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Background: Non-alcoholic fatty liver disease is the most common form of chronic liver disease in industrialized countries. Re-
cent studies have highlighted the association between peroxisomal dysfunction and hepatic steatosis. Peroxisomes are intracellu-
lar organelles that contribute to several crucial metabolic processes, such as facilitation of mitochondrial fatty acid oxidation 
(FAO) and removal of reactive oxygen species through catalase or plasmalogen synthesis. Statins are known to prevent hepatic 
steatosis and non-alcoholic steatohepatitis (NASH), but underlying mechanisms of this prevention are largely unknown. 
Methods: Seven-week-old C57BL/6J mice were given normal chow or a methionine- and choline-deficient diet (MCDD) with 
or without various statins, fluvastatin, pravastatin, simvastatin, atorvastatin, and rosuvastatin (15 mg/kg/day), for 6 weeks. Histo-
logical lesions were analyzed by grading and staging systems of NASH. We also measured mitochondrial and peroxisomal FAO 
in the liver. 
Results: Statin treatment prevented the development of MCDD-induced NASH. Both steatosis and inflammation or fibrosis 
grades were significantly improved by statins compared with MCDD-fed mice. Gene expression levels of peroxisomal prolifera-
tor-activated receptor α (PPARα) were decreased by MCDD and recovered by statin treatment. MCDD-induced suppression of 
mitochondrial and peroxisomal FAO was restored by statins. Each statin’s effect on increasing FAO and improving NASH was 
independent on its effect of decreasing cholesterol levels.
Conclusion: Statins prevented NASH and increased mitochondrial and peroxisomal FAO via induction of PPARα. The ability to 
increase hepatic FAO is likely the major determinant of NASH prevention by statins. Improvement of peroxisomal function by 
statins may contribute to the prevention of NASH.
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INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD) is a clinical spec-
trum of liver damage, from simple steatosis to more advanced 
stages, such as non-alcoholic steatohepatitis (NASH), fibrosis, 
or cirrhosis [1,2]. Because NAFLD is closely associated with 
obesity, diabetes, and cardiovascular disease, it is regarded as a 
representative hepatic phenotype of metabolic syndrome [3]. 

NAFLD is the most common cause of chronic liver disease in 
developed countries [4], and the prevalence in the general 
population ranges from 20% to 30% [5].
 Statins competitively inhibit 3-hydroxy-3-methylglutaryl-
coenzyme A (HMG-CoA) reductase, the rate-limiting enzyme 
in cholesterol synthesis, and are widely used as cholesterol-
lowering drugs. The overall benefits of statins seem to be 
greater than what might be expected from an alteration in the 
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lipid profile alone, suggesting that statins have cholesterol-in-
dependent pleiotropic effects [6]. However, the basic mecha-
nism underlying these pleiotropic effects is largely unknown. 
Statins prevent hepatic steatosis in animals, and suggested 
mechanisms include prevention of carbohydrate response ele-
ment-binding protein activation [7] and the induction of per-
oxisomal proliferator-activated receptor α (PPARα) [8], the 
master regulator of fatty acid oxidation (FAO). Statins also at-
tenuate hepatic inflammatory reactions induced by angioten-
sin II [9] and prevent hepatic fibrosis by inactivating hepatic 
stellate cells [10]. Accumulation of free cholesterol in the mi-
tochondria is suggested to be a major mechanism for steato-
hepatitis [11], and lowering of free cholesterol by statins may 
also be a mechanism of how statins prevent NASH. 
 It is well known that decreased mitochondrial function con-
tributes to the development of hepatic steatosis [12]. Recent 
studies have also highlighted the association between peroxi-
somal dysfunction and hepatic steatosis [13,14]. Peroxisomes 
are ubiquitous, single-membrane-bounded organelles and ex-
ist in all eukaryotes [15]. The main metabolic functions of per-
oxisomes in mammalian cells include degradation of very long 
chain and branched-chain fatty acids, which cannot be in-
stantly oxidized in mitochondria. Peroxisomes are responsible 
for the biosynthesis of plasmalogen, a special class of lipids, 
and docosahexaenoic acid, a final elongation and desaturation 
product of n-3 polyunsaturated fatty acids [16]. Peroxisomes 
also play a critical role in maintenance of intracellular redox 
balance. Production of reactive oxygen species is inevitable in 
fuel metabolism, and peroxisomes possess several anti-oxida-
tive systems, including catalase, superoxide dismutases, and 
peroxiredoxins [17]. Despite their importance, less attention 
has been paid to peroxisomes than other organelles, such as 
mitochondria, endoplasmic reticulum, and lysosomes.
 In this study, we found that treatment with various statins 
ameliorated hepatic steatosis and steatohepatitis and that this 
was associated with increased hepatic FAO. In particular, per-
oxisomal FAO, as well as mitochondrial FAO, was significantly 
decreased in the liver of NASH animals, and this was recov-
ered by statins. 

