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Abstract. Alzheimer’s disease (AD) is a slowly progressive neurodegenerative disease conceptualized as a continuous
process, ranging from mild cognitive impairment (MCI), to the mild, moderate, and severe clinical stages of AD dementia.
AD is considered a complex multifactorial disease. Currently, the use of cholinesterase inhibitors (ChEI), such as tacrine,
donepezil, rivastigmine, and galantamine, has been the main treatment for AD patients. Interestingly, there is evidence that
ChEI also promotes neuroprotective effects, bringing some benefits to AD patients. The mechanisms by which the ChEI act
have been investigated in AD. ChEI can modulate the PI3K/AKT pathway, which is an important signaling cascade that is
capable of causing a significant functional impact on neurons by activating cell survival pathways to promote neuroprotective
effects. However, there is still a huge challenge in the field of neuroprotection, but in the context of unravelling the details of
the PI3K/AKT pathway, a new scenario has emerged for the development of more efficient drugs that act on multiple protein
targets. Thus, the mechanisms by which ChEI can promote neuroprotective effects and prospects for the development of new
drug candidates for the treatment of AD are discussed in this review.
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INTRODUCTION

Alzheimer’s disease (AD) is an irreversible neu-
rodegenerative disease. AD is conceptualized as a
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continuous process, spanning from normal cognition
to mild cognitive impairment (MCI), followed by pro-
gression from the mild, moderate, and severe clinical
stages of AD dementia [1–3]. AD is the most com-
mon cause of dementia worldwide. It is estimated
that over 139 million people worldwide will develop
dementia by 2050, and among them, about 50–60%
will develop AD [4]. AD is characterized by neuritic
plaques and neurofibrillary tangles as a result of the
accumulation of extracellular aggregated amyloid-�
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(A�) and intracellular aggregation of hyperphospho-
rylated tau protein, respectively [5, 6].

The loss of cholinergic neurons in the brain leads
to impairment of cholinergic transmission, being the
main cause of a cognitive decline in patients with
AD [6]. Due to the essential role of acetylcholine
(ACh) in cognitive function, a cholinergic hypoth-
esis was raised for the pathogenesis of AD, based
on the progressive loss of limbic and neocortical
cholinergic innervation and reduced ACh synthesis
[7]. Since ACh is involved in several physiologi-
cal processes (such as memory, attention, learning,
sensory information, and other critical functions),
the degeneration of cholinergic neurons in the brain
leads to reduced ACh levels, affecting cholinergic
transmission, generating cognitive deficits [1, 8].
Therefore, the acetylcholinesterase enzyme (AChE),
which hydrolyzes the neurotransmitter acetylcholine,
has become an important therapeutic target for AD
[6]. Different AChE inhibitors (AChEIs) were devel-
oped based on the cholinergic hypothesis [8], and
three drugs are currently available for the treatment of
AD: donepezil, galantamine, and rivastigmine. How-
ever, the effectiveness of these drugs is limited since
they reduce AD symptoms, but they are unable to
stop disease progression [6, 9]. There are several
literature reports showing that some AChEIs demon-
strate neuroprotective effects that were unrelated to
enzyme inhibition [1, 10, 11]. Thus, new therapeutic
strategies are focusing not only on the amplifica-
tion of cholinergic activity but also on modulating
non-cholinergic functions; these strategies have been
emerging to develop new disease-modifying agents
for AD treatment [12].

This review addresses the mechanisms by which
cholinesterase (ChE) inhibitors promote neuropro-
tective effects, which are capable of bringing benefits
to patients with AD. In addition, we also show new
perspectives in the development of potential drug
candidates endowed with neuroprotective capacity,
which have been designed for AD therapy.

CHOLINESTERASE ENZYMES

ChE is a ubiquitous class of serine hydrolases
that cleaves choline esters. There are two forms of
ChE (encoded by two distinct genes): AChE, which
hydrolyzes the neurotransmitter acetylcholine, and
butyrylcholinesterase (BuChE) [13, 14]. Although
both enzymatic forms exhibit similar catalytic activ-
ities, they differ in ionic or hydrophobic interactions
[14].

Fig. 1. Schematic structure of AChE showing the gorge region,
active catalytic site (CAS), and the peripheral anionic site (PAS).

