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Abstract
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Background: Retinal blood vessel segmentation has an important guiding significance for the analysis and
diagnosis of cardiovascular diseases such as hypertension and diabetes. But the traditional manual method of retinal
blood vessel segmentation is not only time-consuming and laborious but also cannot guarantee the accuracy and
efficiency of diagnosis. Therefore, it is especially significant to create a computer-aided method of automatic and

Methods: In order to extract the blood vessels’ contours of different diameters to realize fine segmentation of retinal
vessels, we propose a Bidirectional Symmetric Cascade Network (BSCN) where each layer is supervised by vessel
contour labels of specific diameter scale instead of using one general ground truth to train different network layers. In
addition, to increase the multi-scale feature representation of retinal blood vessels, we propose the Dense Dilated
Convolution Module (DDCM), which extracts retinal vessel features of different diameters by adjusting the dilation
rate in the dilated convolution branches and generates two blood vessel contour prediction results by two directions
respectively. All dense dilated convolution module outputs are fused to obtain the final vessel segmentation results.

Results: We experimented the three datasets of DRIVE, STARE, HRF and CHASE_DB1, and the proposed method
reaches accuracy of 0.9846/0.9872/0.9856/0.9889 and AUC of 0.9874/0.9941/0.9882/0.9874 on DRIVE, STARE, HRF and

Conclusions: The experimental results show that compared with the state-of-art methods, the proposed method
has strong robustness, it not only avoids the adverse interference of the lesion background but also detects the tiny

Keywords: Retinal vessel segmentation, Bidirectional symmetric cascade network, Specific diameter scale, Dense

Background

A new study published in the British "Lancet Global
Health" predicts that if the treatment of eye diseases is not
improved by better funding, the number of blind people
worldwide will increase to 115 million by 2050, 2.2 times
more than the current 36 million [1]. In fact, Retinal vessel
disease in the fundus is one of the vital causes of blind-
ness and many can be prevented in advance by fundus
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retinal examination among a large number of irreversible
blinding diseases.

The retinal vessel is the only clear blood vessel that
can be observed by non-invasive means. Current medical
research shows that the abnormality of retinal vascular is
not only manifested in ophthalmic diseases such as glau-
coma and cataract but also directly related to the severity
of cardiovascular diseases such as hypertension, coronary
heart disease, diabetes, atherosclerosis [2]. The morpho-
logical structure of retinal blood vessels in fundus can
reflect the condition of the blood vessels in the eyes and
around the body. It can predict, diagnose and prevent
cardiovascular diseases effectively by analyzing the reti-
nal images [3]. Therefore, the research of retinal vessel
segmentation technology is helpful to automatically and
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quickly obtain the morphological structure of blood ves-
sels in retinal images and has extremely crucial clinical
significance and practical value for assistant diagnosis and
treatment of various related diseases [4].

Retinal blood vessels are usually segmented manually
by ophthalmologists relying on experience in the past.
But it is difficult to completely segment retinal blood ves-
sels due to the intricate distribution of vessels [5], the
low contrast between vessel and background, and lesion
interference and uneven illumination in fundus images.
In addition, manual labeling has greater subjectivity. As
shown in Fig. 1, the manual segmentation results of the
same retinal image by the two experts are not the same.
Generally speaking, the traditional manual method of reti-
nal blood vessel segmentation is not only time-consuming
and laborious but also cannot guarantee the accuracy
and efficiency of diagnosis [6]. Therefore, it is particu-
larly important to create a computer-aided method of
automatic and accurate retinal vascular segmentation.

Aiming at the above problems, many researchers pro-
posed to adopt deep learning methods for retinal blood
vessel segmentation. However, due to the difference in
morphological scale in diameter, tortuosity, branching
pattern or angles of the blood vessels, most methods can
segment the thick and obvious blood vessels, but cannot
segment the tiny blood vessels accurately. In addition, the
predicted segmentation results are unsatisfactory when
training the different network layers by a general retinal
vessel’s ground truth. Because of the difference in recep-
tive fields, the lower layers of the network can obtain more
local image information, while the higher layers capture
object-level information by a larger receptive field. Dif-
ferent network layers can extract feature information of
different scales respectively, so it is not wise to use the
same supervision to train different network layers.

In this paper, we innovatively introduce cascaded net-
works into the vessel segmentation task and propose
a Bidirectional Symmetric Cascade Network (BSCN) to
segment the retinal vessels more effectively. First, the orig-
inal fundus image is input into the scale detection module
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to extract vascular features of different diameter scales,
and each scale detection module generates two blood ves-
sel contour prediction maps from the low layer to the high
layer and from the high layer to the low layer. The final
blood vessel segmentation result is calculated by convo-
lution fusion of the blood vessel contour prediction maps
generated by all the intermediate layers at last. To the
best of our knowledge, this is the first time to adopt the
bidirectional symmetric cascade network for retinal vessel
segmentation.

The three creative points of this paper are summarized
as follows:

1) This paper creatively transforms retinal vessel seg-
mentation into a multi-scale contour detection problem,
improves the VGG16 network, and designs a lightweight
network structure of Scale Detection Block (SDB) for
retinal vessel segmentation.

2) In order to better capture the richer details of reti-
nal vessels and make full use of the multi-scale features
of blood vessels, we propose a Dense Dilated Convolution
Module (DDCM). The tiny and blurred blood vessel infor-
mation is captured by using multiple dilated convolutions
of different dilation rates without significantly increasing
the network parameters.

3) So as to allow each layer in the CNN to perform
specific supervised training and adaptively learn the scale
information from each layer, this paper proposes the Bidi-
rectional symmetric cascade network (BSCN) architec-
ture. To achieve multi-scale retinal vessel segmentation,
it consists of several DDCM inserted into the SDB con-
structed by the VGG block. The bidirectional cascading
structure allows each layer of the network to focus on
learning vessel feature at a specific scale, better opti-
mizing the training process and avoiding computational
redundancy.

The organization of the paper is as follows. “Related
work” section introduces the related work of retinal blood
vessel segmentation. “Methods” section describes the pro-
posed method in detail, including the overall architec-
ture of the bidirectional symmetric cascade network, the

(a) (b)

Fig. 1 Comparison of two manual segmentation results of the retinal. a original image b 1st manual label € 2nd manual label
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scale detection module and the dense dilated convolu-
tion module. “Results” section introduces the experimen-
tal dataset, environment setup, evaluation metrics and
analysis of experimental results. “Discussion” section dis-
cusses the advantages of our method over other methods.
“Conclusions” section provides a conclusion with the
future work plan.

Related work

Unsupervised method

The unsupervised segmentation method does not need
prior labeling information and extracts the color, tex-
ture and other feature representation of the blood vessel.
According to different image processing methods, it can
be subdivided into the model-based method [7], vascular
tracking [8] , matched filtering [9] and mathematical mor-
phology [10]. Zhao et al. [11] applied level set and region
growth to segment retinal blood vessel. Nayebifar et al.
[12] used particle filtering to track the retinal vessel paths
for automatic blood vessel segmentation. The method can
describe the structure of the vascular network compre-
hensively, and the adaptability is good, but the compu-
tation amount is large and depends on the selection of
the initial seed point and direction. Moreover, the branch
points of the blood vessel and the low-contrast blood ves-
sels cannot be segmented effectively. Azzopardi et al. [13]
introduced B-COSFIRE filters to automatic vessel trees
segmentation. The filter gets orientation selectivity by cal-
culating the output of a pool of Difference-of-Gaussians
filters, and achieves retinal segmentation by adding up the
responses of the two rotation-invariant B-COSFIRE fil-
ters and threshold processing. This method got a good
segmentation effect for healthy images, but the false pos-
itive rate is too high for pathological images. Mendonca
et al. [14] realized automatic blood vessel segmentation by
combining the extraction of blood vessel centerline and
morphological reconstruction. This method is ineffective
in the segmentation of micro-vessels and has the mistaken
examination of the optic disc, lesions and background.
Fraz et al. [15] used center line detection combined with
position plane morphological transformation for vessel
segmentation. This method is fast and efficient and can
suppress noise better, but it does not consider the signifi-
cant features such as blood vessel profile, and the selection
of structural elements is more stringent [16].

