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Abstract
Current approaches to study transcriptional profiles post influenza infection typically rely on

tissue sampling from one or two sites at a few time points, such as spleen and lung in

murine models. In this study, we infected female C57/BL6 mice intranasally with mouse-

adapted H3N2/Hong Kong/X31 avian influenza A virus, and then analyzed the gene expres-

sion profiles in four different compartments (blood, lung, mediastinal lymph nodes, and

spleen) over 11 consecutive days post infection. These data were analyzed by an advanced

statistical procedure based on ordinary differential equation (ODE) modeling. Vastly differ-

ent lists of significant genes were identified by the same statistical procedure in each com-

partment. Only 11 of them are significant in all four compartments. We classified significant

genes in each compartment into co-expressed modules based on temporal expression pat-

terns. We then performed functional enrichment analysis on these co-expression modules

and identified significant pathway and functional motifs. Finally, we used an ODE based

model to reconstruct gene regulatory network (GRN) for each compartment and studied

their network properties.

Introduction
Seasonal influenza infection affects 1 billion people annually, causing up to 500,000 deaths
each year [1]. The host immune response to infection involves multiple tissue compartments,
including the respiratory tract, peripheral blood, regional lymph nodes, and the spleen [2–4].

PLOSONE | DOI:10.1371/journal.pone.0138110 September 28, 2015 1 / 20

OPEN ACCESS

Citation: Qiu X, Wu S, Hilchey SP, Thakar J, Liu Z-P,
Welle SL, et al. (2015) Diversity in Compartmental
Dynamics of Gene Regulatory Networks: The
Immune Response in Primary Influenza A Infection in
Mice. PLoS ONE 10(9): e0138110. doi:10.1371/
journal.pone.0138110

Editor: Kevin Harrod, University of Alabama at
Birmingham, UNITED STATES

Received: January 27, 2015

Accepted: August 26, 2015

Published: September 28, 2015

Copyright: © 2015 Qiu et al. This is an open access
article distributed under the terms of the Creative
Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All microarray images
and processed data used in this study are publicly
available at the NCBI Gene Expression Omnibus
website under accession number GSE57455.

Funding: This research is partially supported by NIH
HHSN272201000055C, 5 R01 AI087135, R01-
AI091461, R01- AI069351 and 2 R01 HL062826-
09A2 from the National Institutes of Health; and the
University of Rochester CTSI pilot award
(UL1RR024160) from the National Center For
Research Resources and the National Center for
Advancing Translational Sciences of the National

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0138110&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Migration of immune cells between compartments is critical for establishing effective T and B
cell mediated immune responses, and creating adaptive immune memory as a protection
against further infection [5–8]. Within each tissue compartment, affected and responding cells
(e.g. CD4 and CD8 T cells, respiratory endothelium, B cells) exhibit different phenotypic and
functional activities. These compartment-specific activities also vary over the time-frame of the
immune response [3, 8–13]. Thus, understanding the dynamic patterns of gene expression
within each compartment, how they are linked and how they are temporally and geographi-
cally domain specific, is critical to a systems biology understanding of the host immune
response to influenza.

Current approaches to study transcriptional profiles post influenza infection typically rely
on tissue sampling from one or two sites, generally spleen and lung in murine models, and
these samples are often collected at only a few time points. This approach, however, offers only
a limited snapshot of transcriptional changes throughout the course of infection. In contrast,
comprehensive understanding of whole compartment transcriptome variations after infection
has provided valuable insights into location-specific changes after HIV, transmissible spongi-
form encephalitis (TSE) [14], Francisella tularensis [15], and avian pathogenic Escherichia coli
(APEC) [16] infections. Global transcriptome analysis has been reported for whole lung in a
murine infection model, but without comparison to regional lymph node, peripheral blood,
and spleen [17]. Such multi-compartment information is critical when bridging the gap
between murine studies of the influenza immune response, where we can sample multiple tis-
sue compartments, and human studies, where sampling is limited to peripheral blood and per-
haps lung.

To address this issue, we studied the dynamic immune responses to influenza infection at
the transcriptional level by simultaneous daily sampling of lymphocytes in four different com-
partments (blood, lung, mediastinal lymph nodes, and spleen) over 11 consecutive days post
infection. Data were analyzed with a procedure based on high-dimensional ordinary differen-
tial equation (ODE) models [18] to reconstruct gene regulatory networks (GRNs). We found
that the four compartments exhibit wide variation in gene expression patterns, with the num-
ber and identity of differentially expressed genes being very different between compartments.
Clustering analysis of differentially expressed genes by their temporal expression patterns also
showed marked differences in the time to increased or decreased expression in each compart-
ment, allowing us to observe and analyze the temporal sequence of a global “transcriptome cas-
cade” between compartments. In addition, gene set enrichment analyses show that the
functional annotations of the clusters have different enriched terms and the network (edges)
between these nodes are very different. The prevalence of delayed genes in the lung highlights
the importance of understanding cellular trafficking kinetics in the immune response to influ-
enza infection. Our findings suggest that: a) Compartment specific transcriptomes are regu-
lated by very different networks in different compartments; and b) Using temporal gene
expression data by frequent sampling can reveal the dynamic features of gene regulatory net-
works, which are hard to detect from cross-sectional data.

Results

Experimental System Summary
Female C57/BL6 mice were infected intranasally with a mouse-adapted H3N2/Hong Kong/
X31 avian influenza A virus [19]. Infected mice were sacrificed in groups of five daily, from
t = 0 DPI (days post-infection) to t = 10 DPI. Four compartments (lung, mediastinal lymph
node, blood, and spleen) were collected from each mouse and pooled into three groups to mea-
sure genome-wide gene expression using Affymetrix1 Mouse Gene 1.0 ST RNAmicroarrays.
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We reconstructed the gene regulatory networks (GRNs) using a recently developed statistical
procedure [18]. This procedure can be roughly divided into three steps: 1) identifying tempo-
rally differentially expressed genes (TDEGs); 2) clustering the identified TDEGs into gene
modules based on features of their temporal expression patterns; 3) reconstructing the gene
regulatory network by a computational framework based on ordinary differential equations. In
each step, the results are processed by gene set enrichment analyses to reveal more information
relevant to the underlying immune-response process.

