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Ribosomal inactivation damages 28S ribosomal RNA by interfering with its functioning during gene translation, leading to stress
responses linked to a variety of inflammatory disease processes. Although the primary effect of ribosomal inactivation in cells
is the functional inhibition of global protein synthesis, early responsive gene products including proinflammatory cytokines
are exclusively induced by toxic stress in highly dividing tissues such as lymphoid tissue and epithelia. In the present study,
ribosomal inactivation-related modulation of cytokine production was reviewed in leukocyte and epithelial pathogenesis models
to characterize mechanistic evidence of ribosome-derived cytokine induction and its implications for potent therapeutic targets of
mucosal and systemic inflammatory illness, particularly those triggered by organellar dysfunctions.

1. Introduction

As the functional organelle for protein synthesis, ribosomes
bound to the endoplasmic reticulum (ER) perform complex
surveillance of various pathologic stresses [1–3]. Ribosomal
alteration by endogenous and external insults can trigger
a variety of pathogenic processes, including inflammatory
responses [4–6]. Ribosomal inactivation can be induced by
a large family of ribonucleolytic proteins that cleave 28s
ribosomal RNA at single phosphodiester bonds within a uni-
versally conserved sequence known as the sarcin-ricin loop,
which leads to the dysfunction of peptidyltransferase and
subsequent global translational arrest [7, 8].These ribosome-
inactivating proteins (RIPs) are enzymes isolatedmostly from
plants and some of RIPs such as ricins and shiga toxins are
potent cytotoxic biological weapons causing tissue injuries
and inflammatory diseases [9, 10]. Similar ribosomal RNA
injuries have been observed during nonprotein ribosome-
inactivating stress triggered by physical and chemical insults
such as ultraviolet (UV) irradiation, trichothecene mycotox-
ins (mostly cereal contaminants produced by molds such

Fusarium species), palytoxin (an intense vasoconstrictor pro-
duced by marine species including dinoflagellate Ostreopsis
ovata), and anisomycin (an antibiotic produced by Strep-
tomyces griseolus), which also interfere with peptidyltrans-
ferase activity by directly or indirectly modifying 28s rRNA
[11, 12]. The primary action of most ribosome-inactivating
stress is the functional inhibition of global protein synthesis;
therefore, highly dividing tissues such as lymphoid tissue
and mucosal epithelium are the most susceptible targets of
the stress [13–15]. Although acute high levels of toxic insults
lead to sepsis-like symptoms including hemolytic uremic syn-
drome [16, 17], several epidemiological studies have suggested
that there are also links between ribosome-inactivating stress
and human mucosal epithelial illnesses ranging from acute
mucosal inflammatory disease to chronic illness, including
epithelial malignancy [18–20]. Ribosome-inactivating stress
has been investigated in various experimental models as an
etiological factor of inflammatory diseases such as ulcerative
colitis and hemolytic uremic syndrome [17, 21, 22]. Moreover,
upper airway inflammation such as intranasal neutrophilic
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rhinitis, which is characterized by mucus hypersecretion,
atrophy, and exfoliation of transitional epithelium, is also
triggered by some of ribosome-inactivating trichothecenes
[23–26]. Among a variety of mediators of the riboso-
mal inactivation-associated pathogenesis, proinflammatory
cytokines play key roles in both mucosal and systemic
inflammatory responses to ribosome-inactivating stress [27–
30]. Although the primary outcome of the insulted cells is
the global protein synthesis inhibition due to the ribosomal
RNA cleavage and modification [31], the insult leads to
some exceptional production of proteins such as cytokines
important for cellular homeostasis as well as a variety of
pathogenic processes involved in cell survival modulation,
proliferation, and stress response [32, 33].The present review
described the mechanistic patterns of exceptional cytokine
upregulation during the ribosomal dysfunction at various
levels of gene regulation, including transcriptional signaling
activation triggered by organellar distress, posttranscrip-
tional upregulation, and favorable posttranslational process-
ing of cytokines. Investigations of the molecular patterns of
cytokine induction by ribosomal inactivation will improve
our understanding of typical stress-induced processes of
inflammatory signals and provide new insight into therapeu-
tic targets for ribosome-related inflammatory diseases.

