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Jun Yao,1,3,* Zhilin Guo,1 JunJie Yu,1 Nan Yan,1 Qiong Wang,1 and Wei Yu1,2,*
SUMMARY

Datasets collected under different sensors, viewpoints, or weather conditions cause different domains.
Models trained on domain A applied to tasks of domain B result in low performance. To overcome the
domain shift, we propose an unsupervised pedestrian detection method that utilizes CycleGAN to estab-
lish an intermediate domain and transform a large gap domain-shift problem into two feature alignment
subtaskswith small gaps. The intermediate domain trainedwith labels fromdomain A, after two rounds of
feature alignment using adversarial learning, can facilitate effective detection in domain B. To further
enhance the training quality of intermediate domain models, Image Quality Assessment (IQA) is incorpo-
rated. The experimental results evaluated on Citypersons, KITTI, and BDD100K show that MR of 24.58%,
33.66%, 28.27%, and 28.25% were achieved in four cross-domain scenarios. Compared with typical
pedestrian detection models, our proposed method can better overcome the domain-shift problem and
achieve competitive results.

INTRODUCTION

With the development of deep learning and computer vision, the performance of object detection tasks has been greatly improved.1,2,3–6

Meanwhile, a particular object detection task, pedestrian detection, plays an increasingly important role in autonomous driving, the Internet

of Things, and security checks. The performance and robustness of traditional pedestrian detectors heavily rely on labeled training data, often

collected in controlled environments with specific characteristics. However, deploying these detectors in real-world scenarios poses signif-

icant challenges due to the domain shift between the source and target domains. For instance, domains can differ in lighting, weather, camera

viewpoints, and object scales, which further complicate the accurate detection of pedestrians.7,8

UDA (Unsupervised Domain Adaptation) has emerged as a promising approach to address the domain-shift problem in pedestrian detec-

tion. Unlike traditional approaches that requiremanually annotated data from the target domain, UDAmethods aim to learn domain-invariant

representations by leveraging the information fromboth the source and target domains. By aligning the feature distributions across domains,

UDAmethods facilitate better generalization and adaptability of pedestrian detectors in real-world scenarios. Numerous methods for image

classification have been developed.9–16 In contrast, the methods for semantic segmentation17,18 and object detection19,20,21 still need to be

revised because higher annotation levels result in a significant gap between domains.

In this article, we aim to align the distribution between the source domain and the target domain,11 we created an intermediate domain

between the source and target through a generative adversarial network,22 thereby avoiding direct mapping between two distributions with

significant gaps. Specifically, we decompose the alignment problem into two small problems. Firstly, an image-to-image translation network

transforms the source images into an intermediate domain with a similar appearance (lighting, weather, and so forth) as the target images.22

We then align the source and intermediate distributions to construct an intermediate feature space, which is easier than aligning to the

targets. Once this intermediate domain is aligned, we use it as a bridge to further connect to the target domain. Therefore, the proposed

progressive adaptation through the intermediate domain decomposes the original alignment between source and target domains into

two subtasks, solving an easier problem with smaller domain gaps.

Due to the use of unsupervised image-to-image translation networks for domain alignment, the translation quality of intermediate domain

images is not consistent. To reduce the outlier impact of the low-quality images, an image quality assessment method is introduced to filter

out the intermediate domain images that are too far from the target domain images.

We evaluated our method in various scenarios using KITTI,23 Citypersons,24 and BDD100k.25 With the proposed domain adaptive pedes-

trian detectionmethod, our method effectively improves performance in unsupervised domains obtaining theMR of 24.58%, 33.66%, 28.27%,

and 28.25% in camera viewpoints and 3 types of weather domain adaptation tasks, respectively.

The main contributions of our work are summarized as follows: 1) we introduced a new framework using adversarial learning to achieve

progressive feature alignment for pedestrian detection; 2) we used a progressive domain adaptation scheme, which involves aligning the
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source and intermediate domains in the first stage, and the intermediate and target domains in the second stage; and 3) we introduced IQA to

reduce the negative impact of low-quality images on intermediate domain model training and feature alignment.
Related work

Pedestrian detection

Pedestrian detection has been extensively studied in the computer vision community. Traditional methods typically employ handcrafted fea-

tures and classifiers to detect pedestrians. Dollar et al.26 proposed a refined per-frame evaluationmethod thatmeasures performance related

to scale and occlusion in detail, achieving the best performance of 16 pre-trained detectors in six datasets. Walk et al.27 proposed a Self-sim-

ilarity feature on the color channel introduced, which continuously improves the detection performance of still images and video sequences

on different datasets, and is combined with HOG, which is 20% higher than themost advanced at that time. Benenson et al.28,29 used existing

detectors with mainly decision forests over hand-crafted feature outputs and re-scored them with plus-bounding box regression.30–33 How-

ever, these methods heavily rely on manually extracted features and often suffer from limited generalization to different domains due to the

lack of adaptability.