Temporally Differentially Expressed Genes
We selected temporally differentially expressed probe sets from each compartment using func-
tional principal component analysis [20]. The number of significant probe sets varies signifi-
cantly between compartments: 1,906 in lung; 3,548 in lymph node; 224 in blood; and 508 in
spleen. While the large differences between the numbers of significant probe sets identified in
each compartment are in part due to the different signal-to-noise ratios of gene expression
(please see Fig A in S1 Text for more details), this analysis also demonstrates that influenza
infection affects each compartment very differently at the level of differential expression. One
goal of this study is to analyze the differences in genomic responses to influenza infection at
higher levels, such as clusters, reconstructed GRNs, and enriched functions. To this end, we
analyzed the top 1000 most significant probe sets from the blood and spleen compartment for
the subsequent analysis. This ensured that the observed high level differences in transcriptome
membership and patterns were not merely a consequence of the variable numbers of significant
probe sets identified between compartments. The corresponding relaxed significance levels
were 0.0049 for unadjusted p-values or 0.1445 for Benjamini-Hochberg adjusted p-values for
the spleen compartment; 0.0032 for unadjusted p-values or 0.0964 for Benjamini-Hochberg
adjusted p-values for the blood compartment. The selected probe sets were then mapped to
National Center for Biotechnology Information (NCBI) gene names, and collapsed to single
gene names by selecting one unique probe that had the largest inter-quantile range (IQR).

After mapping, the numbers of temporally differentially expressed genes (TDEGs) in each
compartment were: 1,642 in lung; 2,922 in lymph node; 856 in blood; and 614 in spleen.
Among them, only 8 genes (Ddx60, Ehd4, Gvin1, Ly6a, Ly6c2, Ms4a4c, Phf11 and Xaf1) and 3
pseudo-genes (Gm1966, Gm6545, Gm7609) were common to all compartments. On average,
only about 10% of TDEGs were shared by two compartments. Fig 1 is a Venn diagram illustrat-
ing the number of common TDEGs shared by multiple compartments. Detailed information
about the known biological functions associated with these genes is summarized in S1 Table.

Of particular interest is the up-regulation of Ddx60, a DEXD/H box RNA helicase activated
in the cellular response to foreign RNA or DNA [21]. Ddx60 interferes with viral replication,
and is also a positive regulator of the MDA-5 and RIG-I signaling pathways, which in turn up-
regulate Type I interferon and directly interfere with influenza virus replication [22, 23]. Broad
compartmental expression of Ddx60 found here is the first suggestion that it may be systemi-
cally induced as an innate immune defense mechanism after influenza infection. In addition to
Ddx60, Phf11, a positive regulator of Th1-type cytokine gene expression, including the cyto-
kines IL-2 and IFN-γ, is also upregulated in all four compartments [24]. The genes Ly6a and
Ly6c2, markers of T and NK cell activation, also had broadly altered expression across all four
compartments after influenza infection [25, 26]. Xaf1, XIAP associated factor 1, is involved in
apoptosis, in particular mediating TNF-α-induced apoptosis and has been shown to be upregu-
lated by Type 1 interferons [27]. Gvin1 encodes interferon-induced very large GTPase 1 and
belongs to a class of interferon inducible genes involved in cell autonomous immunity [28].
Ehd4 is a member of the C-terminal Eps15 homology domain (EHD) protein family that has
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been shown to be involved in early endosomal transport. As the knock down of Ehd4 results in
the accumulation of MHC-I within the early endosome, preventing recycling back to the cell
surface [29], Ehd4 may play a role in the accumulation of extracellular viral particles and
cycling through the lysosome for presentation of influenza antigens in the context of MHC-I.
This would allow recognition of virus-infected cells by CD8 T cells, and aid in the adaptive
immune response. Ms4a4c belongs to the membrane-spanning 4-domains, subfamily A gene
cluster (MS4A) and has been shown to be a glucocorticoid induced TNF receptor (GITR) asso-
ciated membrane adapter that augments GITR signaling and IL-2 production by T cells, result-
ing in enhanced T cell sensitivity to extrinsic antigen [30].

While we expected a fraction of significant genes to be common between compartments,
the extremely low number suggests that common transcriptome response in different compart-
ments after influenza infection is rare. Furthermore, the temporal patterns for these common
TDEGs are quite different in the four compartments (Figs B-E in S1 Text). For example, the
expressions of these common TDEGs change more gradually in lung than in other compart-
ments. In the lymph node compartment, the expressions of all these genes increase sharply on
Day 1, which is a feature not shared by other compartments. Of note, the overall temporal pat-
terns of TDEGs, such as the median activation time and peak time, are different in different
compartments. This observation has practical implications for experimental design and will be
discussed in the Discussion Section.

Fig 1. A Venn diagram showing the number of common TDEGs shared by all compartments.

doi:10.1371/journal.pone.0138110.g001
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Gene Modules Identified by Temporal Expression Patterns
We next classified TDEGs identified in each compartment into temporally co-expressed gene
modules based on four temporal expression pattern characteristics: early versus delayed tran-
scription activation, the day of activation, up or down regulation, and the number of modes
(local minima/maxima). We used feature based clustering to map the temporal features of the
data to biologically relevant functions. Details of the criteria and method can be found in the
Materials and Methods Section. Using feature based clustering, we identified multiple unique
clusters in each compartment: 12 (blood), 32 (lung), 24 (lymph node), and 16 (spleen), shown
in Fig 2 and Figs F-H in S1 Text. Judged by the number of clusters of each compartment,
TDEGs in lung have the most diverse temporal patterns and TDEGs in blood are least diverse,
the significance of which were next explored with gene set enrichment analysis (S2–S5 Tables).