METHODS

Animals
Seven-week-old male C57BL/6N mice were purchased from 
Central Lab Animal Inc. (Seoul, Korea) and acclimated for 1 

week prior to the experiment. Animals were housed at an am-
bient temperature (22°C±1°C) on a 12-hour/12-hour light/
dark cycle with free access to water and diet. Mice were fed 
normal chow diet (ND; n=10), methionine- and choline-defi-
cient diet (MCDD; n=10; Dyets Inc., Bethlehem, PA, USA), or 
MCDD with 15 mg/kg/day of each statin supplementation 
(n=6 to 10) for 6 weeks. At the end of experiment period, 
mice were fasted (5 hours) in the morning and then sacrificed. 
Blood samples were collected and the livers were rapidly har-
vested, quickly frozen in liquid nitrogen, and stored at –80°C. 
All animal experiment protocols were approved by the Institu-
tional Animal Care and Use Committee of the Asan Institute 
for Life Sciences, Seoul, South Korea.

Histological analysis
Liver tissue samples were fixed with 4% paraformaldehyde 
and embedded for 5 µm serial paraffin sections. The sections 
were stained with hematoxylin and eosin for evaluation of the 
steatosis and with the Masson’s trichrome (MT) for determi-
nation of the fibrosis. The severities of the hepatic histological 
changes were assessed and scored in a blind manner using the 
NASH-Clinical Research Network scoring system [18]. Briefly, 
the steatosis grade was scored according to the degree of pa-
renchymal involvement as follows: 0, <5%; 1, 5% to 33%; 2, 
33% to 66%; and 3, >66%. The steatosis location was scored as 
follows: 0, zone 3 predominant; 1, zone 1 predominant; 2, 
azonal; and 3, panacinar. The lobular inflammation grade was 
scored by the numbers of the inflammation foci in the area of 
×200 microscopic fields as follows: 0, no foci; 1, <2 foci per 
×200 field; 2, 2 to 4 foci per ×200 field; and 3, >4 foci per 
×200 field. The fibrosis stage was scored by the location and 
density of the fibrosis as follows: 0, none; 1, perisinusoidal or 
periportal fibrosis; 2, perisinusoidal and periportal fibrosis; 3, 
bridging fibrosis; and 4, cirrhosis.

Plasma and tissue biochemical assays
Plasma and hepatic triglyceride (TG) levels were measured us-
ing the GPO-Trinder kit (Sigma-Aldrich, St. Louis, MO, 
USA), according to the manufacturer’s instructions. Plasma 
free fatty acid levels were determined using an enzymatic as-
say kit (Wako Chemicals, Richmond, VA, USA). Plasma ala-
nine aminotransferase (ALT) levels were measured using the 
IDToxTM Alanine Transaminase Endpoint Assay Kit (ID 
Labs Inc., London, ON, Canada).
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Measurement of FAO
The rate of FAO was measured as 14CO2 generation from 14C 
palmitate (NEN Life Sciences, Boston, MA, USA), as previ-
ously described [19]. Peroxisomal FAO was determined in the 
presence of inhibitors of mitochondrial oxidation, namely, an-
timycin A and rotenone (final concentrations 100 and 12.5 
µM, respectively) [14].

