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Abstract
Integrins comprise a large family of αβ heterodimeric cell adhesion receptors
that are expressed on all cells except red blood cells and that play essential
roles in the regulation of cell growth and function. The leukocyte integrins,
which include members of the β , β , β , and β  integrin family, are critical for
innate and adaptive immune responses but also can contribute to many
inflammatory and autoimmune diseases when dysregulated. This review
focuses on the β  integrins, the principal integrins expressed on leukocytes.
We review their discovery and role in host defense, the structural basis for their
ligand recognition and activation, and their potential as therapeutic targets.
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Introduction
Leukocytes circulate in the blood in a quiescent state before migrat-
ing into tissues to defend against invading pathogens or to partici-
pate in other immune functions. Improperly activated leukocytes 
can also be effectors of pathologic inflammation. Most leuko-
cyte functions are dependent on members of the integrin family  
(Figure 1). Leukocyte integrins comprise all four β

2
 integrins, 

the two β
7
 integrins α

4
β

7
 and α

E
β

7
, in addition to α

4
β

1
, α

5
β

1
, 

α
9
β

1
, and α

v
β

3
. Leukocyte integrins play key roles in the innate 

immune response, which include interaction of phagocytic 
cells with endothelium and the extracellular matrix, ingestion of  
complement-opsonized pathogens, degranulation, and cytokine 
production. They are also involved in lymphocyte proliferation, 
survival, and differentiation in adaptive immunity. Chemokines, 
cytokines, lipid signaling molecules, and “cross-talk” from other 
adhesion molecules regulate the functional state, density, and  
topography of leukocyte integrins. The leukocyte-specific β

2
 

integrins are the most abundant leukocyte integrins and the first 
integrins to be studied functionally and structurally in these cells. 
In this review, we will focus on β

2
 integrins and their role in  

immunity and their structure and mechanism of their inside-out  
signaling. Many elements of the integrin outside-in signaling 
networks have been identified and were the subject of excellent 
reviews1–4 but are outside the scope of this concise review.

Discovery of β2 integrins
The sequential steps leading to an inflammatory response were first 
documented by Julius Cohnheim in the frog’s tongue5. He observed 
that local mechanical irritation induced first an increase in blood 
flow and then a slowing, at which time white blood cells began to roll 
and then halt, lining up the wall of venules, whereas red blood cells 
sped past them. Then some white blood cells began to creep across 
the wall into the extravascular space5. Elie Metchnikoff discov-
ered the phagocytic function of certain white blood cells by using 
the transparent avascular starfish larvae6. His phagocytosis theory 
of inflammation complemented Paul Ehrlich’s humoral theory, 
which attributed bacterial killing to serum-derived “magic bullets”,  
identified soon after as antibodies and complement proteins. The 
identity of the molecules involved in leukocyte migration across 
venules and in phagocytosis remained unknown, however.

In 1979, an experiment of nature led us to the identification of the 
major surface receptors mediating leukocyte migration and phago-
cytosis (reviewed in 7). We investigated in a pediatric patient the 
basis for his life-threatening bacterial infections, impaired wound 

healing, persistent marked neutrophilia even during infection-free 
periods, but a paucity of neutrophils within infected tissues. His 
neutrophils failed to adhere to substrate, migrate across inflamed 
endothelium, or ingest serum-opsonized particles. We traced these 
phagocyte defects to a deficiency of a gp150 surface membrane 
glycoprotein complex8. Monoclonal antibodies (mAbs) raised by 
us9 and by others10–15 showed that the gp150 complex comprises 
four surface glycoproteins now known as CD11a (α

L
)16–18, CD11b 

(α
M

)19, CD11c (α
X
)20, and CD11d (α

D
)21. Each CD11 glycoprotein 

non-covalently associates with a common 95 kDa glycoprotein 
(CD18, β

2
)13–15,18 to form what is now known as the β

2
 integrin  

subfamily. Mutations in the CD18 subunit7,22–24 resulted in its par-
tial or complete failure to associate with the synthesized CD11  
α-subunits, accounting for the variations in severity of the disease 
now known as leukocyte adhesion deficiency type I (LAD I)18,25.