Supervised method

Supervised methods mainly train classifiers based on
extracted features to classify non-vessel and vessel. Ricci
etal. [17] used line operation combined with support vec-
tor machine (SVM) to learn samples. The feature extrac-
tion is simple and the required samples are few. Marin
et al. [18] proposed a multilayer feed-forward neural net-
work to detect retinal blood vessel. The neural network
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can be trained on only one database but get good segmen-
tation results on multiple databases. Wang et al. [19] put
forward a hierarchical retinal blood vessel segmentation
method. Firstly, they used the histogram equalization and
Gauss filtering to enhance the green channel, then adopt
a simple linear iterative cluster (SLIC) method to segment
the super-pixels. Finally, they applied convolutional neural
networks (CNN) to extract hierarchical features and clas-
sify them with random forests. This kind of surveillance
method is to extract the relevant features after getting the
corresponding calibrated vascular segmentation results,
and then use the classifier to train. Jiang et al. [20] divided
the entire image into multiple image patches and pro-
posed a fully convolutional network with transfer learning
to segment the retinal blood vessels. The method requires
image preprocessing with contrast enhancement, data
augmentation, network training and testing, small slices
merging and post-processing with de-noising, where pre-
processing and post-processing requires human manipu-
lation, thereby increasing subjective factors and consum-
ing time.

These classification models depend on the quality of
manual feature selection and need many pre-segmented
retinal vessel images as training samples to ensure the
accuracy of the model, which requires high requirements
for medical images.

Deep learning algorithm has been popular with aca-
demic and industry in recent years. It combines shallow
features to form abstract deep features, and then dis-
covers the distributed features of data. Compared with
traditional methods, deep learning allows computers to
learn from observation data and solve problems on their
own according to the learning results. Liskowski et al. [21]
extracted image patches from large images for data aug-
mentation and used deep neural network for retinal vas-
cular segmentation. Fu et al. [22] transformed the vascular
segmentation to a boundary detection problem. The seg-
mentation probability map was generated by holistically
nested edge detection (HED), and then the binary seg-
mentation results were obtained by conditional random
field (CRF). Khalaf et al. [23] simplified the structure of
CNN to distinguish the big vessels, small vessels and back-
ground in fundus images, and adjusted the convolution
cores of different sizes. Ngo et al. [24] proposed a max-
resizing technology to improve network training, which
achieved good segmentation effect in DRIVE dataset [25].

Full convolutional network (FCN) [26], as an impor-
tant branch of deep learning, is proposed based on image
semantic segmentation. Ground truth is used as the super-
visory information training network, which makes the
network predict at the pixel level, and further extends
the classification at the image level to the classification at
the pixel level. U-Net [27] model is a semantic segmenta-
tion network based on FCN, which is suitable for medical
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image segmentation. The network adopts the structure of
encoder and decoder. The spatial dimension of the pool-
ing layer is gradually reduced by the encoder, and the
details and spatial dimension of the image are gradually
restored by the decoder. In addition, the skip connection
between the encoder and decoder is also used to help the
decoder repair the details of the target better. Jin et al. 28]
proposed DUNet for retinal vessel segmentation in an end
to end manner and experimented on DRIVE [25], STARE
[29] and CHASE_DBI [30] dataset. Laibacher et al. [31]
improved the traditional U-Net and proposed M2U-net,
added the pre-training component of MobileNetV2 in
the encoder part, added the new bottleneck block in
the decoder part, and integrate with bilinear sampling,
reduced the number of parameters greatly. Inspired by the
success of ResNet [32] and R2U-Net [33], Zhuang et al.
[34] proposed LadderNet for retinal blood vessel. Unlike
U-net, LadderNet has many pairs of encoder-decoder
branches and skips connections between each pair of
adjacent decoders and decoder branches at each level.
In addition, LadderNet uses modified residual blocks, in
which two convolution layers share the same weight. Gu
et al. [35] proposed CE-Net for medical image segmenta-
tion which adopted pre-trained ResNet block in the fea-
ture encoder and applied dense atrous convolution block
and residual multi-kernel pooling in context extractor. Hu
etal. [36] proposed a multiscale CNN architecture with an
improved cross-entropy loss function and fully connected
conditional random field (CRF) to detect hard examples
and more details in fundus images. Mo et al. [37] intro-
duced a multi-level deep supervised network to retinal
vessel segmentation. This method does not rely on manual
features, which reduces the impact of subjective factors.
Chen et al. [38] applied prior knowledge to feature learn-
ing of deep neural networks and proposed a labeling-free
approach for retinal blood vessel segmentation.

Although the existing deep learning method can learn
the vessel features by increasing the depth of the network,
it is easy to ignore the elongated blood vessel structure,
resulting in inconspicuous segmentation results. In addi-
tion, most methods have better segmentation results on
healthy fundus images while the segmentation perfor-
mance of lesion images is not desirable.

We are looking forward to getting a retinal vessel seg-
mentation method that overcomes the shortcomings of
traditional unsupervised and supervised methods. There-
fore, a bidirectional symmetric cascade network is pro-
posed in this paper to achieve accurate vessel segmenta-
tion of fundus image.

Methods

Formulation

Let (X, Y) represent the image pair on the training set 7,
which X = {x;,i = 1,...,m} represents the input fundus
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image, Y = {y;,i = 1,...,m,y; € (0,1))} representing the
ground truth corresponding to the fundus image. Since
the diameters of the retinal blood vessels are different,
the blood vessel edges are decomposed into many binary
contour maps according to the width of the retinal image
blood vessels, i.e.,

D
Y=>3 Y (1)
d=1

where Y,; denotes the vessel contour labeling image with
diameter d.

The goal of this paper is to learn a vessel contour detec-
tor C(-) capable of detecting different diameters by train-
ing deep neural networks. Specifically, this paper needs
to build a deep convolutional neural network with D con-
volutional layer, in which different convolution layers can
adaptively learn the scale information from each layer to
describe the retinal vessel contours of different diameters.