AChE is primarily located at neuromuscular junc-
tions and cholinergic synapses in the central nervous
system (CNS), where it catalyzes the hydrolysis of
ACh into choline and acetate, making it responsible
for terminating ACh-mediated synaptic transmission
with high catalytic efficiency [9, 13]. AChE is struc-
turally composed of an active catalytic site (CAS), the
peripheral anionic site (PAS), and the gorge region
(Fig. 1) [9]. The CAS site is located at the bottom
of the gorge region, which is about 5 Å wide and
20 Å deep, lined with up to 14 conserved aromatic
residues, whose rings constitute ∼70% of the gorge
surface [15, 16]. CAS is the local where the hydrolysis
reaction occurs and contains a catalytic triad (H440-
E327-S200) and the critical aromatic residues, W84
and F330. The PAS is located near the entrance to the
gorge, being composed of Y70, Y121, and W279 aro-
matic residues that are essential components of this
site. PAS is a low-affinity binding site essential to for-
warding ACh and to controlling substrate specificity
at the gorge [9, 15, 16].

BuChE, also known as pseudocholinesterase or
nonspecific cholinesterase, can hydrolyze larger sub-
strates such as succinylcholine and acetylcholine,
and, in particular, butyrylcholine [17, 18]. Similarly
to AChE, BuChE is structurally formed by a 20 Å
gorge lined with six aromatic amino acid residues, a
CAS site, and a PAS site [19]; the catalytic triad is
located at the bottom of the gorge, composed of S226,
H466, and E353 [17]. Unlike AChE, in BuChE, the
choline-binding site was replaced by Ala (A328), and
the peripheral site was reduced to only two residues
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(D70 and Y332). These changes are likely responsi-
ble for the activation of the substrate characteristic of
BuChE. In the acyl pocket of AChE, the Phe residues
were replaced by less bulky aliphatic residues (L286
and V288); in BuChE, it increases the volume of the
pouch, allowing the accommodation of larger sub-
strates [18].

AChE is mainly from the neuronal origin, whereas
BuChE is primarily originated from glial cells [19].
Under normal conditions, ACh is predominantly
decomposed by AChE, while BuChE plays a sup-
portive and functional role [19, 20]. Thus, the
development of novel ChE inhibitors (ChEI) has been
a promising approach for AD therapy [9]. However,
it has been reported that BuChE levels increase as
the AChE level decreases in AD patients at late-stage
[21]. Furthermore, there is evidence that both AChE
and BuChE have secondary non-cholinergic func-
tions, which include the deposition of A� peptides
in the form of senile plaques and the accumulation
of neurofibrillary tangles in the brain of patients with
AD [21]. Therefore, the development of new selective
AChE and BuChE inhibitors is of crucial importance
for new therapeutic modalities in AD [19, 22].

INTERACTIONS OF ChE WITH A�
PEPTIDES

A� peptides are the main constituent of senile
plaques and an important neurotoxic agent in AD
[23]. AChE forms stable complexes with A� peptides
during the enzyme assembly into filaments, conse-
quently accelerating this process and stimulating the
fibril elongation [24, 25]. This may be one of the rea-
sons by which AChE is consistently found in deposits
of amyloid plaques [26–28]. The interaction between
AChE and A� peptides occurs due to the involve-
ment of a small hydrophobic peptide that contains a
conserved tryptophan (W279) located at the PAS site
of AChE, contributing to the formation of a highly
toxic complex [23, 28, 29]. In vitro studies showed
that the action of AChEIs directed towards the PAS
site are capable of inhibiting the AChE effect on the
assembly of A� filaments, whereas inhibitors of the
AChE CAS site did not show the same effect [25].
BuChE is also associated with amyloid plaques and
it co-localizes with the A� peptide [28]. In contrast to
AChE, reports show that BuChE inversely associates
with A� peptides and delays the beginning of their
assembly, decreasing the rate of in vitro A� fibril for-
mation [30]. The PAS site of BuChE lacks three out

of four aromatic residues that are found in the PAS
site of AChE, thus exhibiting an inverse biochemical
property [30].

Several studies indicate that AChE-A� complexes
promote major neurotoxic effects when tested in vitro
or in vivo, compared to treatment with A� peptides.
Experiments performed in PC12 neuronal cell line
demonstrated that treatments with AChE-A� com-
plexes showed greater cytotoxicity than fibrillar A�
complexes [24, 31, 32]. Interestingly, Reyes et al.
(2004) found an increase in neurite network dystro-
phy, increased neuronal apoptosis, and a sustained
increase in intracellular Ca2+ in hippocampal neu-
rons from rats treated with AChE-A� complexes.
There is evidence that AChE strongly stimulate
mouse A� aggregation in vitro, resulting in A�-AChE
complexes that are more toxic than A� fibrils [33],
and altogether, these studies may suggest that AChE
could play an important role in neurodegeneration
[31]. Accordingly, AChEIs that selectively act at the
PAS site of the enzyme also prevent the formation
of AChE-AB complexes, as well as the acceleration
of A� peptide assembly into filaments. Thus, AChEI
seems to be an attractive and promising target for the
development of new potential candidates for anti-AD
therapeutic drugs [33, 34].