2. Organellar Sentinels for Cytokine
Induction: Ribosome and ER

Some surface signaling receptors are gate keepers against
intracellular stresses. Ribosomal inactivation by factors such
as UV irradiation increases phosphorylation of the cytoplas-
mic membrane receptor, epidermal growth factor receptor
(EGFR), on tyrosine residues to above basal levels, leading
to activation of protein kinase B (PKB/Akt1) and downregu-
lation of the Ras-extracellular signal-regulated kinase (ERK)
signaling cascade [34]. Ribosome-inactivating palytoxin
interacts with high affinity cell-surface receptors, including
the Na+, K+-ATPase, or Na+/H+ antiporter [35–37]. These
ribosomal inactivation-linked surface receptors (EGFR and
Na+, K+-ATPase) can also trigger their downstream kinase
signaling pathways, leading to proinflammatory cytokine
production [38, 39]. Although surface receptors may be
activated by ribosomal inactivation, most signaling sentinels
that respond to ribosome-inactivating stressors are associated
with organelles themselves, including the ribosome and
endoplasmic reticulum (ER).

2.1. Ribosomal RNA Cleavage and PKR-Linked Sentinel for
Ribosome-Inactivating Stress. Early responses to ribosome-
inactivating stress activate the ribosome-based scaffold sig-
naling protein network, resulting in diverse biological pat-
terns including apoptosis and cytokine induction [40–42].
In addition to the modification or cleavage of riboso-
mal RNA, a variety of ribosome-inactivating stresses lead
to phosphorylation of serine 51 on the alpha subunit of
eukaryotic translation initiation factor 2 (eIF2), leading to
global translational arrest [31]. The 𝛼 subunit of eIF2 in
the ribosome-based scaffold protein complex is the target of

different stress-related mammalian protein kinases including
double-stranded RNA-dependent protein kinase R (PKR)
and protein kinase RNA-like endoplasmic reticulum kinase
(PERK). Ribosome-inactivating stressors trigger an eIF2𝛼
kinase PKR which is recruited into ribosomal protein com-
plex during cellular pathogenic stresses in response to the
inflammatory stimulation [41, 43, 44]. PKR is an interferon-
induced serine/threonine protein kinase activated by double-
stranded RNA (dsRNA) [45] that plays important roles in
the antiviral defense by interferon, particularly during cell
growth control and differentiation [46, 47]. Mainly, dsRNA
mediates PKR activation upon viral infection, which blocks
the synthesis of new viral particle proteins [48]. Ribosome-
inactivating stress is another inflammatory trigger known
to activate PKR-linked signaling pathways in the ribosome
[41, 49, 50]. Since activated PKR mediates proinflamma-
tory chemokine induction in response to viral infection, it
increases infiltration of inflammatory cells including neu-
trophils which promotes tissue injuries in response to viral
infection [41, 51]. Proinflammatory chemokines such as
MCP-1 and IL-8 induced by ribosomal inactivation thus
exacerbated viral bronchopneumonia induced by respiratory
reovirus infection [51]. Mechanistically, ribosomal inactiva-
tion damages the loops in the ribosome, which facilitates
ribosomal binding to one or both dsRNA-binding domains
of PKR and induces enzymatic activation [41]. While acute
exposure to high levels of ribosomal stress, activated PKR
plays important roles in activating stress responses like
cell death via mitogen-activated protein kinases (MAPKs)
such as p54, p46, and c-Jun N-terminal kinase 1 and 2
(JNK1/2) [50], milder exposure to ribosomal inactivation
can trigger mucosal and systemic inflammation via the
production of proinflammatory chemokines by epithelial and
other immune-related cells [27, 29, 30, 52]. Low levels of
ribosomal insults promote proinflammatory cytokine induc-
tion via a different set of MAPKs such as p38 [40, 41].
One upstream activator of p38 that responds to ribosomal
stress is PKR, which is critical to ribosomal recruitment
of p38, its subsequent phosphorylation, and p38-mediated
transcriptional activation of proinflammatory cytokines [40].
In response to ribosomal inactivation by deoxynivalenol,
ribosome recruits the hematopoietic cell kinase that also
activates p38 MAP kinase cascade in macrophages [40].
Therefore, ribosomal 40S subunit serves as a scaffold for PKR
and other recruited signaling molecules, facilitating MAPK
mobilization and subsequent cytokine induction. However,
more definite molecular mechanisms should be addressed to
identify the link between ribosome-specific activation of PKR
and ribosomal inactivation in future studies.