For a training image X, assuming that the feature map
output by the d — th convolutional layer is My(X) €
RP>wWxh pM(X) as an input to build a vessel contour
detector C(-), the loss function of the layer is expressed as

La= ) |Pa—Yal, (2)
XeT
where P; = C4(M;(X)) represents the prediction results
of blood vessel contour with vessel diameter of d. Thus,
the final vessel contour detector is formulated as the sum
of the contour detectors learned from diameter scale 1 to
D, then the global loss function is formulated as

D

La=) (Pa— Y. 3)

d=1
Y, should be known in advance in order to calculate
the loss function. Obviously, it is unrealistic to artificially
decompose the ground truth of the retinal image to dif-
ferent diameter scales, which makes it difficult to obtain
a blood vessel contour label with a diameter scale of d.
We consider that the difference between ground truth
and other layer contour prediction results can be used to
approximate the vessel label Y, of the specific diameter

scale of the d — th layer, i.e.,

Yy~Y=) P (4)
id

However, we found that the blood vessel contour label
obtained by Eq. (4) does not adaptively learn the diame-
ter scale information that the convolution layer itself can
capture after the following proof. According to Eq. (4),
for a training image, the blood vessel contour prediction
result of d — th layer approximates the ground truth of the
blood vessel contour at layer d, ie, Y; ~ Y — Z#d P;.
The vascular contour prediction results of the previous
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convolution layers are transmitted to d — th for training.
, and get the equivalent formula ,i.e., Y ~ Zflzl P;. Then
the loss function of Eq. (3) is converted to L = L(Y,,Y),
where Y, = Zle P;. According to the chain rule, the
gradient of blood vessel contour prediction result Py is

L) ALYY)) ALY Y))  d(Y)
D ) Y,

From Eq. (5), the gradients of the vascular contour
prediction results P; and P, generate for any two con-
volutional layers i and d(i # d) are consistent because
a0H  _ 90"
3P = AP
according to Eq. (4) has been supervising each convolu-
tion layer with the same label, and it cannot adaptively
learn the blood vessel diameter scale information suitable
for each layer.

Aiming at the above problem, we decompose the vessel
contour label Y into two complementary supervisions,
one of which ignores vessels with diameter scales smaller
than d and the other ignores vessels with diameter scales
greater than d. These two-supervision train two vessel
contour detectors on each diameter scale. In fact, the
supervision refers to the prediction of the blood vessel
contour of each intermediate layer. We define two com-
plementary supervises of the vessel contour label Y,; with
diameter scale d as

(5)

= 1. That is to say, the training process
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yi2h—y - Z PP
i<d (6)
vl —y - Z pr
i>d

The superscript [2/ indicates the information dissemina-
tion from low layers to high layers of the network, 42/
indicating the information dissemination from high layers
to low layers of the network. For the blood vessel contour
prediction results with diameter scale d , Pffh and PZ” are
approximately equal to Y{?h and Y:;Zl
sum of the two is similar to Yy, i.e.,

12h h2l [2h 42l
Y+ Y~y =Y PP - P
i<d i>d

respectively, so the

7)

Therefore, we use Y{?h + YL?ZI to represent the blood vessel
contour prediction results with diameter scale of d .

Network architecture

According to Eq. (7), we propose a bidirectional symmet-
ric cascade network architecture for retinal blood vessel
segmentation. The overall architecture of bidirectional
symmetric cascade network is shown in Fig. 2. As shown
in Fig. 2, the network framework is composed of five
scale detection blocks, and each scale detection blocks
generates two different blood vessel contour prediction

low to
high

Scale Detection
Block 1

Block 2

6.

Stride=2

Input image

high to
low

Stride=2

Ground truth of
retinal blood vessel image

—_—— — — —

f

Max-pooling Scale Detection Max-pooling Scaje Detection Max-pooling Scale Detection Max-pooling Scale Detection
Stride=2

Block 3 Block 4 Stride=2 Block 5

Ground truth of
retinal blood vessel image

Fig. 2 The overall architecture of the bidirectional symmetric cascade network
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Fig. 3 The detailed architecture of the bidirectional symmetric cascade network

Side Loss Side Loss Side Loss

maps through two paths from lower layers to higher layers
and from high layers to low layers. Specifically, the net-
work improves the original VGG 16 [39] by removing the
three fully connected layers and the last pooling layer, and
then divides the remaining 13 convolutional layers into
five VGG blocks, each block followed by a max-pooling
layer to increase the receptive field of the next block.
Inserting a dense dilation convolutional module after the
VGG block to make it a scale detection module. The
details of the bidirectional symmetric cascade network
and the dense dilated convolution module are shown in
Figs. 3 and 4.

Scale Detection Block The scale detection block is the
basic constituent unit of this network. Each scale detec-
tion module ultimately generates two vessel contour pre-
diction maps. As shown in Fig. 3, each scale detection

block consists of several convolutional layers, each fol-
lowed by a dense dilation convolution module. The out-
puts of the multiple dense dilation convolution modules
are fused into two convolutional layers to produce two
1x 1 vessel contour prediction results Pf}h and PZZZ respec-
tively. For the d — th scale detection block, the supervision
Yallzh and Yé’zl calculated by Eq. (6) is used for training Pffh
and PZZZ . P?h is one of the outputs of the first stage, and
resolution of the blood vessel contour prediction map is
consistent with the original image, so no upsampling is
required. Pll% is sent to all later stages and is added to
the upsampled output of other scale detection modules to
compute loss function from low layers to high layers at the
current diameter scale. The final blood vessel contour pre-
diction result is calculated by 1 x 1 convolution fusion of
the blood vessel contour prediction map generated by all
the intermediate layers.

Feature Map
3x3 Conv 3x3 Conv 3x3 Conv
Rate=1 Rate=2 Rate=4
Channel=32 Channel=32 Channel=32

1x1x21 Conv

Feature Map

Fig. 4 The detailed architecture of the dense dilation convolution module

3x3 Conv 3x3 Conv
Channel=32 Channel=32 sep
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Dense Dilated Convolution Module Inspired by
Inception-Resnet [40] and dilated convolution, we
propose a dense dilated convolution module. This mod-
ule after the VGG block to enhance the multi-scale
representation of the retinal blood vessel image. A two-
dimensional feature map x € RL*H as an input for the
convolution filter w € R | the dilated convolution

output y € RE X at location (i, j) is
Lh
Yij = Zx[i+rq,j+rq] ® Wpq (®)
pa

where r is the dilation rate, representing the stride of sam-
pling input feature map. Equation (8) can be converted
to a standard convolution when r = 1 . Equation (8)
shows that the dilation convolution effectively increases
the receptive field of neurons without significantly reduc-
ing the retinal feature map resolution and increasing the
convolutional neural network parameters.

As shown in Fig. 4, each of the dilated convolutions in
the dense dilated convolution module is stacked in cas-
cade. This module contains convolution branches with
different dilation rates, and the rates are increased from
1, 2, 4 to 2¢1 respectively. For the k — th convolution,
we set the dilation rate as r, = 251, which k repre-
sents the number of convolution layers. 1 x 1 convolution
is used for linear activation in each dilated convolution
branch. Generally, large receptive fields extract abstract
features at the object level, and small receptive fields pay
more attention to the details of images. The dense dilated
convolution module formed by combining dilated con-
volution branches of different dilation rates can extract
retinal vessel contour features of different diameters for
more fine segmentation.

Loss Function Since there are two paths from low to high
and high to low in the network, each scale detection block
has two side loss. In addition, the ten retinal vessel con-
tour prediction maps generated by the five scale detection
blocks are fused to get the fusion layer loss. Therefore, the
overall loss of the network consists of side loss and fusion
layer loss, it can be formulated as

L = Wsige ® Lsige + Weyse ® quse (P Y) 9)
D
Lyige = Y LPFL Y +L@PL Y (10)
d=1
quse =|P-Y] (11)

where Ly, and Ly, represent the weight of the side loss
and the fusion layer loss respectively. P indicates the final
retinal vessel contour prediction map. The loss function
L(-) is calculated by the difference between the predicted
value and label of each pixel in fundus images. There is

Page 7 of 22

a great imbalance between vessels and non-vessels, the
training result tends to be more prone to non-vessel if
not consider the sample balance issue. To solve the poten-
tial over-fitting problem, we use a class-balanced cross-
entropy function as L(-) . In addition, since the diameter
of the retinal blood vessels is different in width, a thresh-
old 7 is introduced to calculate loss function to divide
the positive and negative class. Let a ground truth ¥ =
yii = 1,...,m,y; € (0,1))}, Y and Y~ denotes ves-
sel and non-vessel pixel, we define Y = {y;|y; > n} and
Y~ = {yily; = 0} ,the loss function is defined as

LY Y)=—B ) logyi—(1—p) Y log(1 —y)(12)
iey+t ey~
where Y* = {Y"|i = 1,...,m,y] € (0,1)} denotes retinal
blood vessel prediction maps,1—8 = Ae|YT|/Y and B =
|Y~|/Y are used to balance blood vessel and background
class in retinal blood vessel images.