Tissue distribution of β2 integrins
β

2
 integrins are expressed only on leukocytes, but their expression 

varies among the leukocyte subpopulations. CD11a is expressed 
on all leukocytes but predominates on lymphocytes. CD11b 
predominates on myeloid cells, being the most abundant integrin 
on neutrophils, and is also expressed on natural killer (NK) cells, 
fibrocytes, and some mast cells, B cells, CD8+ T cells, and γδ  
T cells26–33. CD11c is most abundant on myeloid dendritic cells, 
predominating on macrophages and dendritic cells of the splenic 
white pulp and marginal zone and on pulmonary alveolar macro-
phages, and has a distribution similar to that of CD11b on NK, 
B, and T cells34. CD11d is basally expressed on the majority of 
circulating human neutrophils and monocytes, on NK cells, and on 
a small fraction of circulating T cells35,36. In mice, CD11d expres-
sion is restricted to a small percentage of circulating leukocytes 
under basal conditions but predominates in splenic red pulp mac-
rophages, lymph node medullary cord and sinus macrophages, and 
hemosiderin-containing bone marrow macrophages and is upregu-
lated on phagocytes at local inflammatory sites35–37 and on differen-
tiated macrophages, which may facilitate their retention at sites of 
inflammation38.

β2 integrin ligands
CD11a binds intercellular adhesion molecules (ICAMs) 1–5, tel-
encephalin, endothelial cell-specific molecule-1 (ESM-1), and 
junctional adhesion molecule 1 (JAM1)39–41. CD11b is the most 
promiscuous β

2
 integrin; it has more than 40 reported ligands, 

including iC3b, ICAM1, 2, 3 and 4, fibrin(ogen), fibronectin,  
Factor X, Platelet Ibα, JAM-3, and some proteases (for example, 

Figure 1. Mammalian integrins. This protein family consists of 24 α/β heterodimeric receptors assembled from 18 α-subunits and eight 
β-subunits. Nine α-subunits (shaded) contain an extra von Willebrand factor type A domain (αA or αI). The β1 integrins are the largest 
subfamily, with 12 known members.
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proteinase 3) CD11c binds ICAM1, 4, iC3b, and vascular cell 
adhesion protein 1 (VCAM-1)42–46. Like CD11b, CD11c also binds 
heparin, various polysaccharides, and negative charges in denatured 
proteins26,47–49. CD11d binds ICAM-3 and VCAM-150 and, like 
CD11b, also binds several matrix proteins38.

Functional analysis of the individual β2 integrins
The defects in leukocyte adhesion demonstrated in patients with 
LAD I and in mice lacking CD1851 did not allow an assessment 
of the relative contribution of each of the four β

2
 integrins to the 

phenotypic abnormalities observed. Generation of mice deficient 
in the individual CD11 subunits revealed that knockout (KO) of 
CD11a (but not CD11b) in mice caused neutrophilia, which was 
not as severe as that found in CD18 KO mice, suggesting additional 
contributions by the other β

2
 integrins. No CD11a−, CD11b−, or 

CD11d KO mice developed the spontaneous infections observed in 
CD18 KO mice, suggesting that loss of all CD11/CD18 receptors 
is necessary to cause spontaneous bacterial infections. Homotypic 
aggregation and antigen-, mitogen-, and alloantigen-induced lym-
phoproliferation, which lead to defective host-versus-graft reac-
tion and impaired tumor rejection, were reduced in CD11a−/− but 
not CD11b−/− or CD11c−/− leukocytes52,53. However, cytotoxic T-
cell responses to systemic viral infections were normal in CD11a 
KO mice54,55, suggesting molecular redundancy or compensa-
tory changes (or both) by other leukocyte integrins such as α4β1 
or α9β156,57. This may explain the rarity of viral infections in  
patients with LAD I. Defective T-cell proliferation in response 
to the staphylococcal enterotoxin superantigen was more severe  
in splenocytes from CD18−, CD11b−, or CD11d KO mice than  
in CD11a−/− splenocytes but was normal in CD11c−/− spleno-
cytes58. The defects in CD11b−/− or CD11d−/− lymphocytes have been  
traced to transient expression of CD11b and CD11d on  
thymocytes, which appears to be required for normal T-cell  
development58.