2.2. ER Stress-Related Sentineling Signals for Cytokine Induc-
tion by Ribosomal Inactivation. Ribosomes that synthesize
proteins become bound to ERmembrane, after which the two
organelles engage in crosstalk related to various stress signals
and the protein synthesis process [2, 3]. Activated ribosomal
proteins thus may induce ER stress-related responses, which
are attenuated by deletion of ribosomes in yeast and human



Mediators of Inflammation 3

cells such as monocyte-derived cells and epithelial cells
[2, 3, 53]. ER-disrupting environmental and genetic factors
cause accumulation of misfolded and unfolded proteins in
the ER lumen, a condition termed ER stress. Ribosomal
inactivation can also alter ER functions, and some chemical
ribosomal inactivators such as trichothecenes, verotoxins, or
ricin enhance unfolded protein responses that contribute to
proinflammatory cytokine production and apoptosis-linked
tissue injuries [54–56]. ER stress is positively associated with
chronic proinflammatory diseases [57–59]. In particular, ER
stress is a risk factor of inflammatory bowel diseases (IBDs)
including Crohn’s disease and UC, which are triggered by
genetic or environmental factors such as smoking, stress, diet,
and microbial components that can induce excessive inflam-
mation [60–63]. Mechanistically, proinflammatory cytokines
play central roles inmediating ER stress-linked inflammatory
diseases [64–66]. Moreover, unlike canonical nuclear factor
kappa B (NF-𝜅B) activation, the upstream activator I𝜅B𝛼
kinase (IKK) is not activated during ER stress [66]. Instead,
the level of basal IKK activity maintained via an ER stress
sensor inositol-requiringER-to-nucleus signal kinase 1 (IRE1)
is essential to regulation of NF-𝜅B activation. Phosphorylated
eIF2𝛼 by PERK in combination with IRE1 action then leads
to repressed synthesis of I𝜅B𝛼 and subsequentmaximumNF-
𝜅B activation during ER stress in monocyte-derived cells [66,
67]. Although macrophage NF-𝜅B is activated by ribosomal
insults, epithelial NF-𝜅B expression and activity are strictly
regulated to prevent overstimulation of proinflammatory
responses following exposure to commensal bacteria [68, 69].
However, suppressed NF-𝜅B in gut epithelial cells is not
beneficial during pathogen infection since the production of
many antibacterial mediators such as defensins is dependent
on NF-𝜅B signaling pathways for their induction in gut
barrier. In spite of NF-𝜅B suppression some of epithelial
proinflammatory chemokines such as IL-8 are upregulated by
ribosomal inactivation [27, 70, 71]. This NF-𝜅B-independent
cytokine induction will be further explained in the next
section.

Moreover, ribosomal inactivation can trigger the expres-
sion of ER stress-linked transcriptional regulators such
as CCAAT/enhancer-binding protein homologous protein
(CHOP), which can mediate toxic inflammatory responses
in human intestinal mucosa, lung, and pancreas [72, 73].
Although CHOP is a key apoptotic signal inducer, it can
also modulate different types of inflammatory responses.
Specifically, CHOP is a dominant negative form of C/EBP
family members that lacks DNA binding activity and can
form heterodimer complexes with other C/EBP members,
thereby inhibiting their functions as transcription factors.
Since C/EBP𝛽 mediates expression of anti-inflammatory
peroxisome proliferator-activated receptor gamma (PPAR𝛾)
by forming homodimers and binding to the PPAR𝛾 promoter
[74, 75], CHOP-C/EBP𝛽 complex thus interferes with basal
PPAR𝛾 expression and facilitates NF-𝜅B activation by ER
stress [76]. Overall, ribosomal inactivation-induced ER stress
enhances proinflammatory cytokine production via NF-𝜅B
activation in monocyte-derived cells, which can be also facil-
itated by CHOP-mediated regulation of anti-inflammatory

PPAR𝛾. By contrast, ribosomal inactivation may suppress
epithelial NF-𝜅B expression and activity while some of
epithelial proinflammatory chemokines are enhanced in NF-
𝜅B-independent ways.