TRADITIONAL CHOLINESTERASE
INHIBITORS

The various physiological alterations occurring in
AD patients culminate in a reduction of ACh syn-
thesis, as well as a decrease in cholinergic receptors,
thus causing a reduction in cholinergic transmission
[1]. Thus, ChEI was developed to block the catalytic
action of the AChE, resulting in increased levels of
ACh in the synaptic cleft and activation of cholin-
ergic receptors [1, 5]. Thus, Tacrine 1, donepezil 2,
rivastigmine 3, and galantamine 4 (Fig. 2) were the
first drugs used in the clinic [34].

Tacrine, an acridine derivative, was the first drug
approved by the Food and Drug Administration
(FDA) in 1993 to treat AD [35]. It is a potent
reversible and non-competitive AChE/BuChE inhi-
bitor [35, 36]. Tacrine inhibits AChE through its
interaction with the CAS site [6]. Despite being an
excellent cholinesterase inhibitor, soon after its reg-
istration, tacrine was withdrawn from the market due
to adverse side effects, such as hepatotoxicity and low
bioavailability [1, 35–37]. Nausea, vomiting, loss of
appetite, and diarrhea were also common side effects
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Fig. 2. Structures of the traditional ChEI.

caused by regular tacrine administration [6]. How-
ever, its chemical structure has been widely used to
design new compounds that are capable of inhibiting
ChE, with lower side effects and toxicity [35].

Donepezil is widely prescribed for mild, mod-
erate, and severe AD and has been considered a
first-line treatment against this disease since 1996
[38, 39]. It is a reversible, mixed inhibitor that exhibits
competitive and non-competitive AChE activity [40,
41]. Donepezil is capable of simultaneously inhibit-
ing both CAS and PAS sites of AChE [40]. It has
a selective activity for AChE, but only a modest
effect on BuChE, unlike other compounds such as
rivastigmine and tacrine [41]. In addition to inhibit-
ing AChE, donepezil also has activities at molecular
and cellular levels in almost all stages involved in the
pathogenesis of AD [6, 41]. However, adverse events
can occur during its use, being significant at higher
dosage (10 mg/d) compared to lower dosage forms
(5 mg/d) [42]. Symptoms can range from appetite
loss, vomiting, nausea, diarrhea, and rhinitis. How-
ever, gastrointestinal side effects are mainly observed
[42].

Rivastigmine was approved for the treatment of
patients with mild to moderate AD in 2000. It is
a pseudo-irreversible carbamate-type of AChE and
BuChE inhibitor, being selective for the CNS com-
pared to peripheral tissues [8, 43, 44]. It is classified
as a pseudo-irreversible inhibitor because it binds
to AChE that cleaves the rivastigmine molecule. A
covalent carbamoyl-AChE complex is formed, pre-
venting the catalysis of acetylcholine and temporally
inactivating the enzyme [5, 43]. Rivastigmine was
initially administered orally, but due to gastroin-
testinal adverse events [44], the transdermal patch
emerged, providing a continuous and well-controlled
administration, reducing fluctuations in plasma con-
centration, with minor side effects [8, 44].

Galantamine is an alkaloid belonging to the
Amaryllidaceae family, isolated from the Galanthus
woronowii plant and indicated for treating mild to
moderate AD [45, 46]. It is a reversible competitive

and selective inhibitor of AChE interacting with
the anionic subsite and the aromatic gorge, having
only slight activity in the inhibition of BuChE [5,
44, 46]. Galantamine has CNS selectivity with little
effect on peripheral tissues [45]. Furthermore, it is an
allosteric modulator of nicotinic acetylcholine recep-
tors (nAChRs) [45]. Although its clinical efficacy
is equivalent to that of donepezil [47], galantamine
seems to cause more side effects, especially gastroin-
testinal symptoms, compared to other AChE drugs
[46].

NEUROPROTECTIVE EFFECT OF
TRADITIONAL ChE INHIBITORS

The mechanisms underlying the action of AChEIs
drugs (donepezil, tacrine, rivastigmine, and galan-
tamine) have been investigated not only for their
effects on AChE inhibition but also for their abil-
ity to promote neuroprotection against cell damage.
However, there still remains an immense challenge
in the field of neuroprotection [11].