CD11a–d contributed in variable degrees to the adhesion of phago-
cytes to inflamed endothelium21,42,59,60. Transendothelial neutrophil 
migration in the tumor necrosis factor-induced air pouch inflam-
mation model was reduced in CD11a KO61, as in CD18 KO, but 
was surprisingly increased in CD11b KO mice60. Migration within 
interstitial matrices was integrin independent62,63. Phagocytosis of 
serum-opsonized particles (with its associated oxygen free radical 
production, cytokine release, and degranulation) and phagocytosis- 
induced apoptosis in neutrophils were defective in CD11b−/− null 
mouse cells64, confirming an essential role for CD11b in the pro-
grammed elimination of neutrophils that have already phagocy-
tosed their target pathogens. Toll receptor-mediated responses 
were enhanced in CD11b−/− macrophages, rendering mice more 
susceptible to sepsis and endotoxin shock65. Thus, whereas neu-
trophil adhesion to endothelium may require all four β

2
 integrins, 

transendothelial migration appears to be mainly CD11a dependent, 
while phagocytosis is mediated primarily by CD11b66. Curiously, 
CD11b KO mice are obese67, a phenotype not seen in patients with 
LAD I, suggesting a role for CD11b in regulating fat metabolism 
at least in mice. The number of mast cells in the peritoneal cavity 
is also reduced in CD11b KO mice27, suggesting an additional role 
in mast cell development. Mast cells play an important role in the 
early peritoneal neutrophil response during experimental peritonitis 
in mice and this may explain the increased mortality of CD11b KO 
mice after acute septic peritonitis27.

Integrin structure
The αA domain
Structural studies of integrins began with the identification of a 
novel metal-ion-dependent adhesion site (MIDAS) in an extra-
cellular von Willebrand factor type A (vWFA) domain (αA or αI 
domain) present in integrin CD11b68. The vWFA domain is found 
in eight additional integrin α-subunits (Figure 1) as well as in sev-
eral structurally unrelated proteins69,70. αA from CD11b (CD11bA) 
mediates Mg2+-dependent binding of the receptor to ligands68,71. αA 
also mediates ligand binding in the other αA-containing integrins. 
The first crystal structure of recombinant CD11bA showed a 
compact GTPase-like fold comprising a central, mostly parallel 
β-sheet surrounded on both sides by seven amphipathic α-helices  
(Figure 2a). The catalytic site found at the apex in GTPases is 
replaced with MIDAS, where an Mg2+ ion is coordinated by three 
surface loops (Figure 2b). A solvent-exposed glutamate (E) or 
aspartate (D) from ligand completes an octahedral coordination 
sphere around the Mg2+ ion69. This crystal structure first explained 
why Mg2+ is required for integrin binding to all physiologic ligands 
and why a solvent-accessible acidic residue from ligand is essen-
tial for binding to any integrin. Ligand-binding specificity in αA 
domains is imparted by the variable surface-exposed side chains 
surrounding the MIDAS motif.

The αA domain also exists in a second ligand-free “closed”  
conformation72,73, where the ligand coordinating carboxyl oxygen 
is replaced with a water molecule (Figure 2c). Superposing the two 
structures shows the key tertiary changes associated with ligand 

Figure 2. Structural comparisons of inactive and active αA 
domains. (a) Ribbon diagrams showing the superposed structures 
of inactive (gray) and active (yellow) αA domain from the β2 integrin 
CD11b/CD18. Major conformational differences are indicated by 
arrows. The two phenylalanine residues (F275 and F302) buried 
in the inactive form are solvent exposed in the active state. A 
glutamate (E) from ligand is shown in the active (ligand-bound) 
state, ligating the metal-ion-dependent adhesion site (MIDAS) Mg2+ 
monodentately. (b, c) The MIDAS motif in the active (b) and inactive 
(c) states. The metal ion at MIDAS is coordinated by residues from 
three surface loops, and a carboxyl oxygen from ligand completes 
the octahedral coordinating sphere (b). In the inactive state,  
an oxygen atom from a water molecule replaces the ligand oxygen, 
and D242 from the third surface loop moves in to coordinate the 
metal directly (c). Coordinating oxygen atoms are in red, and 
hydrogen bonds are shown by dashed red lines. Direct bonds to 
the metal ion are shown as blue sticks. Water molecules are labeled 
ω1–ω3.
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binding: an inward movement of the N-terminal α1 helix, rear-
rangements of the metal-coordinating residues at MIDAS, and a  
10 Å downward shift of the C-terminal α7 helix at the opposite 
pole to MIDAS72,74 (Figure 2a). The key residues that stabilize the 
closed conformation have been identified, and mutations of some of 
these residues converted the closed into the open conformation75–79.  
Locking the open conformation with a pair of disulfides allowed 
crystallization of this form in the absence of ligand80,81. Crystal 
structures of αA domains from other integrins (for example, α

