MS2 spectra
on the 10 most abundant precursor ions detected by Orbitrap
scanning (R = 17.5 K; AGC target = 1e5; max ion time =
50 ms) before repeating the cycle. Precursor ions were isolated
for HCD by quadrupole isolation at width = 1 m/z and HCD
fragmentation at 26 normalized collision energy. Charge state
2, 3, and 4 ions were selected for MS2. Precursor ions were
added to a dynamic exclusion list ±20 ppm for 15 s. Peak lists
were generated using in-house developed software Rthur 1.0.
Raw data were searched using COMET (release version
2014.01) in high resolution mode (59) against a target-decoy
(reversed) (60) version of the human proteome sequence
database (UniProt; downloaded 2/2013, 40,482 entries of for-
ward and reverse protein sequences) with a precursor mass
tolerance of ±1 Da and a fragment ion mass tolerance of
0.02 Da and requiring fully tryptic peptides (K, R; not pre-
ceding P) with up to three miscleavages. Static modifications
included carbamidomethylcysteine and variable modifications
included oxidized methionine. Searches were filtered using
orthogonal measures including mass measurement accuracy
(±3 ppm), Xcorr for charges from +2 through +4, and dCn
targeting a <1% false discovery rate at the peptide level.
Quantification of LC-MS/MS spectra was performed using
MassChroQ (61) and the iBAQ method (62).
Interactome data analysis

Two separate clones of Flag-BioID2-RictorHEK293E cells and
mLST8KOclones derived from each of these clones were used in
two independent experiments each (n = 4 total). First, the inter-
actors were ranked within each experiment as 1 (most confident/
enriched) to 3 (less confident/enriched) by the following.

1. >1 peptide in multiple replicates, 0 peptides in control
2. 1 peptide in multiple replicates, 0 peptides in control
3. >1 peptide in multiple replicates, 1 peptide in 1 control

replicate, iBAQ experimental/control >10

Then these ranked lists (1–3) from each of the four inde-
pendent experiments were compared. Interacting proteins
were considered high confidence (1) interactors if they
appeared as multiple peptides in multiple replicates in at least
three of the four experiments and none in the controls, me-
dium confidence (2) if they appeared as multiple peptides in
multiple replicates in two experiments, and fair confidence (3)
if they appeared enriched in experimental samples compared
to control samples (iBAQ experimental/control >10) in at
least two experiments. The protein was considered mTORC2
dependent versus mTORC2 independent if the number of its
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detected peptides was enriched by at least 2-fold. The list of
total interactors was analyzed using STRING database (string-
db.org), PANTHER DB, and ENRICHR gene ontology tools.

Western Blots

Ten to twenty micrograms of lysate was run on each Tris-
Glycine SDS page gel of 8% to 16% depending on protein
size. This was wet transferred onto polyvinylidene difluoride
membranes and blocked with 5% milk, PBS with Tween-20, or
5% bovine serum albumin. Primary antibody incubations were
done overnight (�16 h), rocking at 4 �C. Secondary antibody
was used at 1:10,000 (Cell Signaling) for 1 h, rocking at room
temperature and visualized using Western Lightning ECL and
developed on X-ray film. All antibodies used are listed in the
Key resources table.

IP

A standard IP protocol was followed using an overnight
incubation at 4 �C with antibodies in 40 mM Tris, pH 7.5,
120 mM NaCl, 1 mM EDTA, 0.3% CHAPS buffer with pro-
tease and phosphatase inhibitors (63), a 2 h incubation with
protein A/G Sepharose (Prometheus), and elution by boiling in
2× SDS loading buffer. CHAPS and inhibitors were added
fresh before usage. Leftover buffer was frozen and thawed
when ready to use at a later time. N is at least 3 for each
experiment.

CRISPR KO cells

LentiCRISPRv2 (Addgene #52961) virus that containsCas9 and
a guide RNA scaffold was used to transduce human cells for stable
KO. The sequences for the guide RNAs were as listed in the Key
Resources table. pX330 (Addgene #52961) was used for all tran-
sient use of CRISPR/Cas9 used in Flag-BioID2-RICTOR cell line
generation. These guides are also listed in theKey Resources table.