To perform gene set enrichment analysis, we first clustered genes into two classes: whether
there is a time delay, or not, for the transcript levels to increase or decrease compared to the
baseline. Genes with a transcription-change time delay are referred to as “delayed genes”, and
those without as “early genes". Based on this criterion, 511 and 49 genes are identified as
delayed genes for the lung and lymph node, respectively. In contrast, no delayed genes were
identified in blood and spleen samples. Fig I in S1 Text shows some typical temporal expression
patters for delayed genes in the lung compartment. The above finding suggested that we could
identify compartment-specific temporal changes in the character of the immune response and
functions of early and delayed expression genes. Thus, we next performed transcriptome func-
tional enrichment analyses, within and across compartments, to identify specific pathway and
functional motifs present in each gene module.

Transcriptome Changes between the Early and Delayed Clusters
Suggest a Switch between the Innate and Adaptive Immune Responses
in Lung
In our previous work [8], computational modeling of murine influenza infection suggested a
switch between innate and adaptive immune responses occurred within the influenza-infected
lung between days 5 and 6. To test this hypothesis, we examined the temporal expression of sig-
nificant TDEGs within the lung for transcripts associated with innate immunity, such as inter-
feron responsive gene set induction, and those associated with adaptive immunity, such as in-
migration of activated effector T cells.

We first examined transcripts expressed in the early and delayed expression clusters for
those associated with innate or adaptive immune responses (See S3 Table for the full analysis
and gene lists). As expected, early transcripts included those of the type I interferon responsive
elements and their later downstream associated transcripts, including Irgm1, Ifh7, and Ifih1.
Elements associated with the known RIG-I innate viral defense system were also upregulated,
including Isg15, Ddx58, Dhx58, and Nfkbib. Other early-activated transcripts were associated
with TLR activation and signaling (Stat1, Ccl4, Ccxcl9, Ccxcl0, and Cxcl11).[31, 32] In
particular, chemokines to attract inflammatory cells to the lung after infection were rapidly
upregulated, including monocyte/macrophage attracting chemokines Ccl2 and Ccl7, and the
neutrophil attracting chemokines Cxcl-9, -10, -11, -12, and -15. The lymphocyte attracting che-
mokines Ccl2 and Ccl17 were prominently upregulated in the early phase as well.

We next examined those clusters with middle and late activation. The lung is the only com-
partment in which a large proportion (about 30%) of TDEGs show a temporal activation delay.
Differences in GO terms between the early and delayed gene modules supported a switch from
an innate to an adaptive immune process. Gene ontology functions consistent with an early
innate immune response enriched in the early transcriptome clusters included: recruitment of
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lymphocytes to the lung in response to early infection with chemokines (KEGG pathways
mmu04060 and mmu04062), receptor signaling pathways associated with the Type I interferon
response (KEGG NOD-like and RIG-I-like pathways); and KEGG mmu04623 cytosolic DNA-
sensing pathway which suggests Toll-like receptor expression typical of the early response to
influenza.[33] The GO terms enriched in the delayed cluster for the adaptive immune response
included T cell proliferation and differentiation (GO:0030217, GO:0042088, GO:0030217, and
GO:0042110), of which two terms included genes for distinctive T cell markers such as Cd3,
Cd8, and Cd28. Consistent with T cell and B cell receptor modification in naïve or early prolif-
erating lymphocytes, the annotation term adaptive immune response based on somatic recom-
bination of immune receptors built from immunoglobulin superfamily domains (GO:0002460)
and the KEGG Jak-STAT signaling pathway [34] annotations appear in the early gene cluster.
Given that these transcripts appear in the lung, it is likely that they arise from either mucosal
associated lymphoid tissue, or lymphocytes trafficking through the lung from secondary lym-
phoid organs.

We next examined the delayed gene clusters in lung in more detail, and performed upstream
analysis to infer the upstream activated genes that led to the delayed gene module transcription
pattern. Within the delayed gene module, several probable upstream modifiers switched from
inhibited to activated, or the reverse, between days 1 and 5 (Fig 3). Networks constructed from
these probable upstream modifiers (Figs J and K in S1 Text) indicate highly connected nodes
that switch from predicted activation to inhibition between days 1 and 2. Among these are sev-
eral associated with repression of cell growth including tumor promoter Tp53 (p53), nuclear
protein 1 (Nupr1), which can complex with Tp53 and mediate cell division, [35] and forkhead
box O protein 3 (Foxo3), a member of the FOXO family of transcription factors that are central
to control of naïve lymphocyte activation and division [36]. Foxo3 was found as to be itself a
TDEG in the delayed cluster. Consistent with these changes, T-box transcription factor 2
(Tbx2), a molecule key to cell cycle control in developing mouse lung [37] was predicted to
switch from inhibited to activated during the same period. That these probable upstream modi-
fiers of the delayed gene cluster switch predicted activation states between days 1 and 2 post-
infection, provide a plausible link between the early and delayed gene clusters in lung.

Similar Switch of Innate to Adaptive Responses Seen in Draining Lymph
node TDEGs
To examine the switch between innate and adaptive immune responses in the lymph nodes, we
examined upstream activators of the statistically significant transcripts. Such analysis allows
identification of early signaling pathways associated with the observed downstream transcrip-
tome pattern, and better identifies the transcriptome programs and motifs. In Fig 4, the Z-
scores of predicted activated upstream modifiers of lymph node expressed genes were divided
into functional groups. Upstream activators that are most significant in days 1 to 5 post-infec-
tion were enriched for Toll-like receptor and type I interferon related pathways. Upstream
modifiers associated with the adaptive immune response including Tbx2, Foxo1, and the TCR
rise in significance after day 5 post-infection and stay elevated to the end of the experiment.