2
β

1
82), 

complement factors (for example, factors B and C283,84), certain 
matrix proteins85, and microorganisms (for example, anthrax86) 
were subsequently determined. These structures displayed the same 
basic conformational changes observed in CD11bA, underscoring 
their functional importance. In solution, recombinant wild-type 
CD11bA exists in an equilibrium where the proportion of the closed 
to the open state is nearly 9:175,79; the presence of ligand shifts  
this equilibrium in favor of the open state.

The integrin ectodomain
The modular nature of an integrin was first revealed with the  
determination of the crystal structure of the ectodomain of the αA-
lacking integrin α

v
β

3
 in its unliganded state87 and when occupied 

by a cyclic peptide ligand containing the prototypical Arg-Gly-Asp  
motif88. The α

v
 subunit is composed of a seven-bladed  

propeller domain, followed by a thigh domain and two large  
Ig-like Calf domains. The β

3
 subunit comprises an N-terminal plexin- 

semaphorin-integrin (PSI) domain, an Ig-like “hybrid” domain in 
which an αA-like domain (βA) is inserted, four successive epi-
dermal growth factor (EGF)-like domains (IE1–4), and a novel  
membrane-proximal β-tail domain (βTD) (Figure 3a, b). In the  
full-length integrin, Calf2 and βTD each is attached to a transmem-
brane (TM) domain and a short cytoplasmic tail. An unexpected 
feature of the α

v
β

3
 ectodomain is a sharp bending in the structure at 

the α-genu (between the thigh and calf1 domains) and the β-genu 
(within IE2) (Figure 3a). Extension at the knees is expected to pro-
duce an extended integrin (Figure 3b), which resembles the shape 
seen previously using rotary shadowing electron microscopy89.

In αA-lacking integrins, the integrin head is formed of the βA and 
propeller domains (Figure 3a, b), which associate non-covalently in 
a manner that resembles the association of the Gα and Gβ subunits 
of heterotrimeric G proteins87. In αA-containing integrins, the head 
also contains the αA domain, which projects from a surface loop in 
the propeller (Figure 3c). The heterodimer-disruptive point muta-
tions found in the β

2
 (CD18) and β

3
 subunits in patients with LAD I  

and Glanzmann’s thrombasthenia (a bleeding disorder), respec-
tively, map to the βA domain and commonly involve residues at 
the βA-propeller interface87. As in αA domains, an acidic residue 