The A� cascade hypothesis, the most cited hypoth-
esis in AD pathology, focuses on the abnormal
processing of amyloid-� protein precursor (A�PP),
leading to imbalance between the production and
clearance of A�, generating an excess of A�
aggregation and neurotoxicity [34, 48]. Several stud-
ies conducted in neuronal cultures treated with
donepezil [49–51], tacrine [52, 53], rivastigmine [54],
and galantamine [55–58] showed neuroprotective
effects, such as increased cell viability, reduction
of neuronal death and release of inflammatory
mediators against A� toxicity. In animal models,
donepezil was able to induce cognitive and behavioral
improvements, as well as decrease the deposition
of A� peptide and reduction of neuronal death
[49, 59–62]. Other studies showed that donepezil,
rivastigmine, and galantamine could promote neu-
roprotection and reduce A� deposition [63–66].
Furthermore, AD patients treated with donepezil
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Fig. 3. Activities of traditional ChEI on multi-targets in AD may lead to various therapeutic effects, which altogether provide neuroprotection.

revealed improvements in cognitive functions and
decreased levels of A� in peripheral blood cells [67].

Another hypothesis is based on tau protein
hyperphosphorylation leading to the formation of
intracellular neurofibrillary tangles (NFTs) in the
brain of AD patients [68]. Glycogen synthase kinase-
3� (GSK-3�) is one of the central kinases responsible
for tau hyperphosphorylation. Studies suggest that
the neuroprotective effects of donepezil would also be
occurring through the inhibition of GSK-3� activity
[50, 69]. Interestingly, donepezil, rivastigmine, and
galantamine showed a neuroprotective effect against
the toxicity of okadaic acid, an inducer of tau protein
hyperphosphorylation, reducing neuronal death [70,
71]. Treatment of AD patients with donepezil for six
months caused an increase in phosphorylated GSK-
3� (inactive enzyme), which would reflect a reduction
in tau protein phosphorylation [72].

The cortical neurodegeneration of AD is also
attributed to glutamate-induced neurotoxicity [10].
Several studies have shown that donepezil protects
neurons against glutamate-induced toxicity by reduc-
ing Ca2+ influx, caspase-3 activation, and neuronal
death [73–75]. There are reports showing that tacrine
and galantamine can also reduce glutamate-induced
cell death [10, 74, 76].

Under conditions of tissue injury, such as ischemia,
the generation of oxidative stress can cause damage to
all major cellular molecules [77]. On the other hand,
under oxygen-glucose deprivation, assays performed
in primary cultures of rat cortical neurons showed that
donepezil caused protective effects against ischemic
damage; however, galantamine, tacrine, and rivastig-
mine did not promote the same effect [75]. A pro-
tective effect of galantamine against oxidative dam-
age has been observed in neuronal cultures [56,
78, 79]. Furthermore, in vitro pre-treatment with
donepezil could protect endothelial cells against dam-
age induced by hydrogen peroxide [77]. In the last

decade, several reports in the literature have focused
on the ability of ChEI to induce neuronal recovery by
increasing neurogenesis and neuritogenesis. Several
studies demonstrated that donepezil could promote
neuronal differentiation and neurite growth in vitro
and in vivo [80–84]. Similar effects were also found
for tacrine, galantamine, and rivastigmine [85–90].

The importance of ChEIs is mainly centered on
their mechanisms related to neuroprotection, and
its capability of acting on different targets or pro-
cesses in AD (Fig. 3). The ChEIs action occurs
by modulating the cell survival pathway to pro-
mote neuroprotective effects. Most of these effects
induced by ChEI are related to the stimulation
of nAChRs, downregulation of NMDA receptors,
and consequently, induction of the phosphoinosi-
tide 3-kinase (PI3K)/protein kinase B (AKT) and
mitogen-activated protein kinase (MAPK) signal-
ing pathways [10, 73, 91]. PI3K/AKT pathway
plays a significant functional impact on synaptic
plasticity, neuronal polarity, neurotransmission, use-
dependent translation, metabolic control and stress
responses, including DNA repair in the brain [92,
93]. Thus, the PI3K/AKT pathway has been increas-
ingly investigated regarding its role on the induction
of neuroprotective effects.