Fig 2. The line plots of each cluster in the lung compartment. TDEGs are classified into co-expression
modules. Grey curves represent the temporal trajectory of expression levels for each gene, standardized to
zero mean and unit standard deviation. Blue curves are the smoothed mean expression levels for each
cluster. Red curves are the predicted mean expression levels from the ODEmodel. Each co-expression
module is classified by four criteria: Delay or Regular; Up or Down; the activation day of its mean gene
expression; and number of modes of its mean expression. This information is shown in the subtitles, together
with the numbers of genes contained in these modules.

doi:10.1371/journal.pone.0138110.g002
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These results were consistent with our temporal hypothesis regarding the innate-adaptive
immune switch.

While TCR was one upstream modifier identified in lymph node, among the up-regulated
TDEGs are a preponderance of B cell-specific genes reflecting the strong wave of B cell expan-
sion. This suggests that the upstream cell cycle control molecules and growth factors identified
in common between lung and lymph node may be illuminating common proliferative path-
ways between T and B lymphocytes responding to influenza infection. Indeed, while the num-
ber of delayed genes identified in lymph node was relatively small (n = 45), the associated GO
terms were mostly related to cell cycle, cell division, and DNA repair, consistent with prolifera-
tion and an active immune response.

Different Compartments Have Different Periodicity of Temporal Gene
Expression Patterns
Next, we clustered genes by the number of modes (local minima/maxima) of their expression
patterns over the period of 11 days. This quantity reflects the fluctuations in the expression lev-
els over the period of study. As a special case, a gene is classified as 0-mode if its expression
level increases or decreases monotonically over the period of 11 days. The results are summa-
rized in Table 1, which shows that the lung had the least fluctuation (only 1 or 2 modes) while
the lymph node has the most fluctuation (1–7 modes). The blood and spleen are intermediate,
both having 0–3 modes.

Gene set enrichment analyses show that in lung, mode 2 TDEGs are associated with a few
GO terms related to cell cycle/division and regulation of phosphorylation, while mode 1
TDEGs are associated with many more GO terms with diverse functions related to immune
responses, such as activation and regulation of many types of cells, several receptor signaling
pathways, and various cytokine and chemokine related terms. In the other three compart-
ments, the relationship between modes and immune responses to virus infection are not clear;
instead, the overall patterns appear related to different aspects of housekeeping functions in

Fig 3. Upstream analysis using delayed TDEGs in the lung compartment. To identify changes in overall
gene expression programs, Ingenuity Pathways Analysis (IPA) was used to identify potential upstream
modifiers of TDEGs. Z-scores greater than 2.0 indicate probable activation based on downstream gene
expression whereas Z-scores less than -2.0 suggest probable inhibition. Scores that switch from positive to
negative or the reverse suggest switches in whole gene expression programs or cell types over time.
Temporal patterns are evident in upstreammodifiers with probable inhibition of TP53 and Nupr1 and
concurrent probable activation of Tbx2 and CFS2. Several interleukins and TNF showed initial probable
activation and a delayed inhibition. This is consistent with early and mid-infection lung responses including
lymphocyte infiltration.

doi:10.1371/journal.pone.0138110.g003
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different mode-groups, such as mRNA processing (Mode 0 group) versus DNA processing
(Mode 1 group) in spleen. This observation suggests that these different biological processes
have different natural periodicities, which are reflected by the number of modes in a fixed time
interval.

Based on the smoothed expression patterns, we define a gene as an up-regulated (down-reg-
ulated) gene if its estimated maximum mode is larger (smaller) than its baseline (at DPI = 0).

Fig 4. Upstream analysis using all TDEGs in the lymph node compartment. Ingenuity Pathways
Analysis (IPA) was used to identify upstreammodifiers in lymph node TGED as in Fig 3. (A) The upstream
modifiers with probable activation Z-scores. (B) Upstreammodifiers related to Toll-like Receptor signaling,
consistent with innate-type reactions appeared early in infection. (C) In contrast, upstreammodifiers related
to the germinal center reaction tended to peak mid-infection. (D) Interferon-related upstreammodifiers also
tended to peak early in infection. These patterns are consistent with the influx of antigen and initiation of the
germinal center response in the draining lymph node. Upstreammodifiers associated with growth factors and
cell proliferation peaked before Day 5 (D) or after Day 5 (E), suggesting the predominance of different cell
types in the lymph node as active germinal center responses evolved.

doi:10.1371/journal.pone.0138110.g004

Table 1. Number of genes in eachmode group.

0-mode 1-mode 2-mode 3-mode 4-mode 5-mode 6-mode 7-mode

Blood 103 621 104 28 0 0 0 0

Lung 0 1230 412 0 0 0 0 0

LN 0 275 584 594 736 440 223 70

Spleen 89 164 339 22 0 0 0 0

doi:10.1371/journal.pone.0138110.t001
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All compartments have roughly balanced numbers of up- and down-regulated genes, and
GSEA does not show clear functional difference between these two groups.

Finally, we cluster genes based on their activation time which is defined as the time (day)
the expression level reaches 50% of its maximum (for up-regulated genes) or minimum (for
down-regulated genes). A similar classification was used in [38]. The results are summarized in
Table 2. For convenience, we divide the time course roughly into three periods, early (DPI1-2),
middle (DPI3-5), and late (DPI6-8). By this definition, most of TDEGs in blood (95.1%) and
lymph node (91.4%), as well as the majority of TDEGs in spleen (66.3%), initiate changes in
the early phase. In contrast, only 23.6% of the TDEGs in the lung changed during the early
phase. The lung was the only compartment with late activation, with 35.0% of lung TDEGs.
These observations suggest that most gene regulation events occurring during primary influ-
enza infection are completed in the lymph node, spleen, and blood during the first three days
after infection; the delayed activation time for the TDEGs in the lung may be due to the traf-
ficking of large number of immune cells from other compartments to the lung 5–10 days after
influenza infection reflecting the switch from the innate to the adaptive immune response.