After 2016, deep learning-based approaches achieved remarkable success in pedestrian detection by leveraging the power of CNN

(Convolutional Neural Network) and VIT (Vision in Transformer). Girshick et al.1,6,34 proposed a region proposal method and utilized

the CNN network to accelerate the generation process. Liu et al.2,3–5 proposed a single-stage detection scheme, using a fixed set of pre-

defined anchor boxes as proposals to further reduce the computational requirements for proposal generation. Lin et al.35 proposed a

deformable DETR detector to design a mechanism to leverage the less occluded visible parts of pedestrians specifically for pedestrian

detection. Although these methods learn discriminative features directly from the data, they lead to improved performance. However,

they depend on a large amount of labeled training data and the domain-shift problem still poses a challenge to their deployment in

real-world scenarios.

Domain adaptation

In recent years, domain adaptation technology has improved the generalization ability of pedestrian detection models by eliminating

domain offsets between labeled data in the source domain and unlabeled data in the target domain. Ganin et al.10 proposed an

adversarial learning method that utilizes a confusion domain classifier to obtain the ability to extract common features in both the

source and target domains. Bousmalis et al.9,15,19 used adversarial learning to narrow the feature distribution between the source

and target domains. In addition, Zhu et al.22,36 utilized an unpaired image-to-image conversion method to align pixel features of images

in the domain. Tsai et al.18,37 adopted adversarial learning in structured output spaces to solve the problem of feature/pixel space

alignment.

Hoffman et al.20 fine-tuned the fully supervised classificationmodel for object detection, solving the domain adaptation problem of object

detection in a weakly supervisedmanner. Inoue et al.21 improved performance by fine-tuning the synthesized data using pseudo labels in the

target domain. Chen et al.19 proposed to narrow the domain gap at the image and instance levels through adversarial learning. Zhu et al.38

excavated discriminative regions for comparison, strengthening the matching of local features to improve cross-domain detection perfor-

mance. Saito et al.39 focused on aligning the local receptive field of low-level features and the weak ratio of the global region. Kim et al.40

utilized an image translation network to generate multiple domains and used a multi-domain discriminator to simultaneously adapt to all

domains.

In the above works, we found that most of the intermediate feature alignment is achieved through simple adversarial learning or image-to-

image translation. Excessive domain shift and low-quality image translation can affect the effectiveness of cross-domain alignment. To solve

these problems, we introduce an intermediate domain to reduce the distance between domains and then use the image quality assessment

method to filter out low-quality translations, thereby improving the performance of cross-domain pedestrian detection.
Methodology

Wepropose two subtasks to improve the cross-domain detection performance. The source, intermediate, and target domains are denoted as

S, M, and T, respectively. The conventional cross-domain adaptation process from source domain S to target domain T is denoted as S/ T,

so our proposed adaptation subtasks are expressed as S/ I and I/ T. The main steps of our proposed adaptation framework are shown in

Figure 1. We use three components to implement pedestrian detection while aligning the feature spaces of the source, intermediate, and

target domains. They are the adversarial learning network denoted as A, the unsupervised image-to-image translation network denoted

as G, and the IQA process denoted as I. All details will be discussed in subsequent sections.

Domain adaptation via adversarial learning

Weuse a deep learning framework to detect and align distributions in the feature spacewhich consists of a feature extractor, a detector, and a

discriminator. We adopt the Cascade R-CNN41 composed of a sequence of detectors trained with increasing IoU thresholds for pedestrian

detection tasks. Cascade R-CNN achieves state-of-the-art performance on the COCO dataset and significantly improves high-quality detec-

tion on generic and specific object detection datasets, including VOC, KITTI, Citypersons, and WiderFace. It has a base encoder E and a

feature extractor F through where the image features denoted feature map E(I) were extracted and fed into two branches: Region Proposal
2 iScience 27, 109639, April 19, 2024