Quantitative real-time polymerase chain reaction analysis
Total RNA was isolated using TRIzol reagent (Invitrogen, 
Carlsbad, CA, USA); 1 μg of each sample was reverse tran-
scribed with random primers using the Reverse Aid M-MuLV 
reverse transcription kit (Fermentas, Hanover, MD, USA). 
Target cDNA levels were quantified by real-time polymerase 
chain reaction (PCR) using gene-specific primers (Table 1) 
and the 7500 Fast RT-PCR system (Applied Biosystems, Foster 
City, CA, USA) containing SYBR green. The data were nor-
malized to the levels of expression of the internal control t-box 
protein (Tbp) and expressed in arbitrary units. 

Western blot analysis
Liver tissues were homogenized in lysis buffer and centrifuged at 
13,000 rpm for 30 minutes at 4°C. Samples with equal amounts 
of protein (20 to 50 μg) were analyzed by Western blotting using 
antibodies against PPARα (#sc9000; Santa Cruz Biotechnology, 
Santa Cruz, CA, USA) and α-tubulin (#NB100-690; Novus Bio-
logicals, Littleton, CO, USA).

Measurement of lipid peroxidation
Hepatic lipid peroxidation was assessed by measuring malo-
ndialdehyde (MDA) levels using a Bioxytech MDA-586 assay 
kit (OxisResearch, Portland, OR, USA), according to the man-
ufacturer’s instruction. MDA values were corrected to the tis-
sue protein contents. 

Statistical analyses
All values are presented as the mean±standard error of the 
mean. Statistical significance of the differences between ex-
perimental groups was determined by the Student t-test or 

Table 1. Primer sets for real-time polymerase chain reaction 
analysis

Gene Mouse primer sequences

Pparα 5´-AGAGCCCCATCTGTCCTCTC-3´

5´-ACTGGTAGTCTGCAAAACCAAA-3´

Pex7 5´-TGGTGACAGGTGCGGTTGAC-3´

5´-ATAGGAGCAGGAGGCCAGCA-3´

Cpt-1α 5´-TGGCCGCATGTCAAGCCAGA-3´

5´-AGGAGAGCAGCACCTTCAGCGA-3´

Cpt-1β 5´-TTGGTCCCGTGGCGGATGA-3´

5´-AAAGCGCTGGGCGTTCGTCT-3´

Acox1 5´-CACGCACATCTTGGATGGTAGTCCG-3´

5´-ACGCTGGCTTCGAGTGAGGAAGTTA-3´

Dbp1 5´-ACGCCCTGGCGTTTGCAGAA-3´

5´-TGGCCACTGCTTTTCCGCCT-3´

Catalase 5´-GTGGCCAACTACCAGCGTGA-3´

5´-ATCTACAGCGCACTGGACGC-3´

MnSOD 5´-GGTGGAGAACCCAAAGGAGA-3´

5´-CTTGGACTCCCACAGACACG-3´

Gpx-1 5´-CGTGCAATCAGTTCGGACAC-3´

5´-TAAAGAGCGGGTGAGCCTTC-3´
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Fig. 1. Statin treatment attenuates methionine- and choline-deficient diet (MCDD)-induced hepatic steatosis and steatohepatitis. 
Representative histological images of each experimental group. H&E (×200; scale bar=100 μm), MT (×100; scale bar=50 μm). 
ND, normal chow diet; MT, Masson’s trichrome. 
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one-way analysis of variance with the Bonferroni correction 
using SPSS version 18 (SPSS Inc., Chicago, IL, USA). P<0.05 
was considered statistically significant. 