Figure 3. Structure of the integrin ectodomain. (a) Ribbon drawing of the bent ectodomain from integrin αVβ3. αV is in light blue, and the 
12 domains of β3 are shown in different colors for better visualization. The two tails would extend into the plasma membrane in the native 
integrin. (b) Model of αVβ3 ectodomain linearized by introducing breaks at the α and β genu (arrows). The modular nature of the ectodomain 
can be readily appreciated. H, hybrid domain; PSI, plexin-semaphorin-integrin. (c) The integrin head from the αA-containing β2 integrin 
CD11c/CD18. (d) Interactions between arginine-glycine-aspartate (RGD)-containing ligand peptide (yellow) and the αVβ3 head. The peptide 
aspartate (D) completes the metal ion coordination sphere at metal-ion-dependent adhesion site (MIDAS), and ligand arginine forms salt 
bridges in the propeller pocket. αV and β3 residues are labeled light blue and orange, respectively. The three metal ions in β3 at MIDAS, 
adjacent to MIDAS (ADMIDAS), and ligand-associated metal binding site (LIMBS) are shown in cyan, magenta, and gray, respectively, and 
their coordinating residues displayed. The upper portion of the α1 helix and the loop between strand-F and α7 helix (F-α7) are also shown. 
Oxygen and nitrogen atoms are in red and blue, respectively. Hydrogen bonds and salt bridges (distance cutoff, 3.5 Å) are represented with 
dotted lines. (e) Superposed structures of αA and βA domains. Shown are the two inserted loops in βA: the specificity determining loop (SDL) 
and heterodimer-association loop. The hydrophobic phenylalanine residue at the top of α7 helix that contacts α1 helix in αA is replaced in βA 
with an ionic interaction mediated by ADMIDAS ion.
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from ligand completes the octahedral coordination of Mg2+ at 
MIDAS, an interaction stabilized by the arginine residue in the 
prototypical arginine-glycine-aspartate (RGD) motif, which inserts 
into a pocket in the propeller domain, making contacts with acidic 
residues in the pocket (Figure 3d). Five metal ions (Ca2+ or Mn2+) 
occupy the bases of blades 4–7 of the α

v
 propeller and the α-genu 

(Figure 3a, b); these may help rigidify the interfaces the thigh 
domain makes with the propeller base proximally and the top of 
Calf1 distally.

The structure of inactive βA is largely superimposable onto that 
of αA, except for two loop insertions: one forming the core of the 
interface with the α-subunit’s propeller and the second—the spe-
cificity determining loop, SDL—contributing to ligand binding as 
well as to the βA/propeller interface in some integrins (for exam-
ple, α

IIb
β

3
) (Figure 3e). In addition, a Ca2+ ion at a site adjacent 

to MIDAS (ADMIDAS) in βA links the two activation-sensitive 
α1 and α7 helices, stabilizing this domain in the closed state; in  
αA, this ionic interaction is replaced by a hydrophobic one  
(Figure 3e). In addition to the ADMIDAS ion, ligand-bound βA 
contains a ligand-associated metal binding site (LIMBS), which is 
occupied by Ca2+ in ligand- or pseudoligand-bound integrins88,90. 
The structure of LIMBS in ligand-free integrins is regulated by  
the α-subunit’s propeller domain91 and this may explain the  
variable metal ion occupancy of this site (sometimes also called 
synergy metal binding site).

In αA-containing integrins, the ligand-associated downward shift 
of the C-terminal α7 helix enables an invariant glutamate at the 
bottom of α7 to ligate the βA MIDAS ion (Figure 4); mutation  
of this residue to alanine blocked integrin function92. This led  
us to propose that αA serves as an intrinsic ligand for βA in  
αA-containing integrins. Blocking this coordination by the  
synthetic molecule XVA143 severs the αA link to βA and blocks 
integrin signaling93. Support for this “ligand-relay” model came 
from the recent crystal structure of the CD11c/CD18 ectodomain94. 
Thus, the βA domain transduces outside-in signals that are trig-
gered by either extrinsic (in αA-lacking integrins) or intrinsic (in 
αA-containing integrins) ligands.

Integrin transmembrane and cytoplasmic tails
The structure of the lipid-embedded α

IIb
 and β

3
 single-pass TM 

helices was determined by using solution nuclear magnetic reso-
nance (NMR) spectroscopy95. The structure revealed two dominant 
integrin TM association motifs or clasps: an outer (membrane- 
proximal) and an inner (membrane-distal) one that extends to 
include the adjacent cytoplasmic salt bridge between α

IIb
 and β

3
96. 

The two clasps maintain the integrin in the inactive state97. Another 
structure in hydrophobic organic solvent invokes several differences 
in the membrane-proximal clasp regions, especially the helical  
conformation of α

IIb
 in the latter versus a reverse turn in the former 

structure98. It is unclear at present whether this difference in the 
membrane proximal regions in the NMR structures reflects the 
nature of the lipid-like TM environment in which the TM domains 
were incorporated or reflects potential changes in response to 
binding of cytosolic regulators such as filamin99,100.