Reconstructing the Gene Regulatory Network
We next used a model based on linear ODE system to construct the compartment specific reg-
ulatory network between the clusters induced by influenza infection (refer to Materials and
Method section). Briefly, the network structure was determined by a variable selection using
the smoothly clipped absolute deviation (SCAD) method [39]. Since the SCAD method relies
on appropriately chosen tuning parameters, differences in tuning parameters can affect the
reconstructed network. To construct a robust network, we selected edges that were conserved
over 50 random perturbations of the tuning parameters and within 20% of their original values
(summarized in Table 3). However, these perturbations had very little effect on the original
results (Table 3). The trajectories predicted by the model are very close to the smoothed mean
curve (blue) of the cluster (Fig 2 and Figs F-H in S1 Text). Thus, the model exhibited consistent
and robust behavior within the scope of the tuning parameters.

One notable feature of the reconstructed regulatory networks is the existence of hub clusters
that regulate more clusters than most other clusters. We identified clusters C12 (Delay.Up.

Table 2. Number of genes activated each day.

DPI-1 DPI-2 DPI-3 DPI-4 DPI-5 DPI-6 DPI-7 DPI-8

Blood 158 656 42 0 0 0 0 0

Lung 0 387 249 164 274 400 117 51

LN 0 2622 68 163 69 0 0 0

Spleen 35 373 184 22 0 0 0 0

doi:10.1371/journal.pone.0138110.t002

Table 3. Number of Edges in the Linear ODE Networks for each Compartment.

Clusters Edges Network Density Common Edges (perturbed)

Blood 12 49 0.34 45.24

Lung 32 142 0.14 122.98

LN 24 100 0.17 93.26

Spleen 16 78 0.3 72.38

The last column includes the average number of common edges when perturbing the running parameters.

doi:10.1371/journal.pone.0138110.t003
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ActDay8.Modes1), C23 (Early.Up.ActDay2.Modes1), and C30 (Early.Up.ActDay6.Modes2) as
the hub clusters for the lung network. These hub clusters have both incoming and outgoing
edges, indicating that the genes in the clusters are regulated by, and are regulating, other clus-
ters. This is also evident from their functional enrichment, for example, C23 is enriched for
cytokine regulation and processes that lead to the induction of T and B cell activation.

Discussion
In this manuscript, we report one of the most comprehensive transcriptional analyses to date
of the immune response to primary influenza infection. The collection of frequent time-series
data from lung, lymph node, spleen, and peripheral blood allowed us to examine, simultaneous,
temporal patterns of gene expression after infection within multiple compartments. For each
compartment, ODE network models were fit to the data, revealing a systems-level structure of
the influenza immune response. Our study shows that at the transcriptome level, each of the
four biological compartments respond to influenza infection very differently. These compart-
mental differences are manifested by vastly different lists of genes with statistically significant
changes in expression levels, co-expression modules and their temporal patterns, and the
reconstructed GRNs. We believe in depth study of these differences can help researchers design
better experiments in the future. For example, we note that the activation and peak up- (down)
gene regulation times are different between compartments. The median activation time occurs
on DPI 5 for lung and on DPI 2 for the other compartments. However, the median peak/nadir
days for these compartments are: DPI 5 (blood and lymph node), 7 (lung), and 9 (spleen).

A related finding is that lymphocytes in the spleen are activated early (DPI 2) but peak tran-
scription levels occur late. This suggests that although spleen responded to influenza infection
quickly in the beginning, it takes more than a week for a typical TDEG to reach its largest dif-
ferential expression (as compared with the base line level). These findings have implications
for study design and statistical power. Based on our findings, we suggest that in cross-sectional

Fig 5. The network of the lung compartment constructed by the linear ODEmodel.Detailed information
about these nodes can be found in Table F of S1 Text.

doi:10.1371/journal.pone.0138110.g005
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or a longitudinal studies with limited number of time points, different data collection times
should be tailored to the known expression periods of each tissue compartment.

Our approach also revealed a different GRN within each tissue compartment, which is a
new aspect of primary influenza infection. The characteristics of the influenza immune
response within each compartment differed by both the number of modules and network den-
sity of the GRN. The density of a network is calculated as the ratio of the number of connected
edges to the number of all possible edges, allowing for loop (e.g. self-regulatory feedback)
edges. A low network density indicates a sparser network. While the lung has the most diverse
temporal patterns in terms of the number of clusters, it showed the lowest network density,
which suggests that each cluster has fewer average regulatory relationships with others (Fig 5).
This finding is consistent with the diversity of cell types involved in the innate and adaptive
immune response to influenza infection within the lung, as contrasted with the relatively
restricted number of active cell types in the lymph node and spleen. Specifically, the early
response induced by lung epithelial cells leads to activation and migration of antigen present-
ing cells to the lymph node and spleen, with activation of T and B cells in the lymph node and
spleen and within the local mucosal immune system. In short, the lung has the most numerous
cellular processes, including inflammation, innate and adaptive cellular immune responses, tis-
sue regeneration and repair, and specific anti-viral responses. This likely explains the greater
number of network nodes, but sparse network connectivity. Moreover, some clusters such as
C11 and C31 have fewer outgoing edges and are typically induced at later time points. These
clusters are enriched for adaptive immune response such as T cell receptor signalling, which is
consistent with the known trajectories of the influenza immune response. In contrast, the other
compartments (blood, lymph node, and spleen) have dense network connectivity with fewer
nodes, reflecting more uniformity of gene modules and activated cell types. The blood has the
fewest clusters yet they tend to link with each other more tightly. This may be a reflection of
the temporal migration of T and B cells at a specific stage of differentiation, with synchronized
gene expression, or may alternatively represent continuous communication between different
expressed gene clusters (Fig L in S1 Text). As for the lymph node and spleen, which are primar-
ily the sites of T and B cell activation and proliferation, fewer terminal processes are enriched,
giving an intermediate transcriptome regulatory network density (Figs M and N in S1 Text).