3. NF-𝜅B-Independent Transcriptional
Regulation of Cytokine Induction

Once activated by early sentinels from ribosomal recruitment
of signaling mediators or the provoked ER stress sentinels,
the downstream MAPK cascade accelerates the induction
of proinflammatory cytokines through activation of tran-
scription factors such as NF-𝜅B, activating protein 1 (AP-
1), CCAAT enhancer binding protein (C/EBP), cyclic AMP
response element binding protein (CREB), and early growth
response 1 (EGR-1) gene product [27, 33, 77–79]. Riboso-
mal inactivation activates NF-𝜅B-linked proinflammatory
signals for cytokine induction in monocyte-derived cells,
while extended exposure to the toxic stress can suppress the
signals in epithelia as commented [80, 81]. Moreover, induc-
tion of epithelial proinflammatory cytokines by ribosomal
inactivation occurs independently of the NF-𝜅B signaling
pathway [27, 28]. Instead of NF-𝜅B, EGR-1 can be involved
in proinflammatory chemokine gene expression in ribosomal
inactivation-insulted intestinal epithelial cells. Ambivalent
roles of epithelial EGR-1 were recently addressed in response
to mucosal ribosomal stress [68]. While EGR-1 positively
mediates epithelial chemokine induction by ribosomal inac-
tivation, EGR-1 also contributes to negative regulation of
proinflammatory NF-𝜅B signaling via PPAR𝛾 induction in
intestinal epithelial cells. EGR-1 is known to specifically bind
and transactivate PPAR𝛾 promoter [82, 83] although it can
also be involved in inhibition of PPAR𝛾 gene expression in
some cell types [84]. Ribosomal inactivation disrupts the
balance between PPAR𝛾 and NF-𝜅B-linked signaling in the
mucosal epithelia by enhancing EGR-1 gene expression and
subsequently PPAR𝛾 levels, leading to greater suppression of
proinflammatory NF-𝜅B signaling in response to infectious
agents including endotoxins [68]. Clinical investigations
demonstrated that the commensal microflora can enhance
the expression of PPAR𝛾 that is impaired in ulcerative
colitis (UC) patients, particularly in the enterocytes [85–
87]. Since epithelial PPAR𝛾 plays protective roles against
the colonic inflammatory responses to both commensal and
pathogenic bacteria [88–90], its attenuation by ribosomal
insults would be detrimental as implicated in UC patients.
Although PPAR𝛾 generally attenuates epithelial inflamma-
tory responses by triggering nuclear export of p65 protein
in complex with PPAR𝛾 [91], it can also regulate proin-
flammatory cytokine production via NF-𝜅B-independent
activation of signaling mediators such as protein kinase C
alpha, which induces cellular desensitization to proinflam-
matory stimulation in monocyte-derived cells [92]. Overall,
ribosomal inactivation triggers chemokine gene induction
through NF-𝜅B or alternate proinflammatory transcription
factors including EGR-1, while negatively regulating PPAR𝛾-
directed anti-inflammatory actions.
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4. Posttranscriptional Regulation