RESULTS

Administration of statins prevent hepatic lipid 
accumulation and steatohepatitis in MCDD-fed mice 
Of the animal models of NAFLD, the MCDD model has been 
used frequently as a valuable model of NASH. Consistent with 
previous studies [20], administration of MCDD to C57BL6/N 
mice for 6 weeks caused NASH and mild hepatic fibrosis (Figs. 

1 and 2A). Feeding MCDD significantly increased plasma 
ALT levels, a specific marker of liver injury, and hepatic TG 
contents (Fig. 2B). The effects of different types of statins, in-
cluding fluvastatin, pravastatin, simvastatin, atorvastatin, and 
rosuvastatin, on MCDD-induced NAFLD were examined. It is 
well known that the efficacy and potency of lowering plasma 
cholesterol are different between the types of statins. However, 
it is not established whether this lipid-lowering effect corre-
lates with pleiotropic effects of the drugs. Because the effective 
dose of each statin for reducing hepatic steatosis has not been 
established in rodent models, we treated five statins with the 
same dose (15 mg/kg/day) [21]. Table 2 shows the changes in 
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Fig. 2. Histologic scores and hepatic triglyceride (TG) content and plasma alanine aminotransferase (ALT) level. (A) Histologic 
scores for location and severity of steatosis, inflammation, and fibrosis, according to criteria of Kleiner et al. [18]. (B) Hepatic TG 
content and plasma ALT level in mice fed normal chow diet (ND) and methionine- and choline-deficient diet (MCDD) with or 
without various statins for 6 weeks. F, fluvastatin; P, pravastatin; S, simvastatin; A, atorvastatin; R, rosuvastatin. aP<0.05 com-
pared with ND, bP<0.05 compared with MCDD.
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Table 2. Metabolic characteristics of mice fed methionine- and choline-deficient diet with or without statins

Characteristic
Dietary group

ND MCDD MCDD+F MCDD+P MCDD+S MCDD+A MCDD+R

BW, g 26.08±0.39 15.61±0.23a 14.82±0.31 14.89±0.36 15.13±0.42 14.34±0.24 14.96±0.27

LW, g 1.22±0.06 0.84±0.05a 0.67±0.05b 0.69±0.04b 0.63±0.03b 0.67±0.05b 0.61±0.07b

LW/BW, % 4.68±0.16 5.38±0.24a 4.52±0.24b 4.63±0.16 4.16±0.08b 4.67±0.27 4.08±0.39b

Plasma cholesterol, mg/dL 143.96±23.25 53.25±12.88a 60.34±15.62 55.74±10.21 45.10±13.15 59.34±9.43 56.48±10.64

Plasma FFA, μEq/L 526.46±23.12 344.88±19.26a 295.24±39.62 312.84±20.31 322.57±16.45 298.76±15.07 312.70±11.83

Plasma TG, mg/dL 140.15±10.38 86.87±4.36a 88.68±3.67 86.54±2.93 83.67±6.39 90.81±7.12 86.80±5.24

Values are presented as mean±standard error of means (n=6–10).
ND, normal chow diet; MCDD, methionine- and choline-deficient diet; F, fluvastatin; P, pravastatin; S, simvastatin; A, atorvastatin; R, rosuvas-
tatin; BW, body weight; LW, liver weight; FFA, free fatty acid; TG, triglyceride.
aP<0.05 between ND and MCDD groups, bP<0.05 between MCDD and MCDD with statin-treated groups.
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Fig. 3. Treatment with statins recovers methionine- and choline-deficient diet (MCDD)-induced suppression of peroxisomal 
proliferator-activated receptor α (PPARα) and target gene expression levels in the liver. (A) mRNA expression levels and (B) pro-
tein expression levels of PPARα. Expression levels of genes involved in mitochondrial and peroxisomal (C) fatty acid oxidation 
(FAO), and (D) peroxisomal biogenesis factor (Pex) 7. ND, normal chow diet; F, fluvastatin; P, pravastatin; S, simvastatin; A, 
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aP<0.05 compared with ND, bP<0.05 compared with MCDD.