Figure 5 shows the retinal vessel contours detected by
different dense scale detection modules. As can be seen
from Fig. 5, different dense-scale detection modules are
capable of extracting blood vessel information of different
diameter scales. From the top to the bottom, the low-
level scale detection module pays more attention to the
rich local details such as tiny blood vessels, while the
high-level scale detection module can extract the gen-
eral structure of the retinal vessels, and the contours of
the vessels with larger diameter scales are more sensitive.
Taking the middle image of Fig. 5 as an example, the high-
level detection module ignores the fine capillaries around
the bright spots, and the low-level detection module can
accurately extract them.

Results

Datasets

We experiment with our method on the three public
datasets: DRIVE, STARE and HRF. The DRIVE dataset
[25] is a color fundus library established by the Niemeijer
team in 2004 based on the screening of diabetic retinopa-
thy in the Netherlands. There are 7 fundus images of early
diabetic retinopathy, and 33 fundus images without dia-
betic retinopathy. It is divided into training set and test set,
each containing 20 images, and the resolution of images is
565 x 584.

The STARE dataset [29] consists of 20 fundus images
of which 10 images have lesions and 10 images without
lesions and the image resolution is 605 x 700. Each image
corresponds to two expert manual segmentation results.

The HRF dataset [41] consists of 15 healthy fundus
images, 15 diabetic retinopathy fundus images and 15
glaucoma fundus images with a resolution of 3504 x 2336.
Each image corresponds to an expert manual segmen-
tation result. It is the fundus images dataset of highest
resolution at present.
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DDC-1

DDC-2

DDC-3

DDC-4

DDC-5

12h
P

121 h2l
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Fig. 5 Examples of blood vessel contour detected by different dense dilated convolution module (DDCM). Each DDCM generates two blood vessel

contour predictions , P2 and PM?! | respectively

h2l 12h Dh2l
P P P

The CHASE_DBI1 dataset [30] includes 28 retinal
images taken from the eyes of 14 schoolchildren, which
the first 20 images are used for training, while the remain-
ing 8 images are used for testing. The resolution of each
image is 999 x 960.

Experiment settings

We experimented with the proposed method on the
Ubuntu 18.04 system with NVidia GeForce Titan graph-
ics cards with 16G RAM. This network uses VGG [39]
pre-trained on ImageNet as the backbone. The implemen-
tation of this network is based on Pytorch platform.

We set the threshold 1 used to calculate the loss func-
tion as 0.4 and the parameter A as 1.1. The weights wg;z,
and wf in the loss function are set as 0.5 and 1.2 respec-
tively. We adopt a small batch random gradient descent
method to achieve fast convergence of the network in the
training stage. The batch size is set to 8, and the initial

learning rate, momentum, and weight decay are set as
2¢73,0.9and 10~* . In addition, we use the multi-learning

strategy to update the learning rate. The learning rate is

. ower
iter P
max_iter ’

the initial learning rate multiplied by (1 —

where power is 0.9, the initial learning rate is 2¢~3, and the
maximum number of iterations is 150.

Due to the limited image of the DRIVE, STARE and HRF
datasets, it is necessary to enhance the original retinal
image. Firstly, we crop the retinal image and its corre-
sponding ground truth into 50 x 50 patches. Since there
are 20 images in DRIVE for training and validation, and
the remaining 20 images for testing, we randomly select
20,000 patches generated by 20 training/validation set
for experiments, of which 180,00 are used for training
and 2,000 are used for validation. Some image patches of
DRIVE and their corresponding ground truth are shown
in Fig. 6.

(@

(b)

Fig. 6 Image patches on DRIVE. a patches of the original image b ground truth patches corresponding to the original image
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Secondly, the training set and test set are not explic-
itly divided for STARE. There are two main strategies for
dividing the training set and test set at present. One is
to randomly select the image patches of the STARE for
training, but it will result in some overlap between the
training and test set. Another solution is to leave a valida-
tion method that only one image is tested, and the other 19
images for training. There is no sample overlap between
the training set and test set. Therefore, we choose the sec-
ond strategy to STARE. In addition, we crop the retinal
image and its corresponding ground truth into 50 x 50
patches.

Thirdly, we manually divided HRF into 38 train-
ing/validation sets and 9 test sets. Besides, we crop the
retinal image and its corresponding ground truth into
50 x 50 patches. During the experiment, we randomly
selected 40,000 patches in the training/validation set, of
which 36,000 patches for training and 4000 patches for
validation.

In addition, we use the following methods to achieve
data augmentation. Firstly, changing the contrast of the
original image. The saturation component and the lumi-
nance component in the HSV color space are changed
by exponential transformation, and the exponential coef-
ficient is from -0.6 to 0.8 in steps of 0.2. Secondly,
the original image is scaled from 0.75 to 1.05 in steps
of 0.05. Thirdly, rotating the original image from to in
steps of . Finally, moving the original image. The original
retinal image is translated from -80 pixels to 100 pix-
els in the horizontal and vertical directions, in steps of
20 pixels.

Evaluation metrics

The goal of retinal vessel segmentation is to get the seg-
mentation result of each pixel and determine whether the
pixel is blood vessel or background. By comparing the
ground truth (GT) with the segmentation results (SR),
there are four cases: True positive (TP), which indicates
the number of pixels that correctly divide the blood vessel
into positive categories: False Positive (FP), which indi-
cates that the background is misclassified into positive
pixels. True Negative (TN), which indicates the number of
pixels that divide the blood vessel into negative categories;
False Negative (FN), which indicates the number of pix-
els that correctly segment the background into negative
categories.

According to the above four quantitative indicators,
there are six evaluation indicators to evaluate the exper-
imental performance: Sensitivity (Se), Specificity (Sp),
Accuracy (Acc), Precision (Pr), F-Measure (F;) and Dice
coefficient. Their definitions are as follows:

TP

Se=——
TP + EN

(13)
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Sp = N (14)
P = IN + FP
TP+ TN
Acc = + (15)
TN + TP + FN + FP
P
Pr=—— (16)
TP + FP
2 x P S
= x Pr x Se (17)
Pr+ Se
2|GT (SR
Dice = AGT SR (18)
|GT| + ISR|

Sensitivity (Se) indicates the proportion of correctly seg-
mented blood vessel pixels to real blood vessel pixels, and
the Specificity (Sp) indicates the proportion of correctly
segmented background pixels to the real background pix-
els. The Accuracy (Acc) indicates the proportion of cor-
rectly segmented pixels to the total pixels of the image.
Precision indicates the proportion of correctly segmented
blood vessel pixels that are predicted to be blood ves-
sel pixels. Fj is the weighted harmonic mean of Precision
and Recall, and the Dice coefficient represents the ratio of
the ground truth to the intersection and the union of the
predicted segmentation results.

A receiver operating characteristic (ROC) curve is a
curve with true positive rate as the ordinate and false pos-
itive rate as the abscissa, which can visually indicate the
quality of the classifier. The value of AUC is the area under
the ROC curve. The value is between 0.5 and 1. The larger
the value of AUC, the better the algorithm works.