Figure 1. The main steps of our proposed domain adaptation framework

The framework consists of adaptation stage 1 and stage 2. In stage 1, we transform source images to intermediate ones by a CycleGAN network G. Afterward, we

perform the first alignment to the intermediate domain via labeled source images. In stage 2, the framework applies a second alignment which takes the

intermediate distribution with labels inherited from the source and aligns the features with the target distribution. In addition, an IQA process is applied

before detector D to filter out the low-quality images transformed by G. All stages are both passed through the align network A to extract domain invariant

features in an adversarial manner.
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Network (RPN) and Region of Interest (ROI) classifier. As shown in Figure 1, the two branches output categories and detection boxes to be the

detector. The loss function of the detector Ldet is defined as Equation 1:

Ldet = Lrpn + Lcls + Lreg (Equation 1)

where Lrpn, Lcls, and Lreg are the loss of the RPN, classifier, and bbox regression, respectively. All further details refer to the original article.41

To align the distributions, we append a domain discriminator D after the feature extractor F. This branch is to discriminate which domain

the feature E(I) is from. This discriminator gives us the probability of each image belonging to the target domain P =D(E(I)). Then a binary cross

entropy loss based on the domain label d is applied to P. The discriminator loss function Ldis is defined as Equation 2:

Ldis = -
X

dlogp + ð1-dÞlog�1-p� (Equation 2)

Themainmethod of adversarial learning is to use gradient reverse layers (GRL)42 to learn domain invariant features E(I). GRL performs pos-

itive gradient updates for the detector and negative gradient updates for the discriminator. As a result, the feature extractor F receives gra-

dients that force it to update in an opposite direction which maximizes the discriminator loss, thereby confusing the discriminator to distin-

guish which domain the image comes from. For the domain adaptation task S/ T, given source images IS and target images IT, the overall

loss Lall is defined as Equation 3:

Lall = LdetðEðIsÞÞ+ lðLdisðEðIsÞÞ + LdisðEðIT ÞÞÞ (Equation 3)

where l is a weight applied to balance the loss of the discriminator. Specifically, because there are align networks in both stages, the IS and IT
represent the source and intermediate domain images in stage 1, and the intermediate and target domain images in stage 2.

Progressive adaptation via image-to-image translation network

Directly aligning feature distributions between two distant domains often results in poor performance. So, we create an intermediate domain

that plays a bridging role in achieving progressive domain adaptation.

CycleGAN22 is an excellent generative adversarial network for creating an intermediate distribution. It synthesizes target distribution at the

pixel level and can achieve bidirectional intermediate domain conversion, so it can achieve our innovation point: our proposed method also

improves performance by swapping source and target domain. The fundamental motivation behind this is that the intermediate domain I

created by CycleGAN has the same content and different appearance styles as source domain S, while intermediate domain I and target

domain T have the same pixel-level feature distribution but different content. Therefore, the challenge of a large domain gap between S

and T can be effectively reduced by an intermediate domain with a bridge role. Figure 2 shows feature space distribution visualization exam-

ples using the BDD100K, KITTI, and Cityspensons datasets. We use a dimensionality reduction algorithm t-SNE43 to plot the feature map E(I)
iScience 27, 109639, April 19, 2024 3



Figure 2. t-SNE visualized the intermediate feature space distribution between source and target domains

In (A) shows the intermediate distribution (purple) from KITTI (orange) to Citypersons (green).

In (B) shows the intermediate distribution (purple) from BDD100K (blue) to Citypersons (yellow).
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as a 2-dimensional distribution. As shown, the distribution of the intermediate domain is exactly lying in the distributions of source and target

domains.

When training the CycleGAN model, we need to specify a root directory and then store the source domain images in the folder train_A

and test_A. Store the target domain images in the folder train_B and test_B. The source and target can be swapped because a CycleGAN

model can generate images of the style of each domain participating in training. Then we set Buffer_ Size = 50, and randomly sample 50

images to participate in each update. The loss function consists of 2 cycle_loss and 2 id_loss with weights of 10 and 0.5. We use the Adam

optimizer, where the moment estimates for both stages are set to b1 = 0.5, b2 = 0.999. The image normalization standard is mean =

[0.5,0.5,0.5], std = [0.5,0,0.5]. The evaluation metrics for the generator are FID and IS. The total number of training Epochs is 80000.

Because image translation does not require too much data augmentation, we only used Crop, Resize, and Horizontal Flip. In the gener-

ation phase, we need to turn off Crop and Horizontal Flip and specify the target domain name. We have summarized all the details in

Table 1.

Therefore, we decompose a difficult large gap domain adaptation problem into two small gap domain alignment problems. The align-

ment method involves adversarial learning with an align network between two small gap domains.