Statins prevent NASH

381Diabetes Metab J 2016;40:376-385http://e-dmj.org

body weight, liver weight, and plasma levels of cholesterol, free 
fatty acid, and TG in each experimental group. Interestingly, 
administration of various statins with MCDD for 6 weeks 
failed to further reduce plasma cholesterol levels in the mice 
fed MCDD alone (Table 2), but most statins reduced hepatic 
TG levels and plasma ALT levels (Fig. 2B). Among them, fluv-
astatin showed most prominent effect on reducing hepatic TG 
levels and plasma ALT levels. The histological analysis of statin-
fed mice revealed a significant reduction in hepatic lipid accu-
mulation, as well as inflammation or fibrosis (Figs. 1 and 2). 

Gene expression of PPARα and enzymes responsible for 
hepatic FAO was decreased in MCDD and recovered by 
statin treatment
PPARα is a master regulator of FAO. After 6 weeks of MCDD 
feeding, a gene expression level of PPARα was significantly de-
creased (Fig. 3A). All statins recovered PPARα mRNA levels in 
the liver compared with MCDD-fed mice. Western blot analysis 
also showed that MCDD feeding significantly decreased and 
fluvastatin treatment increased, respectively, protein expression 
of PPAR (Fig. 3B). In line with this result, the PPARα target 
genes encoding enzymes involved in mitochondrial FAO 
(carnitine-palmitoyltransferase-1α and -1β), and peroxisomal 
FAO (acyl-CoA oxidase-1 and D-bifunctional protein-1) were 
decreased by MCDD and recovered by most of statins (Fig. 3C). 
In addition, MCDD significantly decreased and most statins 

significantly increased the expression of peroxisomal biogenesis 
factor (Pex)-7, a gene encoding a protein that imports several 
essential enzymes into peroxisomes (Fig. 3D) [22].

Statin restores MCDD-induced suppression of hepatic 
mitochondrial and peroxisomal FAO
To ensure the effect of MCDD and statins on hepatic FAO rate, 
we directly measured both mitochondrial and peroxisomal 
FAO using 14C palmitate oxidation. In agreement with previous 
studies [23], feeding MCDD significantly suppressed mito-
chondrial FAO in the liver (Fig. 4A). Treatment with statins sig-
nificantly increased mitochondrial FAO, except for simvastatin 
(P=0.21). Feeding MCDD also significantly decreased peroxi-
somal FAO and fluvastatin, whereas pravastatin and simvas-
tatin supplementation significantly increased it (Fig. 4B).

Hepatic gene expression levels of anti-oxidative enzymes was 
decreased in MCDD-fed mice but not recovered by statins
A recent study showed that MCDD increases oxidative stress 
through decreased anti-oxidative capacity [24]. It was also 
shown that statins reduce inflammatory responses [25]. Ac-
cordingly, the MDA assay showed that the lipid peroxidation 
levels in the liver of MCDD-fed mice were more elevated than 
ND-fed mice, whereas these findings were ameliorated in the 
fluvastatin supplementation group (Fig. 5A).
 Thus, we examined the possibility that statins may increase 
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the gene expression of anti-oxidant enzymes: catalase, a major 
peroxisomal anti-oxidant; manganese superoxide dismutase, 
which exists in both mitochondria and peroxisomes; and glu-
tathione peroxidase (GPx)-1, a cytosolic anti-oxidant. MCDD 
significantly decreased gene expression levels of catalase and 
GPx-1. However, contrary to our expectation, statins further de-
creased mRNA expressions of all of these enzymes (Fig. 5B-D). 