PI3K/AKT PATHWAY MEDIATING THE
MULTI-TARGET EFFECTS IN AD

PI3K/AKT pathway provides a link between
several pathological processes in AD, such as age-
ing “itself”, glucose metabolism, A� aggregation,
tau hyperphosphorylation, synapse loss, oxidative
stress, inflammation, and neuronal death [94]. The
PI3K/AKT pathway can be induced by AChEI
through signaling by nAChRs reported in in vitro
studies [95–98]. To date, about seventeen subunits
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of nAChRs have been described [99]. In mammalian
brain cells, the most commonly found nAChRs
are the �4�2 heteromeric (�4�2-nAChR) and the
�7 homomeric subunit–�7 nicotinic ACh receptor
(�7-nAChR) [100], whose importance in AD treat-
ment has been widely examined. For example, the
stimulation of �7-nAChRs contributes to memory
formation and consolidation [96] and cellular recov-
ery after A�-induced neurotoxicity in mice [97].
On the other hand, the blockade of �7-nAChRs
induces cognitive deficits in mice [98]. In addition
to inhibiting AChE, there is evidence that ChEI
interacts with �7-nAChRs, which in conjunction
with tyrosine kinase Fyn and Janus-activated kinase
2 (JAK2), lead to the activation of PI3K signal-
ing cascade and induction of neuroprotective effects
[95, 101]. PI3K is a plasma membrane-associated
kinase protein composed of a p85 regulatory subunit
and a p110 catalytic subunit. Upon activation, PI3K
catalyzes the conversion of phosphatidylinositol
(3,4)-bisphosphate (PIP2) into phosphatidylinositol
(3,4,5)-trisphosphate (PIP3), which further activates
several downstream proteins, such as AKT [102].
Activated AKT modulates key biological processes
that are essential for maintaining cellular metabolism
and cell survival [103].

Notoriously, AKT plays an important role in the
regulation of cell death through the activation of pro-
teins, such as the B-cell lymphoma 2 (Bcl-2) protein
family [104]. Bcl-2 protein family includes Bcl-2-
associated death promoter (BAD), Bcl-2 Associated
X-protein (BAX), Bcl-2, and B-cell lymphoma-extra
large (Bcl-xL) proteins that localize within the mito-
chondrial membrane [105]. Whereas Bad and Bax
are pro-apoptotic proteins that can trigger the release
of cytochrome C or caspase, thus inducing apoptosis,
Bcl-2 and Bcl-xL are anti-apoptotic proteins that con-
tribute to cell survival [105]. Furthermore, AKT also
acts on different processes, such as stress response,
antioxidant defense and autophagy, through the inhi-
bition of FOXO transcription factors [106, 107].
There are reports showing that A� oligomers alter
the PI3K-AKT signaling [108, 109], thus suggesting
this pathway as a potential therapeutic target for new
drugs. Actually, studies in AD patients demonstrated
a downregulation of PI3K and its downstream targets
[110, 111].

Of particular interest in AD, AKT normally
inhibits GSK-3� and activates the nuclear factor
(erythroid-derived 2)-like 2 (NRF2) protein, which is
the main transcription regulator of antioxidant genes
[112]. As a consequence of GSK-3� activation, there

is an increase in A� production, hyperphosphoryla-
tion of tau protein, and consequently, NFTs formation
[113, 114]. In this context, GSK-3� seems to be
an interesting, promising target for designing new
drugs, under the hypothesis that its inhibition might
impact several alterations in AD; some of them have
been associated with reduced levels of A�, tau pro-
tein, and neuronal death [115, 116]. An interesting
finding is that activated GSK-3� promotes NRF2
downregulation [117]. Since the role of the NRF2
gene is related to the antioxidant system, NRF2-
deficient mice present increased levels of oxidative
stress, phosphorylated tau, A� accumulation [118],
and also significant cognitive deficits [119]. Interest-
ingly, studies on mouse AD models showed that drugs
targeting NRF2 are potential neuroprotectors and can
ameliorate cognition in mice [120, 121].

Another key protein in the PI3K/AKT pathway is
the mammalian target of rapamycin (mTOR), which
is phosphorylated and activated by AKT. mTOR is
the catalytic subunit of two multi-protein complexes:
mTOR complex 1 (mTORc1) and 2 (mTORc2) [122].
mTORc1 plays a crucial role in preventing the initia-
tion of autophagy, which is an essentially biological
process responsible for the clearance of misfolded
and aggregated proteins, such as A� and tau, two
proteins considered as hallmarks of AD. Enhanced
mTORc1 activity is associated with reduced A�
clearance, accumulation of A� aggregates [123, 124],
tau protein and increased NFT formation [125, 126]
due to dysfunctional autophagy. mTORc1 can also
upregulate A�PP processing, enhancing A� for-
mation [127]. On the contrary, mTOR inhibitors
have ameliorated cognitive function [124], learning
capacity and memory [123], thus suggesting that
mTOR might be a potential target for AD treat-
ment. mTORc2 can phosphorylate AKT and induce
AKT signaling. Additionally, mTOR plays a role
in the regulation of synaptic plasticity and neuro-
transmission [128]. It has been demonstrated that the
coordination between mTORc1 and mTORc2 is nec-
essary for the correct functioning of AKT signaling
[122].