Binding of the N-terminal talin head to the membrane proxi-
mal NPxY/F motif in the β cytoplasmic tail destabilizes the 
α-β TM association101,102. Recruitment of talin to the plasma  
membrane requires ras-related protein 1 (Rap1) and its effector  
Rap1-GTP-interacting adaptor molecule (RIAM), and the latter is  
critical in vivo for inside-out signaling of β

2
 but not β

1
 or β

3
 

integrins103,104. Kindlins have been reported to modulate receptor 
affinity105 or avidity106 or both. Kindlins bind the distal NPxY/F  
motif and a preceding threonine-containing region of the β cytoplas-
mic tail107 but do not appear to destabilize α-β TM association108.  
The structural basis for regulation of integrins by kindlins remains 
to be elucidated. Loss of kindlin 3 causes LAD III, a disease  
characterized by bleeding diathesis (defective α

IIb
β

3
 function) and 

defective leukocyte recruitment to sites of infection (defective  
β

2
 integrin function)105.

Integrin activation
Integrins are normally expressed in an inactive state on the cell 
surface. This is critical, as it allows leukocytes and platelets, for 
example, to freely circulate in blood with minimal aggregation or 
interaction with blood vessel walls. Binding of an agonist such as 
a chemokine or a cytokine (for example, granulocyte-macrophage 
colony-stimulating factor109) to their respective receptors initiates 
inside-out signals that rapidly switch the integrin into the active 

Figure 4. The ligand-relay model. The downward movement of the 
c-terminal α7 helix (dark blue) triggered by ligand binding to αA 
allows an invariant glutamate (E) at the bottom of the α7 helix to 
reach and ligate the βA metal-ion-dependent adhesion site (MIDAS) 
ion (cyan), thus relaying the ligand occupancy state of αA to βA.
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state. Integrins stored in intracellular pools (for example, CD11b/
CD1818,110,111 and α

IIb
β

3
112) are also recruited to the cell surface in 

response to agonists, but this process appears to follow the switch 
of the integrin to the active state113,114.

The structural basis for integrin inside-out signaling is debated.  
Following publication of the bent ectodomain structure87, a 
“switchblade” model envisioned that in the bent state, the ligand-
binding site in βA (and αA in αA-containing integrin) is inac-
cessible to soluble ligand because of its proposed proximity to 
the plasma membrane. It is suggested, therefore, that the integrin 
linearizes to expose the ligand-binding site115, which also allows 
an approximately 80° swingout of the hybrid domain and a switch 
of βA into high affinity90 (Figure 5). An alternate βTD-centric 
deadbolt model116 proposed that the ligand-binding site in βA is 
already accessible to soluble macromolecular ligand in the native 
integrin117 and can assume high affinity in the compact structure118 
and that genuextension occurs following binding of ligands or 

ligand-mimetic drugs to the cellular integrin119. Movements of the 
membrane proximal βTD resulting from unpacking of the immedi-
ately distal TM segments disrupt βTD contacts with βA and hybrid 
domains, allowing the central switch of βA into the active state 
with minimal hybrid domain swingout118.

Both models are supported by experimental data. Two-dimensional 
imaging using negative-stain electron microscopy (EM) showed 
a greater proportion of extended integrin ectodomains in the  
presence of the metal ion Mn2+ (used as a mimic of inside-out sign-
aling), and hydrodynamic studies showed an increase in the stokes 
radius of the α

V
β

3
 ectodomain in Mn2+115. However, cryoelectron 

tomography showed that α
IIb

β
3
 maintained the compact (bent)  

conformation after Mn2+ activation in a membrane environment120. 
Differences in sample preparation, sampling bias in EM, and  
differences in ectodomain constructs may explain these discrep-
ancies. A recent EM study of full-length integrin α

IIb
β

3
 in lipid-

embedded nanodiscs showed a small increase in the extended 
conformation when the integrin was activated by talin121. More 
recently, negative-stain EM of membrane-embedded full-length 
α

IIb
β

3
 showed that the active ligand-free α

IIb
β

3
 is mainly bent 

but that the ligand-bound receptor is predominantly extended122.  
High-resolution quantitative dynamic footprinting microscopy 
combined with homogenous conformation-reporter binding assays 
showed that a substantial fraction of β

2
 integrins on the surface of 

human neutrophils assumed a high-affinity bent conformation123. 
Because of the profound influence of the TM domains on integrin 
activation by inside-out signaling, settling the ongoing debate 
regarding the structural basis of integrin activation will likely  
require a three-dimensional crystal structure determination of a full-
length native integrin in its native inactive and high-affinity states.