In summary, we used a systems-biology approach to identify both broad coordination of
the influenza immune response across lung, lymph node, spleen and blood, as well as compart-
ment-specific dynamics of gene expression reflecting more focused and specialized biological
functions (T and B cell activation and proliferation) within primary lymphoid organs. Broadly
expressed genes highlighted for the first time by this analysis included Ddex4, a mediator of the
Type I interferon response and RigI signalling pathway, and Ehd4, which may be responsible
for increased MHC-I presentation of influenza viral peptides, facilitating CD8 killing of
infected epithelial cells. This higher level analysis demonstrates the power of analysing tempo-
ral gene expression network topology to gain further insights into complex intra- and cross-
compartmental dynamics during infection.

Materials and Methods

Experimental Design
Female C57/BL6 mice, 6–12 weeks of age (Jackson Laboratory, Bar Harbor, ME) were anesthe-
tized with intraperitoneal injection of 2,2,2-tribromoethanol (Avertin™, Sigma-Aldrich,
St. Louis, MO) and inoculated intranasally with 0.03 ml of 1x105 EID50 H3N2/Hong Kong/X31
IAV. Mice were monitored for signs of infection throughout the experiment. All animals dis-
played signs of infection by Day 2 post infection, including ruffled fur, lethargy and initial
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weight loss. Weight loss peaked around day 6 post infection, with animals typically displaying
~15% weights loss as compared to Day 0 weights. Animals recovered all weight, and exhibited
normal behaviour by Day 8 post infection. The temporal trend of body weight loss is illustrated
in Fig Q in S1 Text. Only two animals were found dead during the course of the experiment,
one on Day 3 and another on Day 9. Both animals were excluded from the study. Mice were
sacrificed in groups of six daily for the days post-infection (days 1 to 10) with one set sacrificed
before infection (denoted as t = 0-) and one set sacrificed immediately following infection (day
0). Since the animals sacrificed on Day 0- were not infected; these data were used in quality
assurance analyses but not mathematical modelling for immune response to virus infection.
Serum, peripheral blood mononuclear cells, lung, spleen, and mediastinal lymph nodes tissues
were collected daily per group and pooled from two mice in each sample for microarray analy-
sis (12 groups, 3 samples per group, 36 samples, n = 72 mice). For spleen, an additional sample
was collected on DPI = 2 so the total sample size was 37. We choose to focus on the first 10
days post infection, as our previous results have demonstrated that the peaks of both the innate
and adaptive responses occurs within the first 10 days after infection [8, 40, 41]. All experi-
ments involving animals were reviewed and approved by the Institutional Animal Care and
Use Committee (the University of Rochester Committee for Animal Resources).

Sample Collection and Processing
A small sample of blood was collected by mandibular bleed for serum samples, then the mice
were euthanized with a lethal dose of 2,2,2-tribromoethanol and blood was collected by cardiac
puncture. The lungs were perfused with phosphate buffered saline (Gibco, Grand Island, NY),
removed, and stored on ice until processing. Lungs from two mice in each group were flash-
frozen in RNALater buffer (Sigma-Aldrich) and lungs from the remaining three mice were pro-
cessed. Lung tissue was disrupted by pressing the tissue through a strainer with a syringe pis-
ton. The cells were filtered through Nitex mesh (Thermo-Fisher, Waltham, MA) and layered
on Lympholyte (Cedarlane, Burlington, NC). TER-119 immunomagnetic beads (BD Biosci-
ence, San Diego, CA) were used to remove red blood cells. For blood samples, 13 were stored
in a different buffer, and a subsequent quality assurance microarray analysis of these samples
showed a different expression pattern than the remaining 23 samples and thus these 13 samples
were excluded from the final blood microarray analysis (Fig O in S1 Text highlights the differ-
ences observed between these samples). Lymph nodes and spleen were also collected, dissoci-
ated with a dounce homogenizer, lymphocytes isolated by density gradient centrifugation and
removal of RBC by TER-119 immunomagnetic beads, and flash frozen in liquid nitrogen. Flow
cytometric, ELISpot, and RNA microarray analysis were performed on all cell samples. In addi-
tion, ELISA assays were performed on serum samples.

RNA Isolation and Microarray Analysis
The cells were lysed in RLT buffer (Qiagen, Germantown, MD). The lysates were immediately
passed over QiaShredder columns (Qiagen), and flash frozen in liquid nitrogen. Total RNA
was reverse transcribed to cDNA with the NuGEN1 amplification system, and this cDNA was
hybridized with Affymetrix1 Mouse Gene 1.0 ST arrays. Quantile-normalized data were gen-
erated with Affymetrix1 Expression Console software using the PLIER algorithm. Probe sets
were mapped to gene symbols with annotations provided by Affymetrix1. All microarray
images and processed data are publicly available at the NCBI Gene Expression Omnibus web-
site under accession number GSE57455.

We exclude probe sets with all measurements< 100, a threshold below which it is hard to
differentiate gene expression signals from the background noise. This results in 30,184, 25,876,
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30,590, and 29,285 probe sets for the lungs, lymph nodes, blood, and spleen, respectively. We
apply log2 transformation to these expression measurements. Exploratory analyses reveal that
the lung data had two distinct groups of array results which correlated exactly with buffer
effects. The lungs of the 13 mice displayed by red stars were stored in a different buffer from
the other 23 mice, which produced a clear buffer effect as illustrated by Fig O in S1 Text. Based
on this observation, we decided to remove these 13 mice from the subsequent analyses. No
such artifact was observed from other data sets in the lymph nodes, spleen, and blood. We also
selected a few notable inflammatory genes (Ifng, Ifi27l1, Mx1, Ifnb1, Il6, and Cxcl10) and plot-
ted the temporal trend of their expression levels in Fig R in S1 Text. By and large, the expres-
sion levels collected from different mice on the same day (post infection) are similar as
compared with between-DPI or between-gene variation.