Performance of the proposed method

In order to evaluate the effectiveness of the proposed
method, Table 1 shows the performance comparison
results of the proposed method and the second expert
manual segmentation on the DRIVE, STARE, HRF and
CHASE_DBI datasets in evaluation metrics of Se, Sp, Acc
and AUC. Table 1 shows that the sensitivity, specificity

Table 1 Comparison of results between manual segmentation
and the proposed method on the DRIVE, STARE, HRF and
CHASE_DB1 datasets

Dataset Method Se Sp Acc AUC
DRIVE 2nd expert 0.7760 09725 09473 -
Proposed Method  0.8179 09879 09846 0.9874
STARE 2nd expert 08719 09388 09353 -
Proposed Method  0.8751 09894 0.9872 30.9941
HRF 2nd expert 0.8010 0.8011 09650 -
Proposed Method  0.8025 09854 0.9856 0.9882
CHASE_DB1  2nd expert 0.7686 09779 09560 -
Proposed Method  0.7972 07972 09889 0.9874
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and accuracy of the proposed method on all four datasets
are higher than those of the second expert, indicating that
our method has better ability of accurately classify the
blood vessel and the background, and has a lower false
positive rate than the second expert manual segmentation
result. As shown in Fig. 7, the AUC values of our method
are more than 0.98 on the three datasets, indicating that
the bidirectional symmetric cascade network has better
generalization ability.

Comparison with the state-Of-The-Art-Methods

Performance On DRIVE We compared the experimen-
tal results of the proposed method with existing methods
on the DRIVE dataset, and the segmentation results are
shown in Fig. 8. It can be seen from Fig. 8 that com-
pared with the other three models, the proposed method
is better for segmentation of tiny blood vessels which are
not easy to identify. R2U-Net proposed by Alom et al.
[33] is an end-to-end network architecture that includes
an encoder and a decoder. However, some blood ves-
sel detail information lost due to downsampling in the
encoding process, so that the small blood vessels in the
retinal image are not segmented. Jiang et al. [20] trans-
formed the traditional whole image segmentation prob-
lem into regional semantic element segmentation task,
and proposed a full convolutional neural network with
transfer learning method to achieve blood vessel segmen-
tation. However, the pre-training semantic segmentation
model of AlexNet is not sensitive to small objects, while
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the manually labeled ground truth images in the DRIVE
dataset contains abundant capillaries, which results in the
sensitivity of the method is not high enough to success-
fully segment the tiny blood vessels in the funds image.
Taking the 06_test image for example, due to the low
contrast between the blood vessels and the background,
and the rich capillaries in this image, it is difficult to
completely segment some fine blood vessel distal ends.
Although DUNet proposed by Jin et al. [28] can detect
thick blood vessel contours, it cannot accurately segment
the branches of blood vessels in the intricate intersec-
tion of blood vessels. However, the BSCN proposed in
this paper has multiple dense dilated convolution mod-
ules, which can adaptively extract retinal vessel features
of different diameters by dilated convolution with differ-
ent dilation rates. Therefore, the segmentation result is
more accurate. As can be seen from the sixth line of Fig. 8,
our method can not only segment the thick blood vessels
but also recognize the tiny blood vessels even difficult to
distinguish with eyes. This is not possible with the above
three models.

In addition, Fig. 9 shows segmentation results of DRIVE
in local detail areas. The first row shows the low-contrast
fine blood vessels, and the second row shows the blood
vessels at the intersection. As shown in the first row of
Fig’9, the method proposed by Jiang et al. [20], Jin et al.
[28] and Alom et al. [33] fail to capture the contour
information of the tiny capillaries around the optic disc,
but our method adaptively captures the retinal blood
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Table 2 Quantitative result comparison of different models on the DRIVE

Method Se Sp Acc Pr F Dice AUC
Zhaoetal. [11] 0.7420 0.9820 0.9540 - - - 0.8620
Azzopardi et al. [13] 0.7716 0.9710 0.9497 - - - 0.9563
Fraz et al. [15] 0.7152 0.9768 0.9430 - - - -
Jiang et al. [20] 0.7540 0.9825 0.9624 - - - 0.9810
Liskowski et al. [21] 0.7569 0.9816 0.9533 - - - 0.9744
Fuetal. [22] 0.7294 - 0.9470 - - -

Jinetal. [28] 0.7894 0.9870 0.9697 0.8537 - - 0.9856
Laibacher et al. [31] - - 0.9630 - - 0.8006 09714
Alom et al. [33] 0.8108 0.9871 0.9706 - 0.8155 - 0.9782
Zhuang(34] 0.7856 0.9810 0.9561 - 0.8202 - 0.9793
Hu etal. [36] 0.7772 0.9793 0.9533 - - - 0.9759
Mo et al. [37] 0.7779 0.9780 0.9521 - - - 0.9782
Chen et al. [38] 0.7295 0.9696 0.9449 - - - 0.9557
Proposed method 0.8179 0.9879 0.9846 0.8667 0.8236 0.8105 0.9874

vessel contours of different diameters by using multiple
scale detection blocks to segment the low-contrast tiny
blood vessels. As we can see from the second row of
Fig. 9, the model proposed by Jiang et al. [20], Jin et al.
[28] and Alom et al. [33] can only extract rough blood
vessel contour information at the intersection of multiple
blood vessels that are close to each other, and our method
can capture various diameter of retinal blood vessels and
successfully segment the blood vessels that seem to be
entangled but actually separated with the help of the dense
dilation convolution module. The experimental results in
Fig. 9 show that our method is better than the other three
methods in the case of low-contrast fine blood vessels and
complex interlaced vascular trees, and can achieve better
results.

Table 2 compares the quantitative result of our method
against the state-of-art methods in evaluation metrics.

As shown in Table 2, the proposed method reaches
0.8179, 0.9879, 0.9846, 0.8667 and 0.9874 on Se, Sp,
ACC, Pr and AUC, respectively, which are 0.0285, 0.0009,
0.0149, 0.0130, 0.0018 higher than those proposed by
Jin et al. [28].

Figure 10 shows the accuracy and loss comparison
results for the training and validation sets of the different
models on the DRIVE dataset. As shown in Fig. 10, com-
pared with other methods, the BSCN has higher accuracy
and lower loss in training and validation phase compared
with other methods. In the training phase, the accuracy
rate increased by 1.49%, while the loss was reduced by 12%
compared to Jin et al. [28]. In the validation phase, the
accuracy rate increased by 1.87%, and the loss was reduced
by 11% compared to Jin et al. [28].

In addition, we use the ROC curve to evaluate the dif-
ferent methods. The ROC curve on DRIVE is shown in
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Fig. 10 Accuracy and loss results comparison of different method on DRIVE dataset. a training set results on DRIVE b validation set results on DRIVE
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Fig. 7a. The closer the ROC curve is to the upper left
boundary, the more accurate the model is trained. It can
be seen from Fig. 7a that the ROC curve of the BSCN is
the curve of the top left corner of the four models, and
the curve of Alom et al. [33] is the lowest of the four
curves. The data in the lower right corner of Fig. 7a shows
that the area under the ROC curve of the BSCN is the
largest, followed by Jin et al. [28], and Alom et al. [33] is
the smallest.