In addition to transcriptional regulation, posttranscriptional
modifications such as mRNA stabilization may lead to
cytokine superinduction via ribosomal inactivation in leuko-
cytes and gut epithelial cells [69, 93, 94]. Moreover, epithelial
ER stress that can be triggered by ribosomal inactivation
also enhances cytokine mRNA stability [95]. In response to
ER stress, eukaryotic cells selectively shut down the global
protein translation via eIF2𝛼 phosphorylation, which results
in a limited availability of the eIF2-GTP-tRNAMet complex
[96]. However, mRNA of some early stress responsive genes
is rapidly recruited from translating ribosomes into stress
granules (SGs) as untranslated form [95, 97]. Independently
of eIF2𝛼 phosphorylation, blocking of ribosome recruitment
also induces stress granule formation by interfering with
eIF4B activity, an RNA helicase required for the ribosome
recruitment phase of translation initiation [98, 99].Therefore,
disruption of ribosomal integrity as an alternate pathway
would induce the formation of SGs without regard to stress-
induced eIF2𝛼 phosphorylation. The temporal storage in
stress granules provides mRNA with shelter from degra-
dation and maintain silenced mRNAs to resume protein
translation upon stress release. The untranslated mRNAs
in SGs under stress are protected via SG-recruited mRNA-
stabilizing proteins such as HuR/Elav-like RNA binding
protein 1 (ELAVL1) that positively regulates the stability
of mRNA transcripts containing AU-rich elements (AREs),
including those for proinflammatory cytokines [100–102].
HuR protein binds to AREs in the 3󸀠 untranslated region
(3󸀠UTR) of target mRNA molecules in the nucleus and
then translocates into the cytoplasm for translation. Cytoso-
lic translocation of the HuR protein is also initiated by
mucosal ribosome-inactivating stress and ultimately stabi-
lizes cytokinemRNA in the cytoplasm and SGs [71, 93]. As an
HuRmodulator, CHOP plays key roles in maintenance of the
mRNA stability of cytokine genes in response to ribosome-
inactivating stress [71]. Similar to ER stress, ribosome-
inactivating stress induces CHOP expression, which also
suppresses PPAR𝛾 expression as indicated in Section 2.
As a target of CHOP induced by ribosomal inactivation,
PPAR𝛾 is not involved in epithelial chemokine regulation
at the transcriptional level. Instead, CHOP is a positive
regulator of cytokine mRNA transcript stability that occurs
via HuR protein [71, 76]. In response to mucosal ribosomal
inactivation, enhanced mucosal PPAR𝛾 regulates epithelial
chemokine gene induction, which is posttranscriptionally
modulated by HuR independently of NF-𝜅B-linked signals
[71, 103]. Mechanistically, induction of CHOP by ribosomal
inactivation enhances the cytosolic translocation of HuR
protein by suppressing PPAR𝛾 expression. Because PPAR𝛾
inhibits the cytosolic translocation of HuR, suppression of
PPAR𝛾 by CHOP protein facilitates HuR movement into
the cytoplasm and subsequent cytokine mRNA stabilization
[71]. Ribosome inactivation-triggered translocation of HuR
protein also enhances expression of activating transcription
factor 3 (ATF3), which plays a central role in the regulation
of proinflammatory NF-𝜅B signals in human gut epithelial

cells [102]. Therefore, HuR contributes to cytokine superin-
duction by ribosome-inactivating stress while retarding NF-
𝜅B activation via ATF3. Further studies are needed to assess
the effects of altered PPAR𝛾 on the stability of chemokine
transcripts in addition to the regulatory action of PPAR𝛾 on
transcriptional activity of chemokine genes in response to
mucosal ribosomal inactivation. Taken together, ribosomal
inactivation leads to chemokine superinduction via mRNA
stabilization by RNA-binding proteins such as HuR whose
cytosolic translocation is facilitated by CHOP protein. More-
over, HuR can mediate ATF3 superinduction as well, leading
to suppression of NF-𝜅B signals in enterocytes.

5. Posttranslational Processing of
Proinflammatory Cytokines and
Cytokine Receptors

5.1. Roles of Inflammasomes in Cytokine Processing. Following
transcriptional induction, some proinflammatory cytokines
such as interleukin 1𝛽 (IL-1𝛽) and interleukin 18 (IL-18)
undergo maturation triggered by the inflammasome-linked
sentinel [104–106]. Ribosome-inactivating stress also trig-
gers some inflammasome-linked processes that promote the
maturation of inflammatory cytokines in monocyte-derived
cells [107–109]. Ricin, a potent ribosomal toxin, leads to
acute lung injury and symptoms resembling acute respiratory
distress syndrome via the IL-1𝛽-activated signaling pathway
in alveolar macrophages [110]. Mechanistically, the nod-like
receptor (NLR) family member, NLRP3, stimulates IL-1𝛽
processing via NLRP3 inflammasome, which is triggered
by ribosome-inactivating stress in pulmonary macrophages
[107, 108]. Although the detailed molecular modes are still
unknown, ribosomal inactivation may mediate a drop in
cellular potassium, leading to protein translation and subse-
quent activation of the NLRP3 inflammasome [108]. A recent
study suggested that, as another mechanism of inflamma-
some activation by ribosomal inactivation, the activation of
p38 MAPK by ribosome-inactivating stress triggers forma-
tion of a pyrin inflammasome complex with ASC: apoptosis-
associated speck-like protein containing a caspase recruit-
ment domain and procaspase-1, leading to ASC oligomer-
ization, caspase-1 activation, and pro-IL-1𝛽 processing in
macrophages [109]. In both cases, ribosomal inactivation
is considered to provoke latent inflammatory storms via
inflammasome activation in the monocyte-derived cells.