Performance supervision via image quality assessment

We found that some dots of the intermediate domain are far away from both the source and target domains in Figure 2. The inconsistent

quality of synthesized images causes these phenomena. In Figure 3, some images fail to preserve original details or contain extra shadows

during translation, and these failure cases have a larger distance to target images. The first row shows examples fromBDD100K synthesized to

Citypersons, while the second and third rows show images from Citypersons to BDD100K.
Table 1. CycleGAN training statistics

Parameters Details

Augmentation Crop 256

Resize 1024/512

Horizontal Flip p = 0.5

CPU/GPU/RAM I7-6700/NVIDIA GTX 2080TI/16G

Environment Python3.6.4/Pytorch1.10/OpenCV4.5.4

Buffer_size 50

Loss function cycle_loss(weight = 10)+id_loss(weight = 0.5)

Optimizer Adam(b1 = 0.5, b2 = 0.999)

Normalize mean = [0.5, 0.5, 0.5]/std = [0.5, 0.5, 0.5]

Metrics FID/IS

Epochs number 80000

4 iScience 27, 109639, April 19, 2024



Figure 3. The image quality examples from the BDD100K and Citypersons datasets were translated to styles of each other

(A) Better quality translations.

(B) The image is in extra shadows that fail to preserve the original details of the cars and buildings, almost integrated with the background.
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As the verification in section 4, when using these low-quality images to train the detection model in intermediate domain I and

perform detection task I / T, these low-quality images can lead to cross-domain incorrect feature alignment. To alleviate this problem,

we propose a filtering strategy based on the distance between intermediate domain images and target domain images. Specifically, the

outliers that reach a certain distance from target images will be filtered out of the training set of the intermediate domain. We deter-

mine distance using the output score predicted by the domain discriminator D in the align network. This discriminator is trained to get

the probability of each image belonging to the target domain, in which the predict function of the discriminator is defined as

Equation 4:

Dpred =
PtðEðIÞÞ

PsðEðIÞÞ+PtðEðIÞÞ (Equation 4)

where E(I) is a featuremap obtained from the intermediate domain image through the feature extractor F, and Pt(E(I)) and Ps(E(I)) are the prob-

abilities that E(I) belongs to the source domain and target domain, respectively. Here, the higher the Dpred score achieved, the closer the

distance to the target domain. On the other hand, low-quality images that are too far away from target domain images will be considered

outliers and filtered out.
RESULTS

In this section, we evaluate performance in real-world scenarios through two typical cross-domain problems: 1) camera viewpoints adaptation

and 2) weather adaptation to validate our proposed method.

For each adaptation scenario, we compare with a Faster R-CNN baseline model (trained on source domain dataset), a fully supervised

model (trained on target domain dataset) denoted Oracle, and a model trained on the intermediate domain using our domain adaptation

method, to show the effectiveness of unsupervised domain adaptation for cross-domain pedestrian detection.
Implementation details

In the experiments, we adopt Cascade R-CNN41 for the detection network. The discriminator D uses 4 convolution layers with 3 3 3 filters.

There are 64 channels in the first three layers, each followed by a ReLU function.44 The last layer has 1 channel to output the prediction for

domain discrimination. The intermediate domain is generated by CycleGAN22 training on both source and target domain images.
iScience 27, 109639, April 19, 2024 5



Table 2. The partition of the dataset used in the experiments

Merge A: Citypersons B: BDD100K C: KITTI

Pedestrian Pedestrian Person Pedestrian

Rider Rider Cyclist

Sitting Person – Person Sitting

Other Person – –

People Group – –

Ignore Region – –

Train Val Train Val Train –

2975 500 70000 10000 7481 –

Total 3475 80000 7481

Persons 19654 86047 6336

Per image 7.0 1.2 0.8
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To balance the discriminator loss with the detection loss in stage 1 and stage 2, we set the weight l to 0.03 and 0.1, respectively. Our pro-

posed method is implemented on the PC with one GTX2080Ti GPU, 16 GB memory, and one I7-6700 CPU using the PyTorch framework

running on the Ubuntu18.04 Operate System.

Datasets

Citypersons. The Citypersons dataset24 is a subset of the Cityscapes dataset45 that only contains annotations about persons. There are

2975 images for training and 500 images for validation. The average number of pedestrians in an image is 7, providing a visible area and

full body annotation. To unify the annotations of the detection objects, we merged all the annotations (ignore regions, pedestrians, riders,

sitting persons, other persons with unusual postures, and groups of people) as Pedestrian.