Ligand-bound integrins cluster, especially when occupied by  
multivalent ligands, and transduce outside-in signals leading 
to cell adhesion via new connections established between the  
integrin cytoplasmic tails and filamentous actin124. In migrating 
cells, inward movement of the actin cytoskeleton from the site of 
assembly at the leading edge toward the cell center generates a 
pulling force across the nascent-integrin-matrix linkages and this 
unbends the liganded integrin and strengthens adhesion at these 
sites by accelerating recruitment of additional cytoskeletal and sig-
naling proteins to the clustered integrins125. As this pulling force 
increases in the moving cell, integrin-ligand bonds eventually break 
and integrins are endocytosed and this allows rear detachment and 
directional cell movement at the leading edge. Known adaptor pro-
teins involved in integrin uptake and recycling have been recently 
reviewed126.

β2 integrins as therapeutic targets
Although β

2
 integrins are critical for innate and adaptive immu-

nity, they can also induce serious pathology if improperly  
activated. Hyperadherent leukocytes may, for example, bind and 
injure the blood vessel wall, leukoaggregate intravascularly result-
ing in blocked capillaries or emboli, or compromise immune  
surveillance, thus contributing to inflammatory and autoimmune 
diseases. The finding that CD18 deficiency impaired the inflam-
matory response suggested that knockout of CD18 or CD11 or 

Figure 5. Structural changes in the βA domain following ligand 
binding. The superposed structures of βA domain of the β3 subunit 
in its unliganded (pdb 3ije) state and bound to cacodylate (acting 
as a pseudoligand, L) (pdb 1ty3) are shown in magenta and green, 
respectively. The main movements involve the α1 and α7 helices, 
loop F-α7, and the hybrid domain. In the unliganded state, helix α1 
and Fα7 loop are connected via the adjacent to MIDAS (ADMIDAS) 
ion (magenta), and no metal-ion-dependent adhesion site (MIDAS) 
or ligand-associated metal binding site (LIMBS) atoms are detected. 
In the liganded state, a ligand oxygen coordinates MIDAS, and the 
α1 helix moves inwards (reported by tyrosine 122, Y122), bringing 
the ADMIDAS ion closer to the MIDAS ion and breaking the ionic 
contact with the F-α7 loop. These changes are coupled with a 
one-turn descent of the α7 helix and a 135° swingout of the hybrid 
domain in structures lacking the integrin leg domains.
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inhibiting their functions in leukocytes using antibodies may be 
beneficial in treating inflammatory or autoimmune diseases7. A 
similar logic has been successful in targeting platelet α

IIb
β

3
 to 

inhibit pathologic thrombosis and this resulted in two orthosteric 
inhibitors, eptifibatide and tirofiban, and an allosteric inhibitor 
Abciximab, all three in clinical use127.

Genetic deficiency of CD18, CD11a, or CD11b or targeting β
2
 

integrins with various inhibitory antibodies in rodents ameliorated 
ischemia-reperfusion injury (IRI) in heart attacks, cerebral stroke, 
burns, and traumatic shock as well as autoimmune injury of the 
brain (multiple sclerosis), lung (asthma), and skin (psoriasis) and 
in native or transplanted kidneys (reviewed in 128). However, 
humanized forms of these mAbs failed when tested in patients with 
myocardial infarction, stroke, traumatic shock, multiple sclerosis, 
asthma, or acute rejection (reviewed in 128). An anti-CD11a mAb 
that showed promise in treating psoriasis was withdrawn because 
of fatal brain infections resulting from reactivation of JC virus129. 
Inadequate design of some of the trials128, important differences in 
immune responses between rodents and humans130, and the relatively 
short follow-up period in the preclinical studies may have contrib-
uted to these failures. In addition, most clinical studies evaluating 
IRI syndromes used anti-CD18 antibodies, which might have acted 
allosterically to switch the integrin into the active proadhesive 
state. This scenario has precedence in β