DISCUSSION

In the present study, we showed that various statins prevented 
MCDD-induced hepatic steatosis and NASH and increased 
hepatic mitochondrial and peroxisomal FAO. Gene expression 
levels of PPARα and its target genes, which are responsible for 
mitochondrial and peroxisomal FAO, were increased by statin 
treatment. Our study is the first to demonstrate that statin 
treatment increases peroxisomal FAO to prevent NASH devel-

opment. 
 Interestingly, the overall preventive effect of statins was not 
related with its potency to reduce plasma cholesterol levels. In 
our study, we used same dosages of various statins because 
there has been no study directly comparing potency of these 
drugs. Interestingly, fluvastatin, known to have lower potency 
to reduce plasma cholesterol level than atorvastatin and rosuv-
astatin, showed most prominent effects on reducing hepatic 
steatosis and NASH. Fluvastatin was also most effective in in-
creasing mitochondrial and peroxisomal FAO, as well as ex-
pression of PPARα and its downstream FAO enzymes. Thus, it 
is suggested that each statin’s effect on increasing FAO is inde-
pendent of its effect on decreasing cholesterol level and that 
the ability to increase hepatic FAO is the major determinant of 
NASH prevention by statins. However, the molecular mecha-
nism by which this kind of discrepancy occurs among various 
statins is presently unknown.

Fig. 5. Changes in hepatic lipid peroxidation and gene expression levels of several anti-oxidative enzymes. (A) Hepatic malondi-
aldehyde (MDA) levels in mice fed methionine- and choline-deficient diet (MCDD) and fluvastatin supplementation. (B) 
mRNA expression levels of catalase, (C) manganese superoxide dismutase (MnSOD), and (D) glutathione peroxidase 1 (GPx-1). 
ND, normal chow diet; F, fluvastatin; P, pravastatin; S, simvastatin; A, atorvastatin. aP<0.05 compared with ND, bP<0.05 com-
pared with MCDD.

0.20

0.15

0.10

0.05

0

M
D

A
 (μ

M
/g

 p
ro

te
in

)

a

b

MCDDND MCDD+F

A

1.5

1.0

0.5

0

C
at

al
as

e m
RN

A
 (f

ol
d 

ch
an

ge
)

a

b b

b

b b

MCDD
ND

MCDD+F
MCDD+P
MCDD+S
MCDD+A
MCDD+R

Catalase

B

1.5

1.0

0.5

0

M
nS

O
D

 m
RN

A
 (f

ol
d 

ch
an

ge
)

a

b

b b b b

MnSOD

1.5

1.0

0.5

0

G
Px

-1
 m

RN
A

 (f
ol

d 
ch

an
ge

)

a

b

b

b

b b

GPx-1

C D



Statins prevent NASH

383Diabetes Metab J 2016;40:376-385http://e-dmj.org

 The two-hit hypothesis is a well-known theory to explain 
the pathogenesis of NAFLD and its progression from steatosis 
to NASH [26]. The “first hit” is the accumulation of fatty acids 
or TGs in the liver that may increase susceptibility of the hepa-
tocellular damage induced by second hits. There are several 
mechanisms leading to the development of hepatic steatosis: 
(1) increased hepatic fatty acid uptake, (2) increased de novo 
lipogenesis in the liver, (3) decreased hepatic FAO, and (4) de-
creased very low density lipoprotein secretion from the liver. 
The “second hit’’ is a combination of inflammatory responses, 
oxidative stress, and mitochondrial dysfunction, which leads 
to hepatocellular damage and fibrosis [26].
 Among them, FAO occurs mainly in mitochondria, but 
peroxisomes and microsomes also play a role. Peroxisomal 
β-oxidation is required for efficient mitochondrial β-oxidation 
[27]. Peroxisomal dysfunction induces functional abnormali-
ties in mitochondria and consequently compromises cellular 
ATP production [28]. Especially when the liver is overloaded 
with fatty acids, the role of peroxisomal β-oxidation becomes 
more important because dicarboxylic acids are increased 
through ω-oxidation in endoplasmic reticulum [14,29]. In line 
with this, recent studies have highlighted the association be-
tween peroxisomal dysfunction and hepatic steatosis. The up-
regulation of genes, which regulates peroxisomal biogenesis 
and FAO in a certain strain of mice, was related with resistance 
to diet-induced hepatic steatosis [13]. The liver-specific Pex5-/- 
mice developed hepatic steatosis even though mitochondrial 
FAO was increased [14].
 Mitochondria and peroxisomes are closely related organelles 
and play a critical role in the cellular energy metabolism. X-
linked adrenoleukodystrophy (X-ALD) is an inherited disorder 
caused by mutation of the ABCD1 gene, which encodes a per-
oxisomal transporter of very long chain fatty acids. The mouse 
model of X-ALD showed impaired oxidative phosphorylation 
of mitochondria and increased oxidative stress [30]. Peroxi-
somal biogenesis disorder, Zellweger syndrome, is character-
ized by severe neurologic deficits with multiple organ dysfunc-
tions. Pex5-/- mice, a mouse model for Zellweger syndrome, 
caused alteration of mitochondrial morphology, changes of 
mitochondrial respiratory chains, and increased oxidative 
stress in the liver [31]. In our study, statin treatment increased 
both peroxisomal and mitochondrial FAO, suggesting that im-
provement of peroxisomal FAO may underlie improvement of 
mitochondrial FAO. Taken together, improvement of peroxi-
somal FAO may be the primary mechanism of NASH preven-