Performance On STARE The STARE dataset contains
10 fundus images with different lesions and 10 healthy
fundus images. To demonstrate the validity of the pro-
posed method, Fig. 11 displays the comparison of the
experimental results of different models on 4 lesion
images and 2 healthy images. Image 44 is a fundus image
with retinitis, and the bright spots produce significant
background differences that result in many blood vessels
being discontinuous. The R2U-Net method proposed by
Alom et al. [33] lost some vascular context features in the
coding process, and thus failed to segment the discontin-
uous blood vessels. The convolutional neural network and
the fully connected condition method proposed by Hu
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et al. [36] has a poor smoothing ability on the bright spot,
which makes the segmentation results more disturbed by
noise and fails to segment the blood vessel accurately. The
scale detection module in our method has two feature
propagation paths from the low layer to the high layer and
from the high layer to the low layer, which can generate
blood vessel contour prediction maps of different scales,
effectively eliminating the influence of the bright spot
background and segment discontinuous blood effectively.

Image 77 is a fundus image with hypertensive Retinopa-
thy. Image 139 is a fundus image of the diabetic retinopa-
thy background, and the bright and dark spots in the
image greatly interfere with the process of vessel seg-
mentation. Image 324 is a fundus image of hollenhorst
plaque, which is difficult to identify the very tiny blood
vessel. The method proposed by Alom et al. [33] can only
detect the general contour of a blood vessel, but does
not recognize small blood vessels. Although Hu et al
[36] can segment the fine blood vessels, it cannot avoid
the influence of noise such as vascular discontinuity due
to background differences. Moreover, this method is so
sensitive to vessel-like lesions and vessels that easy to
be disturbed by the lesion and mistakenly recognize the
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Fig. 11 Qualitative results comparison of different methods on STARE dataset
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lesions as blood vessels, resulting in inaccurate segmenta-
tion results. The proposed method can not only segment
small blood vessels but also reduce the false positive rate.
Images 163 and 235 are normal fundus images. Alom
et al. [33] , Hu et al. [36] and our method are capable
of segmenting thick and slender blood vessels of healthy
images.

Therefore, Fig. 11 shows that for the normal fundus
image, the segmentation performance of our method and
the other two methods are not much different. For the
lesion images, the methods proposed by Alom et al. [33]
and Hu et al. [36] are susceptible to interference from
the lesion background. However, the robustness of the
proposed method is strong, and the blood vessel can be
accurately segmented under the condition of different
disease background interference.

Figure 12 shows the comparison of the experimental
results of the three methods in local detail areas. Sam-
ple 1 is a fundus image with arteriosclerotic retinopathy,
and a few bright spots easily interfere with the blood ves-
sel segmentation process. We select the local area around
the bright spot to analysis the segmentation effects. As
shown in Fig. 12, the R2U-Net method proposed by Alom
et al. [33] cannot smooth out the effect of highlight areas
on vessel segmentation, only the blurred contour of thick
blood vessels around the bright spot can be detected,
ignoring the existence of tiny blood vessels. The method
proposed by Hu et al. [36] is less robust, and it is easy
to misjudge the noise of bright spots as blood vessels,
resulting in inaccurate blood vessel segmentation. Sam-
ple 2 is a fundus image with central retinal artery and
vein occlusion with congestion around the optic disc.
We selected dark spots and areas around congestion for
comparison. Dark spots and congestion as the background
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of the lesions caused the blood vessels to discontinue,
increasing the difficulty of segmentation of the blood ves-
sels. The method proposed by Alom et al. [33] has the
under-segmentation problem, and it cannot identify dis-
continuous blood vessels that are interrupted by the lesion
background so that the sensitivity is reduced. The method
proposed by Hu et al. [36] is over-segment to the blood
vessel, and the background of lesions such as congestion
is mistakenly identified as blood vessels, which increases
false positives. However, our method can filter out the
influence of background noise on the blood vessels around
the optic disc, thus segmenting the discontinuous blood
vessels accurately.

Table 3 compares qualitative results of our model
against some existing methods in evaluation indicators.
As shown in Table 3, our method reaches 0.8751, 0.9894,
0.9872, 0.8547, and 0.9941 on Se, Sp, ACC, F1, and AUC,
respectively. Compared with the method proposed by
Alom et al. [33], the evaluation results are improved by
0.0643, 0.0023, 0.0166, 0.0151 and 0.0032, respectively.

Figure 13a and b show the accuracy and loss results
comparison of our method and other existing methods
in the training and validation sets of the STARE dataset,
respectively. It can be seen from the histogram that com-
pared with other methods, the bidirectional symmetric
cascade network proposed in this paper has higher accu-
racy and lower loss in the training and the validation
stage. The accuracy rate increased by 2.75%, while the loss
decreased by 11% compared to R2U-Net [33] in the train-
ing stage. The accuracy increased by 2.5% while the loss
was reduced by 12% during the validation phase compared
to R2U-Net [33].

Furthermore, we use the ROC curve to evaluate the
experimental method. The ROC curve on STARE is

(a) (b) (e

Original image Local detail area Ground truth

@ (e) (€]
Alom et al. [33]] Hu et al. [36] BSCN

Fig. 12 Local detail results comparison of different methods on STARE dataset
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Table 3 Quantitative result comparison of different models on the STARE

Method Se Sp Acc Pr Fi AUC
Zhaoetal. [11] 0.7800 0.9780 0.9560 - - 0.8700
Azzopardi et al. [13] 0.7716 0.9701 0.9497 - - 0.9563
Frazetal. [15] 0.7311 0.9680 0.9442 - - -
Wang et al.[19] 0.8104 0.9791 0.9621 - - 0.9751
Jiang et al. [20] 0.8352 0.9846 0.9734 - - 0.9900
Liskowski et al. [21] 0.8554 0.9862 0.9729 - - 0.9928
Fuetal. [22] 0.7140 - 0.9536 - - -
Jinetal. [28] 0.7428 0.9920 0.9729 0.8856 - 0.9868
Alom et al. [33] 0.8108 0.9871 0.9706 - 0.8396 0.9909
Hu et al. [36] 0.7543 0.9814 0.9632 - - 0.9751
Mo et al. [37] 0.8147 0.9844 0.9674 - - 0.9885
Proposed method 0.8751 0.9894 0.9872 0.9856 0.8547 0.9941

shown in Fig. 7b. It can be seen from Fig. 7b that the ROC
curve of the BSCN is the curve of the top left corner of the
three models, and the curve of Hu et al. [36] is the low-
est of the three curves. The data in the lower right corner
of Fig. 7b shows that the area under the ROC curve of the
BSCN is the largest, followed by Alom et al. [33], and Hu
et al. [36] is the smallest. The above data indicates that the
model trained using the BSCN is more accurate.

Performance On HRF Since current researchers rarely
conduct the experiment on HRF datasets, we only find
Jiang et al. [20] provide experimental quantitative results
without providing source code in the paper. So we can-
not reproduce the algorithm for experimental verification.
Therefore, Fig. 14 only compares the ground truth with
the experimental results of our method. The images 11h
and 12h are healthy fundus images, and the images 11g
and 12g are glaucoma fundus images. The images 10dr

and 12dr are fundus images of diabetic retinopathy. It can
be seen from the Fig. 14 that whether it is a healthy image
or a lesion image interfered by dark spots, our method can
eliminate noise interference and accurately segment the
fine capillaries, and the experimental effect is good.

Table 4 shows the performance comparison of the
method proposed by Jiang et al. [20] and our method. As
shown in Table 4, the proposed method reaches 0.8025,
0.9854, 0.9856 and 0.9882 on Se, Sp, Acc and AUC, respec-
tively, which are 3.39%, 0.28%, 1.94% and 1.12% higher
than those proposed by Jiang et al. [20].