BDD100k. The BDD100k dataset25 from theUniversity of California, Berkeley consists of over 100K video sequences, containing image level

markers, object bounding boxes, drivable areas, lane markers, and full frame instance segmentation. There are 70000 images for training and

10000 images for validation. The dataset has geographical, environmental, and weather diversity, which is useful for training models and can

therefore reduce the impact of environmental factors on identification results. The annotations of car, truck, bus, train, motorcycle, bicycle,

traffic light, and traffic sign are discarded, while pedestrians and riders are retained as Pedestrian.

KITTI. A total of 7,481 images were collected while driving a data acquisition vehicle in highways, cities, and rural areas in the KITTI data-

set.23 All the images belong to the training set, so we only use KITTI as a source domain in the following experiments. Also, we discarded the

annotations of Car, Van, Tram, Truck, Misc, and DontCare, and unified Pedestrian, Person Sitting, and Cyclist as Pedestrian.

In summary, we present the details of all the datasets used in Table 2. To achieve a unified detection task, we only retained annotations

related to pedestrians in each dataset.

Adaptation for camera viewpoints

The underlying camera viewpoints and mechanisms lead to a critical domain shift in pedestrian detection tasks. In this section, we attempt to

solve the first cross-domain detection problem using our proposed method due to differences in style and content caused by different cam-

era viewpoints.

Firstly, the KITTI training set is used to train a baseline Faster R-CNN model and evaluated on the Citypersons validation set. Then, we

apply an intermediate domain generated by CycleGAN for Faster RCNN to evaluate. Finally, we use our proposedmethod (Ours) to validate

the effectiveness of the intermediate domain and IQA processes using an ablation study, respectively.

Unlike conventional object detection, the evaluationmetrics for pedestrian detection useMR24,26,28,33,35,46–49 instead of mAP.Miss rate is a

term used to evaluate the performance of pedestrian detection algorithms. It refers to the rate at which the algorithm fails to detect a pedes-

trian correctly per image. The lower the miss rate, the better the performance of the algorithm. The MR can be represented as Equation 5:

MR = 1 � TP

TP+FN
(Equation 5)

where TP (True Positive) predicts a positive sample and the result is correct, and FN (False Negative) predicts a negative sample, but the result

is incorrect. We can determine the ratio of missed detection boxes in all images using this equation, as shown in Table 3.

The results showed that using amodel trained on the source domain to solve the pedestrian detection task in the target domain achieved a

very poor performance (Faster R-CNN). When using an intermediate domain to train models created by CycleGAN, the MR was improved by
6 iScience 27, 109639, April 19, 2024



Table 3. Camera viewpoints Cross-Domain Adaptation

Method Miss Rate KITTI / Citypersons

Faster R-CNN 47.20

Faster R-CNN(W/CycleGAN) 38.12

Ours(W/CycleGAN) 25.16

Ours(W/CycleGAN & IQA) 24.58

Oracle 12.37
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9.08% (Faster R-CNN with CycleGAN). Furthermore, using our proposed method to train the model in the intermediate domain reduces the

MR by 12.96%. Finally, using the IQA process, the MR was reduced to 24.58%, which is closer to the fully supervised model directly trained on

the target domain, with an MR of 12.37%.

Furthermore, FPPI (False Positive Per Image) was used to analyze the MR information under different false positive in each image. FPPI is

commonly used in pedestrian detection performance evaluation anddisplays theMR situation under different FPPI values by drawing an FPPI-

MR curve. Usually, we hope to achieve lower MR values under lower FPPI values, which means the model can accurately detect targets while

minimizing false detections as much as possible. Figure 4 shows the FPPI performance under differentmodels on the cross-domain detection

task KITTI / Citypersons.

Adaptation for weather

To apply pedestrian detectionmodels to different weather conditions in real-world scenarios, this section proposes weather adaptation from

multiple weather conditions. The Citypersons dataset24 and BDD100K dataset22 are used as source and target domains, respectively, and

then exchange the source and target.