tion by statins. However, it should be noted that each statin 
showed a different level of effect on mitochondrial or peroxi-
somal FAO, whereas all statins improved steatosis and NASH. 
Therefore, there may be additional mechanisms of preventive 
effect of statins on steatosis and NASH.
 Increased oxidative stress and altered anti-oxidative system 
play an important role in the development of NASH/NAFLD 
[32]. Because mitochondria and peroxisomes are major sourc-
es of free radical generation, resulting in oxidative stress, main-
tenance of its function is critical to prevent NAFLD. In agree-
ment with previous reports [24], feeding MCDD significantly 
decreased gene expression levels of peroxisomal anti-oxidative 
enzymes, including catalase and GPx. A number of studies 
have demonstrated that statins act as an anti-oxidant in vari-
ous tissues [33]. In line with this, we demonstrated that the 
MCDD-induced hepatic lipid peroxidation was suppressed by 
statin treatment. Previous studies have shown that treatment 
with various statins increased the activity of anti-oxidant en-
zymes, such as catalase or SOD [34]. However, in our study, 
statins failed to increase gene expression levels of anti-oxidant 
enzymes. The reason for this discrepancy between current 
study and previous studies is presently unclear. We recently 
found that fluvastatin treatment significantly increased hepatic 
level of plasmalogen, which is well known to act as an endoge-
nous anti-oxidant (unpublished data) [35,36]. Thus, it can be 
suggested that changes in anti-oxidant enzymes are not the 
primary reason of improvement of anti-oxidative defense 
function by statins.
 Statins are known to cause several hepatic adverse effects, 
ranging from transient elevation of transaminases to acute liv-
er failure [37]. However, recent studies have reported that 
statin-induced acute liver failure is extremely rare and may be 
related with idiosyncratic reaction [38]. Indeed, several recent 
studies showed that statins can be used safely in NASH pa-
tients [39]. In addition, a recent meta-analysis showed that 
statins may improve serum aminotransferase levels and ultra-
sound findings in NASH patients [40]. Therefore, it is suggest-
ed that favorable effects of statins on liver function in animal 
studies can be extended to humans.
 In summary, statin treatment prevented hepatic steatosis and 
NASH in MCDD-fed mice. Feeding MCDD for 6 weeks caused 
hepatic steatosis, inflammation, and early fibrosis through de-
creased hepatic mitochondrial and peroxisomal FAO. Various 
statins exhibited significant improvement of histological scores 
and enhanced hepatic FAO via induction of PPARα and target 
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genes. Interestingly, these pleiotropic effects were not correlated 
with cholesterol-lowering potency of statins. Based on these 
data, we suggest a new possibility that improvement of peroxi-
somal function by statins may contribute to the prevention of 
NASH.
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