Figure 7c shows the ROC curve of the different meth-
ods on HRF. As shown in Fig. 7c that the ROC curve of
the BSCN is the curve of the top left corner, and the curve
of Jiang et al. [20] is the lowest. The data in the lower
right corner of Fig. 7c shows that the area under the ROC
curve of the BSCN is the largest, and Jiang et al. [20] is the
smallest.
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Performance On CHASE_DB1 Figure 15 presents the
experimental results comparison of the proposed method
with the state of art methods on the CHASE_DBI1 dataset.
It can be seen from the original image in the first row
of Fig. 15 that the contrast of the blood vessel and the
background of the fundus image is low, and there is a
problem of significant noise and uneven illumination,
which undoubtedly brings difficulties to blood vessel seg-
mentation. As can be seen from the third, fourth and
fifth rows of Fig. 15, the proposed method can over-
come the above problems and achieves accurate segmen-
tation of tiny blood vessels when compared with the
other two methods. Jiang et al. [20] proposed combining
the fully convolutional network with transfer learning to
achieve vessel segmentation, however the images of differ-
ent datasets are different, when transfer the model trained
on the DRIVE or STARE dataset to CHASE_DB1 cannot
overcome the adverse effect of dark spots and resulting in
some noise in segment result. Although DUnet proposed
by Jin et al. [28] can segment blood vessels of different
shapes, it is difficult to avoid the influence of uneven illu-
mination, and the cross vessels at the highlight disc cannot
be accurately segmented. However, the bidirectional sym-
metric cascade network proposed in this paper adaptively
extracts retinal vascular features of different diameters by
dilated convolution with different dilation rates, and can
actually segment the blood vessel of different thicknesses
in the case of uneven illumination and low contrast.

Table 4 Quantitative result comparison of different models on
the HRF dataset

Method Se Sp Acc AUC
Jiang et al. [20] 0.7686 0.9826 0.9662 0.9770
Proposed 0.8025 097854 0.9856 0.9882

Table 5 compares the quantitative result of our method
against the state-of-art methods in evaluation metrics. As
shown in Table 5, the proposed method reaches 0.7972,
0.9896, 0.9889, 0.8205 and 0.9874 on Se, Sp, ACC, Pr
and AUC, respectively, which are 0.0643, 0.0023, 0.0028,
0.1and 0.0032 higher than those proposed by Jin et al. [28].

Figure 16 shows the accuracy and loss comparison
results for the training and validation sets of the differ-
ent models on the CHASE_DB1 dataset. As shown in
Fig. 16, compared with other methods, the BSCN has
higher accuracy and lower loss in training and valida-
tion phase compared with other methods. In the training
phase, the accuracy rate increased by 2.79%, while the
loss was reduced by 12% compared to Alom et al. [33].
In the validation phase, the accuracy rate increased by
3.01%, and the loss was reduced by 13% compared to
Alom et al. [33].

Furthermore, we use the ROC curve to evaluate the dif-
ferent method. The ROC curve on is shown in Fig. 7d. It
can be seen from Fig. 7d that the ROC curve of the BSCN
is the curve of the top left corner of the three models, and
the curve of Mo et al. [37] is the lowest of the four curves.
The data in the lower right corner of Fig. 7d shows that
the area under the ROC curve of the BSCN is the largest,
followed by Jin et al. [28], and Mo et al. [37] is the small-
est. The above data indicates that the model trained using
the BSCN is more accurate.

Ablation study

In order to verify the contribution of each part in our
method, this section performs ablation study. Compared
to the other three datasets, the DRIVE dataset has a clear
training set and validation set, so the following ablation
study is performed on the DRIVE dataset. First, we verify
the impact of the layer number k of dilated convolu-
tions in the dense dilated convolution module. As shown
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Fig. 15 Qualitative results comparion of different methods on CHASE_DB1 dataset
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in Table 6, as the number of dilated convolution layers feature map when k = 1. The performance of the network
increases, the number of dilated convolution branches to detect retinal contours can be significantly improved
with different dilation rates increases. The dilated con- when k > 1. However, it cannot be always increased. If is
volution becomes a normal convolution, and the input too large, it could not improve the performance of the net-
feature map is consistent with the resolution of the output ~ work, but reduce the segmentation accuracy. Therefore,

Table 5 Quantitative result comparison of different models on the CHASE_DB1

Method Se Sp Acc Pr Fr Dice AUC

Azzopardi et al. [13] 0.7585 0.9587 0.9387 - - 0.9487
Frazetal. [15] 0.7224 09711 0.9469 - - - 09712
Lietal.[9] 0.7507 0.9793 0.9581 - - - 09716
Jiang et al. [20] 0.8640 0.9745 0.9668 - - - 0.9810
Liskowski et al. [21] 0.7816 0.9836 0.9826 - - - 0.9823
Jinetal. [28] 0.8229 0.9821 0.9724 0.7510 - 0.9863
Alom et al. [33] 0.7459 0.9836 0.9622 - 0.7810 0.9803
Laibacher et al. [31] - - 0.9703 - - 0.8006 0.9666
Mo et al. [37] 0.8147 0.9844 0.9674 - - 0.9885
Proposed method 0.7972 0.9896 0.9889 0.8205 0.7560 0.8352 0.9874
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we set k = 5 in order to achieve the best experimental
results.

In addition, we compared different cascaded architec-
tures. Table 7 shows the unidirectional cascade from
low layer to high layer (L2H), the unidirectional cascade
(H2L) from high layer to low layer, bidirectional cascade
(L2ZH+H2L) and the benchmark, where the benchmark
refers to the VGG16 network removing the last three fully
connected and pooling layers. It can be seen from Table 7
that the experimental performance using only L2H or H2L
is superior to the benchmark. This indicates that the cas-
cade structure is sufficiently effective in the network. The
bidirectional cascade structure which combines L2H with
H2L structures gets the highest evaluation score, and thus
the experimental performance is the best.

In Table 8, we further verify the validity of the dense
dilated convolution module (DDCM) and the bidirec-
tional cascade structure composed of L2H and H2L. The
experimental results show that both the DDCM and bi-
directional cascade structure are superior to the bench-
mark, Acc, AUC and F1 score are increased from 0.9825,
0.9856 and 0.8217 to 0.9836/0.9842, 0.9864/0.9869,
0.8225/0.8239, respectively. The experimental perfor-
mance of BSCN is the best, and Acc, AUC and F1 are
reached 0.9847, 0.9875, and 0.8246, respectively. The

Table 6 Effect of parameters to vessel segmentation results on

the DRIVE

k rate Acc AUC F

1 1 0.9817 0.9804 0.8196
2 12 0.9825 0.97826 0.8207
3 124 0.9831 0.9837 0.8211
4 1248 0.9846 0.9874 0.8236
5 1,248,16 0.9846 0.9874 0.8236
6 1,2/4.8,16,32 0.9839 0.9865 0.8229

above ablation study shows that each component of the
proposed method contributes to different degrees of reti-
nal vessel contour detection, and combining bidirectional
cascading with dense dilated convolution modules gets
the best experimental results.

Computation time

The proposed method requires 10 h of training on a sin-
gle Nvidia GeForce Titan GPU. it takes 0.3 s to segment
a resolution fundus image. Table 9 shows the average
computation time comparison of different models for
retinal image vessel segmentation. The DUNet [28], M2U-
Net [31] and R2U-Net [33] all use the encoder and the
decoder structure to achieve vessel segmentation, while
the downsampling and upsampling process produce lots
of computational redundancy. Our method produces two
blood vessel contour prediction maps from the high-level
to the low-level and low-level to high-level paths in each
scale detection block. The final blood vessel segmenta-
tion results are calculated by convolution fusion of the
blood vessel contour prediction maps generated by all
the intermediate layers. The computational redundancy
of overlapping region features is reduced, thereby reduc-
ing computation time. As shown in Table 9, the average
computation time of the proposed method is the short-
est, which is 21.4 times faster than the calculation time of
Alom et al. [33].