Table 4 shows that the model trained on the intermediate domain effectively reduces the domain gap with the target domain under

different weather conditions through our proposed domain adaptation method. Due to the higher difficulty of the pedestrian detection

task, we have demonstrated competitive performance compared to state-of-the-art cross-domain detection methods.19,38,39,40 Compared

with the baselinemethod, the Fater R-CNNusing intermediate domains reducedMRby 6.15%, 5.06%, and 4.20%, respectively, fromovercast,

snowy, and rainy weather to clear weather of Citypersons. Our proposed domain adaptation method achieved further MR reductions of

3.54%, 7.84%, and 7.77%, respectively. At the same time, from the various weather conditions of BDD100K to the clear weather of Citypersons,

the final MR reached 22.30%.We noticed that during the IQA process of task C/ B: overcast using Ours, the performance decreased due to

the significant difference in the number of images between source and target domains. After the IQA process, the difference in sample size

was further expanded, resulting in a shortage of features extractedby the deep learningmodel. Therefore, the intermediate domain by image

translation has been tightly distributed to the target domain and inherits annotations from the source domain for learning. In summary, this

experiment proves adaptation to weather conditions and the distribution alignment process, resulting in our method being very close to

Oracle results.
Figure 4. Comparison of FPPI results on the cross-domain detection task KITTI / Citypersons

Oracle and Ours dropped to a minimum value, while Faster R-CNNmodels further reduced MR as the FPPI value increased. Especially when the baseline model

has a larger FPPI, MR is still not low enough.

iScience 27, 109639, April 19, 2024 7



Table 4. Weather cross domain adaptation

Method

Miss Rate

C / B: overcast C / B: snowy C / B: rainy B / C

Number of images 2975 / 8770 2975 / 5549 2975 / 5070 70000 / 500

Faster R-CNN 43.35 41.17 40.22 28.87

Faster R-CNN(W/CycleGAN) 37.20 36.11 36.02 26.33

Ours(W/CycleGAN) 32.05 30.16 30.18 25.36

Ours(W/CycleGAN & IQA) 33.66 28.27 28.25 22.30

Oracle 18.86 17.52 17.36 12.37
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Figure 5 shows the FPPI performance under 4 different weather cross-domain scenarios. We found that task BDD100K/Citypersons dis-

played the best FPPI-MR curve due to BDD100K having the biggest size, fully utilizing the common features of different pedestrian detection

datasets, and aligning them to the smallest dataset for cross-domain detection. The other 3 show the FPPI performance of 3 weather adap-

tation tasks from Citypersons to BDD100K.
Figure 5. Comparison of FPPI results on four cross-domain detection tasks

Comparison of FPPI results on the cross-domain detection task (A) BDD100K / Citypersons, (B) Citypersons / B: overcast, (C) Citypersons / B: snowy, (D)

Citypersons / B: rainy.

8 iScience 27, 109639, April 19, 2024



Figure 6. The results in cross-domain detection tasks K / C and B / C

The 3 columns represent detection results before adaptation, after adaptation, and ground truth of the target domain, respectively.
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The similar size of images between the task Citypersons/ B: snowy and Citypersons/ B: rainy results in similar performance compared

to task Citypersons / B: overcast.

More discussion

In Figure 6, The first row shows the detection results in the weather adaptation task B/C, and the last two rows show the detection results in

the camera viewpoints adaptation task K / C.

We found that it is easy to overcome the domain-shift problem caused by viewpoints when crossing domains from big to small, and the

detection results are consistent with ground truth. With the completion of the domain-adapted process, the previously undetected small tar-

gets and the overlapping population of false detection are correctly detected. Themain reason is that the domain gap’s impact on the detec-

tion targets can easily be compensated by more features learned from more images.

Figure 7 shows the detection results of 3 weather adaptation tasks from Citypersons to BDD100K. Adaptation to snowy and overcast is

good, except for some small targets with wrong boxes regression. In rainy adaptation, there will be more false positives and missed boxes

in a crowd, mainly due to the lens coating and the obstruction of rain.

As an extension of this study, we further tested the time adaptation scenarios from Citypersons to BDD100K to verify the effectiveness of

our proposed unsupervised domain adaptive pedestrian detection method for domain gap issues caused by time changes. Figure 8 shows

very similar results to the previous two figures.Our proposeddomain adaptationmethod can apply detectionmodels to unsupervised pedes-

trian detection tasks and obtain results very close to manual annotations.

Table 5 shows all results of time adaptation fromCitypersons to BDD100K.We found that the scenes improvement at night and dawn/dusk

are most noticeable, mainly because Citypersons is mostly collected in daytime environments, while night and dawn/dusk samples are

very rare.

Comparison with state-of-the-art

In this section, we compare our work with state-of-the-art works on multiple datasets. To conduct a more comprehensive analysis, we

continued to perform domain adaptation tasks on three pedestrian detection datasets: Caltech,26 Foggy Cityscapes,45 and WiderPedes-

trian.50 Moreover, we use the AP (Average Precetion) to extract the pedestrian category from the best object detection works for comparison.