To counterbalance the PI3K-AKT pathway,
other proteins, such as phosphatase and tensin
homolog (PTEN) protein and Src homology domain-
containing inositol 5′-phosphatase 1 (SHIP1) are
required as negative regulators of AKT signaling;
these proteins induce the dephosphorylation of PIP3
into PIP2 [129]. In addition, PH domain and leucine-
rich repeat protein phosphatase (PHLPP) and protein
phosphatase 2A (PP2A) are also downregulators of
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Fig. 4. Schematic representation of PI3K/AKT signaling pathway ChEI binding leads to the stimulation of �4 and �7 nicotinic acetyl-
choline receptors (nAChRs); subsequently, occurs the activation of tyrosine kinase Fyn and Janus-activated kinase 2 (JAK2), leading to
the activation of phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). PI3K converts phosphatidylinositol (3,4)-bisphosphate (PIP2) into
phosphatidylinositol (3,4,5)-trisphosphate (PIP3), which activates protein kinase B (AKT). mTOR Complex 2 (mTORC2) also activate
AKT signaling. PI3K/AKT pathway regulates several cellular functions, such as inhibition of Glycogen synthase kinase-3� (GSK-3�) that
affects tau hyperphosphorylation, inhibition of Forkhead box O (FOXO) and Bcl-2-associated death promoter (BAD) proteins, which are
cell survival regulators, such as B-cell lymphoma 2 (Bcl-2) and Bcl-2, and B-cell lymphoma-extra large (Bcl-xL). AKT also activates the
mTOR Complex 1 (mTORc1) autophagy regulator and NRF2, which promotes antioxidant response. In AD, the A� also acts by inducing
GSK-3� activity, increased NFT formation. The PI3K/AKT signaling pathway can be regulated in several ways. The Phosphatase and tensin
homolog (PTEN) protein and Src homology domain-containing inositol 5′-phosphatase 1 (SHIP1) induce the dephosphorylation of PIP3
into PIP2, being negative regulators of PI3K/AKT signaling. PH domain and leucine-rich repeat protein phosphatase (PHLPP) and protein
phosphatase 2A (PP2A) are also downregulators of AKT protein.

AKT by dephosphorylating AKT [129]. Inhibition of
PTEN in AD mouse models is associated with sev-
eral consequences, such as reduced expression of Bax
protein, decreased apoptosis, lower levels of DNA
fragmentation, reduced endoplasmic reticulum stress
[130], and rescue of normal synaptic function and
cognition [131]. Noteworthy, reduced activation of
PTEN and increased AKT phosphorylation might be
involved in neuritogenesis and neurodifferentiation
[84]. Accordingly, targeting PTEN to induce AKT

activation might be a potential approach to be inves-
tigated in AD therapy (Fig. 4).

Over the years, the accumulation of literature infor-
mation pointed out the increasing importance of the
PI3K/AKT pathway in the pathogenesis of AD. Alto-
gether, several key proteins acting on this pathway
can be selected as potential targets for the devel-
opment of multi-target-directed ligands (MTDLs),
thus affecting simultaneously different stages of the
signaling cascade [132]. Thus, several compounds,



184 N.C.d.S. Moreira et al. / Neuroprotective Effects of ChEI

that act in the PI3K/AKT signaling pathway, have
been developed for the treatment of AD. DL0410, a
novel dual cholinesterase inhibitor, is a MTDL small
molecule [132]. Studies have shown that DL0410
improves cognitive deficits, and also mitochondrial
function; besides, the activation of the AKT/GSK-
3� and MAPK/ERK signaling pathway promotes the
reduction of A� that can result in the induction of
synaptic transmission [132–134].