5.2. Ribosomal Inactivation-Triggered Ectodomain Shedding of
Cytokine Receptor. Ribosomal inactivation stimulates MAP
kinase signaling via direct modulation of a broad spectrum
of physiological stimuli including appropriate growth factors
and cytokines [10, 32, 111]. Activated MAP kinase trig-
gers phosphorylation of TNF-𝛼-converting enzyme (TACE),
which is also known as a disintegrin and cell-surface met-
alloproteinase 17 (ADAM17), which is then translocated to
the cell surface for its action. TACE-dependent ectodomain
shedding of cell-surface proteins is increased by ERK and
p38 MAP kinase, which phosphorylate threonine 735 in the
cytoplasmic tail of TACE [112, 113]. Ligands of the epidermal
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Figure 1: A putative diagram of ribosomal stress-derived signaling networks for cytokine induction.

growth factor receptor (EGF) need to be cleaved byTACE and
shed as soluble proteins in order to become systemically avail-
able andmany proinflammatory cytokines or receptors of the
tumor necrosis factor alpha (TNF𝛼) family are also cleaved
by TACE [113–115]. Consistent with these findings, ribosomal
inactivation activates TACE-mediated ectodomain shedding
of TNF receptor 1 via activatedMAP kinases in pneumocytes
[116, 117]. In this case, ribosomal inactivation attenuated
cellular responses to proinflammatory cytokines via TACE-
mediated shedding of cytokine receptor, which regulates the
storm of proinflammatory cytokines in the body that occurs
under the ribosomal-inactivating stress. However, TACE is
also needed for the generation of soluble TNF𝛼, an important
therapeutic target of inflammatory diseases such as arthritis,
sepsis and colitis and thus the inhibition of TACE leads
to protection from the diseases in animals [118] although
many physiologic activities of TACE make blockade of this
enzyme problematic [119]. Since TACE-associated cytokine
regulation could be thus beneficial or detrimental, more
careful investigations are needed for the ultimate actions of
the ribosomal inactivation in the TACE-related pathogenesis.

6. Conclusion
Although the primary effects of ribosomal inactivation
on cells are linked to global protein synthesis, some early

responsive gene products including proinflammatory
cytokines are exclusively enhanced in lymphoid tissue and
epithelia. Although surface receptors triggering cytokine
induction are activated by some ribosomal inactivation,
most primary responses originate from the ribosome and
ER (Figure 1). The ribosomal subunit serves as a scaffold for
PKR, while other signaling mediators help promote their
activation, which then facilitates MAPK mobilization and
subsequent cytokine induction. Ribosomal inactivation-
induced ER stress also can mediate proinflammatory
cytokine production viaNF-𝜅B activation, which is facilitated
by CHOP-mediated regulation of anti-inflammatory PPAR𝛾.
In addition to NF-𝜅B-linked signals, cytokine expressions
are transcriptionally promoted by alternate proinflammatory
transcription factors such as EGR-1 but paradoxically
EGR-1 enhances PPAR𝛾 expression, which suppresses
proinflammatory NF-𝜅B signaling in gut epithelial cells. In
addition to transcriptional regulation, posttranscriptional
modifications such as mRNA stabilization contribute to
cytokine superinduction via various RNA-binding stabilizers
such as HuR for stabilization of mRNA transcripts with
cytokine transcript AREs. Moreover, cytokine mRNA
stability is enhanced by CHOP protein, which facilitates
cytosolic translocation of HuR by limiting PPAR𝛾 expression
in cells under ribosome-inactivating stress. Cytokine protein
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processing is another critical regulation by ribosomal insult.
Some proforms of cytokines such as IL-1𝛽 and IL-18 are
cleaved to mature active forms by inflammasome-triggered
caspases, which are also activated by ribosomal inactivation
in macrophages. However, since ribosomal inactivation
causes shedding of the ectodomain of several cytokine
receptors via MAPK-activated cell-surface metalloproteinase
TACE, additional information is needed to understand
whether the ribosomal inactivation would attenuate or
exacerbate the stress-associated inflammatory diseases.
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