Table 6 summarizes these comparison results.

To compare with other works usingMR as an evaluationmetric, such as CascadeRCNN,46,49 SAN,48 andHQATrans,47 the results are shown

in the left half of Table 6. Ref.46,49 both used CascadeRCNN as the detection network and other additional public datasets as intermediate
iScience 27, 109639, April 19, 2024 9



Figure 7. The results in cross-domain detection task C / B

The 3 rows represent the cross-domain adaptation detection results from clear days to snowy, rainy, and overcast days, respectively.
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domains for progressive domain adaptation. Compared with the MR in ref. 51, Ours is 1.3 points ahead in task C/ C and 1.95 points behind

in task W / C without additional annotation datasets. Meanwhile, due to the advantages of frameworks and methods, we have achieved

significant leading performance compared to ref. 52, 53, and 54 in two tasks.

AFAN,51 SCD,38 CycleConfusion,52 and FasterRCNN19 detect multiple categories, so we extract pedestrian categories from them and use

AP as an evaluation metric for comparison. The results are shown in the right half of Table 6. Ref.51 used an enhanced feature alignment

network and an intermediate domain for domain adaptation, achieving an AP performance very similar to Ours in tasks C / F and

C / K. Ref. 55 introduced an instance-level temporal cycle confusion and achieved the highest AP performance of 45.80% in task C / F,

demonstrating the potential of self-supervised learning in domain adaptation tasks. Ref. 3 used two components to alleviate domain differ-

ences at the image and instance levels, achieving the best AP of 64.10% in Task C / K. The time adaptation tasks on BDD100K show our

leading specific values ahead of CycleConfusion,52 with a lead of 6.4 points in task D / N and 7.6 points in task N / D, respectively.

Time variation introduces domain shift caused by the light condition, therefore, pixel-level progressive domain adaptation has more advan-

tages than self-supervised image-level augmentation.

To sum up, our proposed method achieved competitive results in multiple cross-domain tasks using MR and AP as evaluation met-

rics. In the specific three tasks of C / C, D / N, and N / D, the best performance was achieved compared to other state-of-the-art

works.
DISCUSSION

In this article, we propose a two-stage progressive unsupervised cross-domain pedestrian detection method, which uses the intermediate

domain created by CycleGAN to bridge domain gaps and decompose a difficult large gap cross-domain task into two easier small cross-

domain subtasks. Using the intermediate domain, our method first aligns the feature distribution from a source domain to an intermediate

domain, and then from the intermediate domain to the target domain.

As we know, in driving safety, pedestrians are obstacles with the highest level of safety. Therefore, it is necessary to deploy a pedestrian

detection system with domain adaptation capability in the autonomous driving system using one or more cameras. We need to carefully

inspect the output of the original system and effectively integrate the input of pedestrian detection into the integrated perception system

without interference.
10 iScience 27, 109639, April 19, 2024



Figure 8. The results in time adaptation tasks from C / B

The 3 rows represent the cross-domain detection results from any time in Citypersons to night, daytime, and dawn/dusk in BDD100K, respectively.
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Here are some road perception systems that can be combined with domain adaptive pedestrian detection: driving scene reconstruction,

bird’s-eye view object detection, bird’s-eye viewmap segmentation, semantic occupancy prediction, multi-view depth estimation, andmulti-

modal object detection. Meanwhile, the following challenges will come through: 1) movement&acquisition, such as potential blurring caused

by vehicle movement; 2) data processing issues that occur due to hardware failures, such as noise and quantization; 3) the problem of inte-

grating 2D and 3D targets, such as how to model pedestrians and 3D occupied grids uniformly.

In extreme weather and lighting environments, we need more effective image preprocessing techniques to eliminate noise; Extreme

changes in camera viewpoints can also lead to measurement failure, requiring more diverse and delicate anchor boxes to detect

small, obscured, or tilted targets. Our proposed domain adaptation scheme can be extended to more cross-domain detection

tasks, such as vehicles, crops, mineral products, residues, industrial defects, and so forth. However, in special fields such as medical

imaging, and laser-plasma, the intermediate domain generated by CycleGAN cannot be used for domain adaptation. The size

and shape of lesions require strict medical definitions, and plasma also has strict variation limits during discharge. CycleGAN is likely

to produce image results that do not match the actual situation, making the detection results unreliable. Figure 9 shows some failed

cases.
Table 5. Time cross domain adaptation

Method

Miss Rate

C / B: night C / B: daytime C / B: dawn/dusk B / C

Number of images 2975 / 27971 2975 / 36728 2975 / 5027 70000 / 500

Faster R-CNN 47.43 42.55 48.12 28.87

Faster R-CNN(W/CycleGAN) 42.28 36.11 46.17 26.33

Ours(W/CycleGAN) 35.33 32.10 37.27 25.36

Ours(W/CycleGAN & IQA) 31.56 30.52 32.71 22.30

Oracle 18.28 16.32 18.12 12.37
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Table 6. Comparison with state-of-the-art works