Fractionation

Nuclear-cytoplasmic fractionation was completed as previ-
ously described (64). Briefly, the cytoplasmic fraction was
collected in 20 mM Tris, pH 7.6, 20 mM MgCl2, 0.1 mM
EDTA, 0.3% CHAPS buffer; the nuclei were collected by
centrifugation, washed three times, and lysed in nuclear buffer
containing 20 mM Hepes, pH 7.9, 400 mM NaCl, 2.5% glyc-
erol, 1 mM EDTA, and 0.5 mM DTT. Then, the nuclei were
frozen to −80 �C and thawed twice before spinning at 14K
RPM, 4 �C to remove membranes and the insoluble fraction.
Protease and phosphatase inhibitors were added to both
buffers directly before use. N = 4 for each cell line.

Growth factor stimulation

Cells were grown to 70% confluence and transfected with
plasmid DNA using the manufacturer’s instructions with
Lipofectamine 3000 (Invitrogen). The media was changed to
the next day, and 36 h after transfection, the cells were serum
starved for 5 h, then stimulated with insulin (10 nM) or EGF
(100 ng/ml) for the indicated amount of times. Cells were then

http://string-db.org
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collected in 0.3% CHAPS buffer (63), incubated on ice for at
least 45 min, and centrifuged to remove membranes. N = 3 or
4 for all conditions. Torin1 treatment was 100 nM where the
concentration is not variable.

Imaging

HA-YFP-RICTOR (Addgene # 73387) was transfected into
HEK293E cells with either control guide RNA or mLST8
guide RNA in LentiCRISPRv2 plasmid. Alternatively,
endogenous RICTOR was detected with RICTOR antibody
(Cell Signaling #2114). About 24 to 36 h after transfection,
the cells were fixed with paraformaldehyde, blocked in 4%
bovine serum albumin, and stained with antibodies for RPS25
(HPA03180B) overnight and 40,6-diamidino-2-phenylindole
for 5 min. After mounting, the slides were imaged on a
Zeiss LSM900 with Airyscan 2 confocal microscope with 63×
oil immersion objective. Zen Blue (Zeiss) software was used
to measure the area of the nuclear region, whole cell area,
and the mean intensity of YFP staining in both regions on
orthogonal projects containing at least 10 Z-stack images
taken at 0.25 μM. The YFP in the nucleus was divided by the
total cellular YFP to calculate the Mander’s colocalization
coefficient in at least 12 YFP-containing cells per condition
from two separate biological replicates. Colocalization be-
tween RPS25 (ribosomes) and YFP-RICTOR was calculated
using a Pearson correlation of each cell using the Coloc2
plugin for FIJI image analysis software (ImageJ v2).

Substrate analysis

Interactome list was compared to proteins whose phos-
phorylation was decreased in conditions where mTORC2 was
inhibited (Torin1(30)/KU-0063794(31)) or lost (Rictor induc-
ible KO (32)) or whose phosphorylation increased under in-
sulin stimulation (33). Those proteins that overlapped as
mTORC2-dependent RICTOR interactors and had phos-
phorylation sites meeting the aformentioned requirements
were included. Each interactor that overlapped between Rictor
sensitive and insulin sensitive were investigated in further
detail by finding the shared and unique phosphorylation sites
to each using supplemental tables from Entwisle et al. (32) and
the website affiliated with Yang et al. (33) (www.maths.usyd.
edu.au/u/pengyi/software/PUEL/mTOR_substrate_prediction_
L1.htm). The sites were examined for previous kinase
identification and conservation from mouse to human using
Phosphosite.org.

Quantification and statistical analysis

All statistical analysis was completed in GraphPad Prism
Version 9.2.0 (GraphPad Software). Each figure has relevant n
(biological replicates) and any relevant statistical analysis has
that information in the figure legend. In microscopy assays, n =
number of cells analyzed per condition. All graphs depict
mean ± SEM., if applicable. Sample size estimation was not
done. No data were excluded from an analysis. Where two
conditions were compared, the statistical test used was an
unpaired Student’s t test with Mann–Whitney correction.
Where more than two groups were compared, a nonpara-
metric paired one-way ANOVA was used.
Data availability

The raw mass spectrometry proteomics datasets were
deposited in the MassIVE public repository, PXD029755
(password: p878) and will be made public upon publication.
They can also be found at the website located in Table 5S.

Processed proteomics data and curated datasets are located
in the supplemental tables, and all other data reported in this
article will be shared by the lead contact upon request.
Phospho-proteomics datasets used for analysis were taken
from previously published studies which are listed in Table 5S
and method details.

Any additional information required to reanalyze the data
reported in this article is available from the lead contact upon
request.

Supporting information—This article contains supporting informa-
tion [Table S5; (66–71)] and supplemental tables.
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