Table 7 Verify different cascade networks in our method on
DRIVE

Architecture Acc AUC Fr

benchmark 0.9807 0.9844 0.8123
L2H 0.9822 0.9853 0.8147
H2L 0.9816 0.9861 0.8125
H2L+L2H(BSCN w/o DDCM) 0.9836 0.9872 0.8243
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Table 8 Verify DDCM and bidirectional cascade structure in our
method on DRIVE

Method Acc AUC F
benchmark 09825 0.9856 0.8217
DDCM 09836 0.9864 0.8225
H2L+L2H(BSCN w/0 DDCM) 09842 0.9869 0.8239
BSCN 09847 0.9875 0.8246
Discussion

The previous sections have introduced the network archi-
tecture and experimental results of the proposed method,
this section will discuss why the BSCD is superior to other
networks for retinal vessel segmentation.

In order to obtain more multi-scale features of retinal
vessels, some researchers have used very deep networks
such as ResNet50 [32] as the backbone framework for
vascular segmentation. However, deep networks tend to
have more parameters, making the network difficult to
train and predicting higher costs. Other researchers have
proposed vascular segmentation by constructing image
pyramids and incorporating multiple levels of features,
which leads to computational redundancy. The previous
CNN training strategy for vessel segmentation was to
supervise different network layers using a generic ground
truth of retinal vessels. However, different network layers
can obtain feature information of different scales, so it is
not optimal to use the same supervision to train different
network layers. In other words, the previous CNN method
forced each layer of CNN to predict the vessel contours of
all diameter scales, ignoring that a particular intermediate
layer only focused on vessel features of certain diameter
scales.

In order to avoid the problems of other CNN methods,
this paper first improves the original VGG16 by remov-
ing the three fully connected layers and the last pooling
layer, and then divides the remaining 13 convolutional

Table 9 Average computation time comparison for segmenting

an image

Type Method Computation time

Unsupervised Azzopardi et al. [13] 10s
Staal et al. [42] 1.5min

Patch-based supervised Tan et al. [43] 2.8s
Liskowski et al. [21] 92s
Jinetal. [28] 5.8s
Alom et al. [33] 6.42s
Ours 0.3s

Image-based supervised Hu et al. [36] 1.1s
Fu et al. [44] 1.3s
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layers into five VGG blocks, each block followed by a max-
pooling layer to increase the receptive field of the next
block, which uses a lightweight network structure for reti-
nal vessel contour detection. Secondly, in order to increase
the multi-scale feature representation of retinal blood ves-
sels, the Dense Dilated Convolution Module (DDCM)
proposed in this paper extracts the retinal vascular fea-
tures of different diameters by adjusting the dilation rates
in the dilated convolution branches, generating two vessel
contour prediction results from two directions respec-
tively. The outputs of all the dilated convolution modules
are fused to obtain the final blood vessel segmentation
results. Thirdly, each layer in the BDCN is supervised by
vessel contour label of a specific diameter scale, rather
than using a common ground truth to train different lay-
ers of the network, optimizing the training process and
avoiding computational redundancy.

In addition to comparison with convolution neural net-
work methods, it is also compared with traditional meth-
ods. Vessel Enhancement via Multi-dictionary and Sparse
Coding (VE-MSC) method proposed by Chen et al. [45]
obtains a representation dictionary and an enhancement
dictionary by extracting patches in the original blood
vessel images and label images. The representation dic-
tionary is used to obtain the sparse coefficients, and then
the vascular enhancement image is reconstructed by the
sparse coefficients and the enhancement dictionary. The
theoretical basis of this method is strong, which can
effectively improve the image contrast and enhance the
detailed information of blood vessels, but the generation
of the representation dictionary and enhancement dictio-
nary depends on the selection of image patches. Once
the image patch size selection is unreasonable, the cor-
responding vascular enhancement results may become
unsatisfactory. Figure 17 shows the experimental results
comparison on the DRIVE and STARE datasets using
Chen at al. [45] and our method. As can be seen from
the Fig. 17, Chen at al. [45] ignores the diameter scale
information of the blood vessels, making the originally
fine blood vessels become thicker after being enhanced.
In addition, there are lesions and optic disc informa-
tion showed in experimental results, indicating that the
method is susceptible to noise such as the background
of the lesion. The dense dilated convolution module pro-
posed in this paper extracts the retinal vessel features
of different diameters by adjusting the dilated rate in
the dilated convolution branch and generates two blood
vessel contour prediction results from two directions
respectively. Our method can accurately segment the
thick and fine blood vessels and avoid the adverse inter-
ference of the lesion background.

Furthermore, the Minimal Path Propagation with Back-
tracking (MPP-BT) approach proposed by Chen et al
[46] first used the Dijkstra algorithm to start the minimal
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(a) Original image(b) Ground truth (c) Chen et al. [45] (d) BSCN
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Fig. 17 Experimental results with VE-MSC [45] and proposed method on DRIVE and STARE datasets. a results on DRIVE b results on SATRE

path propagation from the initial point. The cost value
is calculated for each grid point that the propagation
front arrives, and then traced from each grid point to
the starting point based on the connection information
obtained in the previous minimum path propagation. If
the starting point is reached before the specified step,
the backtracking is stopped. This method can solve the
exiting endpoint problem, shortcut problem and accu-
mulation problems, and the information accumulation in
the backtracking process can be effectively applied to the
breakpoint connection and the construction termination
criterion to improve the blood vessel extraction ability.
However, this method does not apply to curve structures
with significant differences. For example, it will mistake
high-contrast edges or artifacts as a curve structure. Early
stop propagation may be happening when blood ves-
sels contains a highly complex topology. In addition, this
method requires manual selection of the initial point,
which undoubtedly increases the initiative of the algo-
rithm. However, each layer in the symmetric bidirectional
cascade network proposed in this paper is supervised by
the vessel contour labels of specific diameter scale, with-
out determining the initial seed point, which improves the
autonomy of the algorithm.

Conclusions

Aiming at the problem that the previous CNN-based
vessel segmentation method is difficult to accurately
segment the tiny blood vessels and is susceptible to
lesion interference, this paper proposes a bidirectional
symmetric cascade network to achieve accurate blood
vessels segmentation in retinal images. The bidirectional
symmetric cascade network is composed of five scale
detection blocks, and each of the two scale detection
blocks is connected by a max-pooling layer. In order

to fully learn the multi-scale features of retinal ves-
sels to segment retinal vessels of different widths, this
paper proposes the dense dilated convolution module.
The module extracts retinal vessel features of different
diameters by changing the dilation rate, and generates
two blood vessel contour prediction results from the low
layer to the high layer and the high layer to the low layer
of the network respectively. In addition, the proposed
method overcomes the problem that the segmentation
result is not ideal by using only one common ground
truth to train different network layers, and the specific
layer supervision is used to train each network layer,
allow each layer to focus more on the specific scale of
vascular features that it extracts. We performed exper-
iments on the DRIVE, STARE, HRF and CHASE_DB1
datasets. The experimental results show that compared
with other methods, our method can not only exclude the
lesion interference, but also accurately segment the fine
blood vessels in the retina, and the computation time is
shorter.

In order to more effectively balance the vascular and
non-vascular class differences, we are working on a more
efficient loss function to achieve more accurate blood ves-
sel segmentation in the future. In addition, we plan to
extend the BSCN framework to the 3D domain to achieve
accurate segmentation of 3D medical images.
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