Methods

Miss Rate (Y) Average Precision ([)

W / C C / C C / F C / K D / N N / D

AFAN51 – – 42.50 57.70 – –

CascadeRCNN46 29.20 36.50 – – – –

SCD38 – – 33.90 – – –

SAN48 – 44.17 – – – –

CascadeRCNN49 39.70 – – – – –

CycleConfusion52 – – 45.80 – 19.90 19.57

FasterRCNN19 – – 25.00 64.10 – –

HQATrans47 – 51.28 – – – –

Ours 31.15 35.20 40.97 60.55 26.30 27.17

W / C: WiderPedestrian to Citypersons C / C: Caltech to Citypersons

C / F: Citypersons to Foggy-Cityscapes C / K: Citypersons to KITTI

D / N: Daytime to Night on BDD100K N / D: Night to Daytime on BDD100K
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jun Yao (40516473@qq.com)

Materials availability

This study did not generate any new physical materials.

Data and code availability

The main model of this paper is an open-source model, available at https://github.com/haoqiu111/MY-LEARNING.

Data and code needed to reproduce the research and figures presented in this study are fully documented and accessible in the key re-

sources table. Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Data preprocessing

Data preprocessing includes resizing, normalization, and augmentation. To meet the requirements of our proposed cross-domain detection

framework, it is necessary to adjust the images of the training and testing sets to the size of (3,224,224) in all the datasets mentioned in the

previous sections.

In addition, set theMEANand STD values of the normalization options to [0.471, 0.448, 0.408] and [0.234, 0.239, 0.242], which can eliminate

stable distributions in images and highlight the differences and features of each image. The intensity of the original images should be scaled

to [0,1] instead of [0.255]. Normalization will subtract MEAN and divide by STD, as shown in Equation 6.

input image =
raw image=255 � MEAN

STD
(Equation 6)

Augmentation options were set during the training phase of all datasets, such as random brightness contrast, horizontal flip, rotate, crop,

and random gamma. All the augmentation options have been proved by experiments to significantly improve the effectiveness of cross-

domain detection models and reduce the MR.

Framework

The pedestrian detection and image generation models both use the OpenMMlab framework which includes MMDetection and MMGener-

ation projects, making it extremely convenient to train the models in this study.
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In MMDetection, we use the Cascade R-CNN configuration file and add a domain feature-aligned branch according to experimental re-

quirements to train a domain discriminator with adversarial learning loss functions.

In MMGeneration, we use the CycleGAN configuration file to train a CycleGANmodel for generating images of intermediate domains in

each cross-domain task.

Experiments

Weuse the Adamoptimizer to train cross-domain detectionmodels, with a hyper-parameter set to 0.9 (first moment estimation, b1) and 0.999

(second moment estimation, b2). They used CosineAnnealing for the Lr-attenuation (learning rate attenuation strategy). The learning rate in

CosineAnnealing first slowly decreases as the cosine value increases, then accelerates the decrease, and then slowly decreases again. This

descent mode produces good training results with a highly effective calculation method.

In detection tasks, we used a Cascade R-CNNmodel pre-trained on theCOCOdataset, with training epochs of 200, 300, and 500 on cross-

domain tasks KITTI / Citypersons, Citypersons / BDD100k, and BDD100k / Citypersons, respectively. When training, the batch size is

usually set to 8, and the loss functions are focal and GIOU.

In image generation tasks, we need to specify a root directory and then store the source domain images in the folders train_A and test_A.

Store the target domain images in the folder train_B and test_B. Then we set Buffer_ Size = 50, and randomly sample 50 images to participate

in each update. The loss function consists of 2 cycle_loss and 2 id_loss with weights of 10 and 0.5. We use the Adam optimizer, where the

moment estimates for both stages are set to b1 = 0.5, b2 = 0.999. The image normalization standard is MEAN = [0.5,0.5,0.5], STD =

[0.5,0,0.5]. The evaluation metrics for the generator are FID and IS. The total number of training epochs is 80000.
16 iScience 27, 109639, April 19, 2024
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