Differential Expression Analysis
For each of the four compartments, we want to identify genes whose time course gene expres-
sions have significant changes from the baseline. The null hypothesis of this testing problem
can be defined as:

H0 : xiðtÞ ¼ xiðtÞ; 0 � t � 10; i ¼ 1; 2; . . . ; n; ð1:1Þ

where xi(t) represents the underlying true expression curve for the ith gene. The baseline is
chosen to be the gene expression level on DPI = 0, since the mice on DPI = 0 were killed imme-
diately after receiving flu virus and it is reasonable to assume that the gene expression levels
had not been affected. In practice, the true expression curve xi(t) needs to be estimated from
the noisy microarray data, yijk = xi(tj)+ �ijk, where j = 0,. . .,10 indexes the time points and k
indexes the repetitions at each time point. A commonly used smoothing technique is to expand
xi(t) in terms of an intercept plus an L-dimensional linear basis:

xiðtÞ ¼ ci0 þ
XL

l¼1

cilZlðtÞ; ð1:2Þ

In this study the basis functions ηl(t), l = 1,2,. . .,L, are eigen-basis estimated from the data
by the functional principal component analysis (FPCA) [42]. These orthogonal basis functions
reflect the major modes of variation in the data, and often fewer basis functions are needed to
capture the shape of the gene expression trajectory compared to that using fixed basis func-
tions. Analogous to the t- and F-statistics, we use a test statistic that compares the goodness of
fit of the model under the null hypothesis to that under the alternative hypothesis [20]:

Fi ¼
SS0i � SS1i

SS1i
; ð1:3Þ

where SS0i and SS
1
i are the sums of squared residuals obtained from the model fits under the

null and alternative hypotheses, respectively. A permutation method is used to compute the
p-values, in which each permutation sample yPij�k is yijk with the index j randomly permuted.

With the null statistics Fr
i calculated from R permutation samples, we can then compute the

unadjusted p-value for each gene:

pi ¼
XR

r¼1

#fj : Fr
j � Fi; j ¼ 1; . . . ; ng

n � R : ð1:4Þ
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The multiple test correction method proposed by [43] is then applied to control the false
discovery rate (FDR). See [20] for more details about the methodology. The top two leading
eigen-functions of all compartments are illustrated in Fig P in S1 Text.

Cluster Analysis
We cluster the differentially expressed probe sets into different groups or functional modules
based on their time course expression patterns by considering four features hierarchically: 1)
whether there is a time delay for the probe set to start express, compared to the baseline; 2) the
number of modes (local minima or maxima) of the expression patterns from Day 0 to Day 10; 3)
whether the probe set is up or down regulated; and 4) the activation time which is defined as the
time to reach 50% of the first peak or nadir (minima or maxima). Since the analysis of the time
course expression patterns may be sensitive to excessive variation of one time point or outliers, it
is necessary to remove these outliers before clustering analysis. We ran a residual analysis to iden-
tify these outliers. We observed that DPI = 1 is associated with abnormally high RSS for the lung
and lymph node data, thus we removed DPI = 1 and refit the lung and lymph node data before
the clustering analysis. For each significant probe set, we first average the expression values on
the same day and standardize the data by the mean and standard deviation over time. The follow-
ing clustering method is applied to these standardized data so that the grouping of probe sets is
based on the gene expression pattern rather than the expression magnitude. After exploring the
gene expression patterns visually, we found that some of the probe set expressions do not change
from baseline for the first several days after influenza infection. Thus, we first clustered probe sets
into two big classes: whether there is a time delay for the probe set to start express, compared to
the baseline, which we call them as delay probe sets and early probe sets. We only consider the
delay window fromDay 3 to Day 5 based on our preliminary data exploration. A linear regres-
sion model for the expression data for each probe set for the first 3, 4, or 5 days can be written as:

yit � yi0 ¼ aimt þ �it; t ¼ 0; 2; . . . ;m; m ¼ 3; 4; 5: ð1:5Þ

Here yit is the average expression of the ith gene on the tth day;m is the upper limit of delayed
time (day). If there arem-day delay for the ith gene's expression, we expect that aim = 0; conse-
quently we may use a standard t-statistic to test aim = 0 and identify the delayed genes. At the
same time, we also need to exclude genes with very large âim (the estimated aim) or very large stan-
dard error of âim. Based on the above reasoning, we define delayed genes by the following criteria:

1. Either the t-statistic is less than 3.0 or âim < 0:15; and

2. The adjusted standard error of âim, sim≔
ffiffiffiffiffiffiffiffiffiffiffiffi
m� 1

p
ŝðâimÞ, is less than 0.12.

These thresholds are determined based on our visual inspection of the gene expression pat-
terns. Next, we cluster genes by the number of modes (local minima/maxima) of their expres-
sion patterns over the period of 10 days. The following procedure is used for this purpose.

1. Smooth the expression data by the FPCA technique describe in Section “Differential expres-
sion analysis”.

2. An interior time point (j = 2,3,. . .,9) is called amode if for a given tolerance level δ = 0.1,
either one of the following criteria is met:

ĝðtiÞ � ĝðti�1Þ > d and ĝðtiÞ � ĝ ðtiþ1Þ > d; the }V} case

ĝðtiÞ � ĝðti�1Þ < �d and ĝðtiÞ � ĝðtiþ1Þ < �d; the }L} case
ð1:6Þ

(

Here xij is the smoothed average expression level of the ith gene on the jth DPI. If the
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number of genes in a mode-group is too small (n< 50), it is merged to a neighboring group.
For example, there are only 18 genes in the group of 0-mode for the lung data, thus it is merged
with the group with 1-mode. Based on the smoothed expression patterns, we define a gene as
an up-regulated (down-regulated) gene if its most prominent mode is larger (smaller) than its
baseline (at DPI = 0). Finally, we cluster genes based on their activation time which is defined
as the time (day) the expression level of a gene reaches 50% of its maximum (for up-regulated
genes) or minimum (for down-regulated genes).