Treatment with EVP-6124 (encenicline), an �7-
nAChR partial agonist, in patients with mild to
moderate AD at Phase I (NCT00766363) and II (NCT
01073228) led to improvements in cognitive and
clinical functioning, being safe and well-tolerated
[135]. However, Phase III studies (NCT01969136)
have been suspended due to clinical hold. Another
potent and selective �7-nAChR antagonist, ABT-
126, showed cognitive efficacy in animal models
[138]. ABT-126 was investigated in Phase I (NCT
00867399) and Phase II (NCT00948909) studies,
demonstrating to be well-tolerated and safe, but a sig-
nificant cognitive improvement was not observed in
patients with mild to moderate AD [136].

Phase I (NCT00948259) and II (NCT01350362)
studies with NP031112, a GSK3 protein inhibitor,
carried out in patients with mild and moderate AD
demonstrated that the treatment was well tolerated,
but without any clinical benefit [137, 138]. Another
selective inhibitor of GSK3, AZD1080, tested in
animal studies significantly reduced tau phosphory-
lation, reversing cognitive deficits [139].

Hence, in the context of unravelling the details of
the PI3K/AKT signaling pathway regarding its role
linked to AD pathology and neuroprotective effects
caused by certain therapeutic drugs, data in the liter-
ature on the outcome of clinical applications are still
scarce; but in spite of this, a new scenario emerges
towards the development of more efficient drugs,
which act on multiple protein targets. However, the
consequences of inhibiting multiple targets must be
investigated with caution, since the effects on more
than one target may likely extend to different cel-
lular processes, and these must be balanced against
the desirable effects in terms of targeting the inherent
changes to AD pathology.

NEXT-GENERATION ChE INHIBITORS

There is a growing interest in the development of
potential MTDL drugs for the treatment of neurode-
generative diseases, such as AD. This comes from the

perception that for this disease, the pathophysiology
may result from an impairment of a complex intracel-
lular network, mainly involving important signaling
cascade, such as the PI3K/AKT pathway, as afore-
mentioned. In this context, relying on a single target
or process will probably not achieve the desired
result, mainly due to the existence of cross-signaling
mechanisms, as well as a positive and negative control
of molecular pathways. Thus, interventions towards
more than one step of this intricate molecular sig-
naling network have great potential to overcome the
pathological changes that occur in AD, although there
are many limitations and the need to control biologi-
cal responses and undesirable effects.

Although all initial AChEI drugs have been used as
scaffolds to propose novel therapeutic compounds, a
significant amount of these potential drugs relied on
tacrine 1 to guide the research on anti-AD drug dis-
covery. It is still of interest nowadays, even though
this compound was discontinued in 2013 due to
its hepatotoxicity [6, 140]. Some novel tacrine-like
hybrids were recently reported [6, 140, 149–152,
141–148]. Compounds with the highest ChE inhi-
bition are represented in Fig. 5, with their IC50
displayed in Table 1. It is worth mentioning that mod-
ifications in the tetrahydroaminacrine system have
been proposed not only to increase the effectiveness
of ChE inhibition, but also aiming to reduce hepato-
toxic effects [6, 45, 140]. Besides, many structures
are endowed not only to achieve ChE inhibition, but
also to obtain antioxidant properties, metal chela-
tion, blockage of A�42 self-aggregation, inhibition
of BACE1, HDAC, or NMDA receptors, aiming to
prevent neurodegeneration [141–143, 147, 149, 151,
153]. Although there is a great interest in devel-
oping rivastigmine and galantamine analogues [45,
140], significant efforts regarding the anti-cholinergic
approach rely mostly on tacrine and donepezil mod-
ifications. Thus, here we focused on these kinds of
structures.

Donepezil-based derivatives were also designed
and synthesized as AChEI. Their structure mod-
ification mainly relied upon replacing dimethoxy
indanone fragment, responsible for the interaction
with the PAS site, while preserving the benzylpiperi-
dine moiety, which fulfils the CAS site [140, 154].
The hybrid molecular strategy was also employed,
leading not only to novel selective ChEIs but also
MTDLs, which possess other non-cholinergic effects,
such as inhibiting MAO 19 [155], BACE-1 20 and 21
[156, 157], chelating metal and diminishing ROS pro-
duction 27 [158], or even inhibiting A� aggregation
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Fig. 5. Chemical structure of tacrine and most potent tacrine-based hybrids as ChE inhibitors described in the last years. The color pink
highlights the 1,2,3,4-tetrahydroakridin-9-amine rings as derivatives in each structure.