3
 integrin-targeted mAb 

or small-molecule drugs, which act as partial agonists, unbend-
ing the integrin, thus exposing neoepitopes recognized by natural  
antibodies and leading to immune thrombocytopenia and bleeding, 

or inducing proadhesive outside-in signaling leading to paradoxical 
thrombosis131,132. Therefore, recent attempts have been made to  
solve the problem of partial agonism, making use of the advances 
made in structural biology of integrins. The central role of the  
A-domain in integrin activation and signaling made it a main 
focus of drug development efforts. The non-RGD-containing 
small molecules RUC-1, RUC-2, and UR-2922 were identified 
and act by inserting into the arginine-binding pocket in the propel-
ler domain133,134, thus interfering with the stable binding of RGD- 
containing ligands. RUC-2 also binds to the β3 MIDAS residue  
E220 thus displacing the Mg2+ at MIDAS133. In vivo studies  
of RUC-1 administered intraperitoneally demonstrated anti- 
thrombotic effects in microvascular injury models in mice135.

We have approached the problem of partial agonism by identi-
fying orthosteric inhibitors of integrin β

2
 (mAb107,117) and β

3
 

(a mutant high-affinity form of fibronectin-10, hFN10136) that do 
not induce the activating proadhesive changes in the αA or βA 
domains, respectively. mAb107 stabilized the inhibitory Ca2+ in 
place of the proadhesive Mg2+ at the CD11bA MIDAS, freezing  
the β

2 
integrin CD11b/CD18 in the inactive conformation117  

(Figure 6a). hFN10 bound the βA MIDAS of integrin α
V
β

3
 and 

blocked the activating inward movement of the α1 helix (Figure 6b), 
which is critical for integrin unbending and outside-in signaling136.  
In vivo studies in monkeys showed that mAb107 ameliorated 
leukocyte-mediated inflammation in a severe IRI kidney model,  
salvaging kidney function from otherwise irreversible failure several 
months after a single injection of the mAb at the onset of IRI137.

Figure 6. Structural basis of integrin inhibition by “pure” orthosteric inhibitors. (a) Ribbon drawing showing structure of αA from the β2 
integrin CD11b/CD18 bound to the pure ligand-mimetic antagonist mAb107 (in magenta). For clarity, only the ligand Asp of mAb107 is shown. 
The unusual symmetric bidentate ligation of the antibody-derived ligand Asp to a hepta-coordinated metal-ion-dependent adhesion site 
(MIDAS) Ca2+ (blue sticks) prevents the tertiary changes associated with Mg2+-dependent ligand binding. The superposed structure in gray 
is that of unliganded αA from CD11b/CD18. (b) Structure of unliganded βA from αVβ3 (pdb 3ije) (gray), superposed on the structure of βA in 
complex with a fibronectin-10-derived “pure antagonist” (magenta). Only the RGDW residues (in ball and stick) from ligand are shown (pdb 
4mmz). Ligand-associated inward movement of the α1 helix and the resulting activating tertiary changes are prevented by a π–π interaction 
involving the ligand tryptophan (W) and βA’s tyrosine 122 (Y122). The ionic bridge (dashed red lines) between α1 and α7 helices is unaffected 
by binding of the pure orthosteric inhibitor. The metal ions at ADMIDAS, MIDAS, and LIMBS are in magenta (or gray), cyan, and dark gray, 
respectively.
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Conclusions
Much has been learned since Cohnheim’s and Metchnikoff’s 
respective descriptions of leukocyte transendothelial migration 
and phagocytosis. The receptors involved have been identified, 
their critical role in innate and adaptive immunity defined, and 
their structures elucidated, revealing the atomic basis for their 
Mg2+ dependency, ligand binding, and activation. Although putting 
the myriad interactions mediated by integrins into structural and 
biologic contexts remains a major challenge, the recent advances 
already made form a basis for structure-based discovery of effec-
tive and safer anti-inflammatory and anti-thrombosis therapeutics 
targeting these dynamic receptors.
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