After classifying the TDEGs into unique clusters based on the above criteria, we noticed that
some clusters have only a handful of genes, so we merge small clusters (with n�10 genes) to a
large cluster most similar to it in terms of the shape of the mean curves.

Reconstructing the Gene Regulatory Network
We adopt the following model based on linear ODEs proposed by [44] to describe the dynamic
gene regulatory network (GRN):

dXiðtÞ
dt

¼ ai0 þ
Xp

j¼1

aijXjðtÞ; for t 2 ð0; 10�;

Xið0Þ ¼ Xi0; for t ¼ 0:

; i ¼ 1; 2; . . . ; p; ð1:7Þ

8><
>:

where Xi(0) represents the mean gene expression function of the ith gene and Xi0 represents its
initial value. A mixed-effect model is used to account for the between-gene variation within
each cluster. The parameter αi0 is the intercept term and αij quantifies the regulation effect
between clusters in the network. Once genes are properly classified into clusters (modules), we
can build an ODE network system forMk(t), the mean expression curve of the kth cluster
(module). In this way, the dimension of Eq (1.7) is greatly reduced, and we have the following
system instead:

M0
kðtÞ ¼ bk0 þ

XK

i¼1

bkiMiðtÞ; k ¼ 1; 2; . . . ;K: ð1:8Þ

When bki is nonzero, we assign a directed edge between the ith and kth modules. Since bio-
logical systems are seldom fully connected and most modules are only directly connected to a
small number of other modules [45], it is commonly assumed that the GRN is a sparse net-
work. We adopt the two-stage smoothing based method [46, 47] for estimating the ODE sys-
tem (1.8). This approach avoids numerically solving the differential equations and allows
independent model selection and parameter estimation for one equation at a time, which sig-
nificantly reduce the computational cost [44]. We first obtain the estimates ofMk(t) and their
derivativesM'k(t) from the observed data. We then substitute these estimates into Eq (1.8) to
turn it into K independent pseudo regression models. The smoothly clipped absolute deviation
(SCAD) [39] is then applied to these pseudo regression models to determine the nonzero coef-
ficients. To overcome the estimation deficiency of the two-stage method, we refine the parame-
ter estimates for the selected ODE model using the nonlinear least squares (NLS) method [48].

To obtain the gene-specific regulatory parameter estimates, we consider the following
mixed-effects ODE model [44] for the kth module (k = 1,2,. . .,K)

dXiðtÞ
dt

¼ bk0 þ
X
j2Sk

aijMjðtÞ ¼ bk0 þ
X
j2Sk

ðbkj þ gijÞMjðtÞ; ð1:9Þ

where Xi(t) is the true expression curve of the ith gene in this module; Sk ¼ f1 � i � K : b̂S
ki 6¼ 0g
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is the collection of nonzero coefficients for the k-th differential equation; the random effects γij
are assumed to follow normal distributions and they characterize the between-gene variation
in the kth module.

Functional Annotation and Enrichment Analyses
The probe sets are mapped to gene symbols with annotations provided by Affymetrix1. We
first performed the functional enrichment analysis using DAVID [49], through which the GO
(gene ontology) annotations [47] and KEGG [50], BioCarta [51], and Reactome [52] pathways
enriched in each cluster can be identified. Each functional term was evaluated by its statistical
significance test based on the EASE score probabilities, which is more conservative than the
standard Fisher's exact test. The significant GO terms and enriched pathways were selected
based on a pre-specified threshold (FDR<0.05).

The GO annotations are not specifically designed for immunology related enrichment anal-
yses. In order to decipher more detailed immunology specific functional implications underly-
ing these gene clusters and the regulatory networks, we define 406 key words based on the
curated terms listed in Imm-Port (http://immport.niaid.nih.gov) that are related to immunol-
ogy, such as “B cell", “T cell”, “lymphocyte", etc. We encode these key words into Immunology
Ontologies (IO) and annotate each gene by matching the key words with the gene's definition
and description in GenBank (http://www.ncbi.nlm.nih.gov/genban). The statistical significance
of these keyword related annotations are calculated by the Fisher’s exact test.

Using both functional enrichment from standard annotations and self-defined immunology
related functional terms of each cluster; we build a functional landscape of the regulatory net-
work after viral infection by connecting the clusters with the reconstructed gene regulatory net-
work. The enriched annotations indicate the functions and pathways related to immunology
are triggered after infection. Moreover, the regulatory linkages provided temporal patterns of
the functional implications in the network.

UpstreamModifier Analysis
Data sets containing TDEG expression values were uploaded into Ingenuity Pathways Analysis
(IPA) (http://ingenuity.com/). Each identifier was mapped to its corresponding object in Inge-
nuity's Knowledge Base. Network eligible molecules were overlaid onto a global molecular net-
work developed and networks were then algorithmically generated based on their connectivity.
Upstream analysis modulator Z-scores of 2 and above were considered probable activators and
less than −2 were considered probable inhibitors. Excel (Microsoft, Redmond, WA), Adobe
Illustrator and Acrobat Professional CS5 (Adobe, San Jose, CA) were used to create Figs 3 and
4.

Supporting Information
S1 Table. This file contains known biological functions of the 11 common TDEGs identi-
fied in all four compartments.
(XLSX)

S2 Table. This file contains results of feature-based gene set enrichment analyses as applied
to the blood compartment.
(XLSX)

S3 Table. This file contains results of feature-based gene set enrichment analyses as applied
to the lung compartment.
(XLSX)
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S4 Table. This file contains results of feature-based gene set enrichment analyses as applied
to the lymph node compartment.
(XLSX)

S5 Table. This file contains results of feature-based gene set enrichment analyses as applied
to the spleen compartment.
(XLSX)

S1 Text. This file contains additional results such as the signal-to-noise ratio in each com-
partment, temporal patterns of common TDEGs in each compartment, etc.
(PDF)
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