Table 1
Inhibitory activities (IC50 nM) of AChE and BuChE and selectivity index of novel tacrine-like compounds

Compounds IC50 (nM) Ratio of BuChE/ Multi-targeted ligand Ref
AChE BuChE AChE IC50

Tacrine 174.00 32.00 5.40 — [151]
5 150.00 36.00 0.24 BACE1 inhibition, Neuroprotection against glutamate

toxicity
[145]

6 49.00 93280.00 1903.67 Neuroprotection and A� aggregation inhibitory
activities

[146]

7 3.90 24.30 6.23 Inhibition of A�42 self-aggregation and fibril formation,
Antioxidant activity, Neuroprotection

[147]

8a 580.00 >66050 >113.88 — [148]
8b 440.00 >61020 >138.68 —
9 3050.00 3190.00 1.05 Moderate-to-potent calcium channel blockers [149]
10 2.20 4.93 2.24 — [150]
11 0.12 361.52 3012.67 HDAC inhibition, Cu2+ chelating properties [151]
12 26.00 9.00 0.35 — [152]
13 259.00 – – Antioxidant activity [141]
14 22.15 6.96 0.31 — [142]
15 10.00 57.00 5.70 Antioxidant activity [143]
16a 13.00 21.00 1.62 — [144]
16b 2.00 110.00 55.00 —
17 33.40 62.00 1.86 NMDA receptors inhibition [153]
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Table 2
Inhibitory activities (IC50 nM) of AChE and BuChE of donepezil-like compounds

Compounds IC50 (nM) Multi-targeted ligand Ref
AChE BuChE

Donepezil 30.00 4660.00 A� aggregation inhibition; BACE1 inhibition; MAO B inhibition; [142, 155, 157]
18 1420.00 0.25 — [162]
19 350.00 460.00 MAO inhibition [155]
20 4.10 – BACE-1 inhibition, metal chelating [156]
21 16.00 – BACE-1 inhibition [157]
22 1670.00 – A� aggregation inhibition, metal chelating [159]
23 0.36 – Antioxidant activity [163]
24 1147.00 – — [164]
25 – 510.00 weak A� aggregation inhibition [165]
26 0.27 – A� antiaggregating activity [160]
27 120.00 – A� aggregation inhibition, metal chelating [158]
28 14.00 3690.00 Neuroprotection against A�42 [12]
29 >10,000 0.17 — [161]

Fig. 6. Donepezil and some of the most potent ChE inhibitors derived from donepezil lately developed. Highlighted in blue are the indanone
fragments, in red benzylpiperidines moieties, and in pink the 1,2,3,4-tetrahydroakridin-9-amine rings in each structure.

22, 26, 27, 28, and 29 [12, 158–161]. Nevertheless,
the hybridization of donepezil with tacrine was also
attempted, originating potent compounds (Table 2)
that conserved indanone, piperidine, and tetrahy-
droaminacrine moieties 26 and to structures that
interchanged one of these moieties to an isostere, for
example, 27, which replaced the indanone group to a
benzofuran, as demonstrated in Fig. 6.

As mentioned above, despite ChE inhibition is
still considered an important strategy for anti-AD
therapy, interest in novel MTDLs designed for AD

treatment is a crucial aspect in the search for effec-
tive outcomes. Despite the neuroprotective effects
reported for ChEIs, the effectiveness of drugs tra-
ditionally used in the clinic is modest, and there is
an immense challenge in the search for more effec-
tive drugs capable of slowing the progression of AD,
in addition to controlling the symptoms of the dis-
ease (Fig. 7). Thus, the search for understanding the
molecular mechanisms of action of these compounds
remains, highlighting the relevance of designing new
drugs capable of reaching multiple targets in AD.
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Fig. 7. Multi-target effects of cholinesterase inhibitors on different pathways involved in the development of Alzheimer’s disease.

CONCLUSIONS

AD is considered a complex multifactorial dis-
ease. The use of cholinesterase inhibitors (donepezil,
rivastigmine, galantamine) is currently the main treat-
ment modality. Several in vitro and in vivo studies
have shown that traditional ChEI is provided with
cholinergic activities as well as activity against vari-
ous AD molecular targets, but their effects in reducing
AD progression are still limited. In the field of ther-
apeutic strategies for AD patients, it is extremely
important to understand the signaling pathways and
cellular mechanisms that are relevant for induc-
ing neuroprotection. In this context, a substantial
progress has been observed and, for the short-term
future, the expected amount of information may pro-
vide the essential basis for the development of new
highly effective multi-target-directed ligand drugs
designed to improve cognitive functions and reduce
AD neurodegeneration.
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WO, Moreira NCSS, Pérez C, Sakamoto-Hojo ET, Taka-
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