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Abstract: In this study, Eu3+/Gd3+ co-doped fluoroapatitååe (Eu/Gd:FAP) nanocrystals were syn-
thesized by the hydrothermal method as a fluorescent bioimaging agent. The phase composition,
morphology, fluorescence, and biosafety of the resulting samples were characterized. Moreover, the
in vivo fluorescent bioimaging application of Eu/Gd:FAP nanocrystals was evaluated in mice with
subcutaneously transplanted tumors. The results showed that the Eu/Gd:FAP nanocrystals were
short rod-like particles with a size of 59.27 ± 13.34 nm × 18.69 ± 3.32 nm. With an increasing F
substitution content, the Eu/Gd:FAP nanocrystals displayed a decreased size and enhanced fluores-
cence emission. Eu/Gd:FAP nanocrystals did not show hemolysis and cytotoxicity, indicating good
biocompatibility. In vivo fluorescent bioimaging study demonstrated that Eu/Gd:FAP nanocrystals
could be used as a bioimaging agent and displayed stable fluorescence emitting in tumors, indicating
an accumulation in tumor tissue due to the passive targeting ability. In addition, any adverse effects
of Eu/Gd:FAP nanocrystals on major organs were not observed. This study shows that biocompatible
rare earth co-doped FAP nanocrystals have the potential to be used as a bioimaging agent in vivo.

Keywords: fluoroapatite; rare earth; nanocrystal; fluorescence; in vivo bioimaging

1. Introduction

Apatite is a family of minerals represented by calcium phosphate. The calcium phos-
phate apatite is the main inorganic component of the bones and teeth of mammals, which
mainly exists as hydroxyapatite (HAP) in vivo [1,2]. With varied monovalent anions such as
F−,Cl−, HAP can be changed to fluoroapatite (FAP) and chloroapatite (ClAP) [3–5]. Calcium
phosphate apatite materials have been widely used in biomedical fields, such as bone repair
and as drug/protein/gene carriers [6–8]. They have good biocompatibility, biodegradabil-
ity, bioactivity, non-toxicity, non-immunogenicity, and osteoconductivity [9–15]. Further-
more, their properties can be adjusted depending on the ion composition. For example,
FAP has a lower solubility and better acid resistance compared with HAP, contributing to
protecting teeth from acid degradation [16–20].

In addition, the apatite lattice is very suitable for the doping of rare earth elements and
can provide a suitable crystal field environment for promoting the fluorescence emission of
rare earth ions located at the divalent cation sites of apatite [21–25]. So, the doping of rare
earth elements can endow apatite unique fluorescent function. Based on narrow emission
bandwidths, long fluorescence lifetime, and the excellent quantum yield of rare earth
elements and the good biocompatibility and biodegradability of calcium phosphate apatite,
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rare-earth-doped apatite as a bioimaging agent has attracted attention [26,27]. Especially,
FAP displays better host properties for rare earth ions than HAP. In apatite, F− ions with
lower vibration energy can significantly avoid the quenching effect of the -OH group to
promote the fluorescence conversion of rare earth elements [28–31].

The high fluorescence of rare-earth-doped FAP is the first prerequisite for its use as a
bioimaging agent. This can be improved by promoting the thermal diffusion of rare earth
ions into the crystallographic site of Ca2+. In addition, utilizing the energy transfer between
the co-doped rare earth elements is an alternative way to enhance the fluorescence [22,29].
For example, the luminescence emission could be sensitized by the successive energy
transfer process from Gd3+ (excited state) to Eu3+ (ground state). Eu3+ ions are activated to
the energy level that is matched with the 6GJ energy level of Gd3+. The Eu3+ ions could
generate gradual energy level transitions to the 5HJ, 5D0, and 7FJ of Eu3+ by radiation
transition with low energy loss. Therefore, rare earth element co-doping is considered to
be an effective method of improving the luminescence-emission intensity based on energy
transfer and electron transfer processes [15]. Of course, the particle size of rare-earth-doped
FAP also requires attention because particles that are too large are not conducive to cell
uptake and further biological imaging [32]. The hydrothermal method can provide both
high temperature and pressure in a sealed pressure vessel to promote the chemical reaction
and form highly crystalline fluorapatite, enhancing the diffusions of co-doped rare earth
elements into the lattice site, and simultaneously maintaining the fluorapatite crystals at
the nanometer scale [3,33,34].

Herein, the Eu3+/Gd3+ co-doped fluoroapatite (Eu/Gd:FAP) nanocrystals were syn-
thesized by the hydrothermal method based on the effect of energy transfer from Gd3+ to
Eu3+. The phase composition, morphology, fluorescence, hemolysis, and cytotoxicity of the
resulting samples were characterized by the varied fluoride ion (F−) proportions of apatite.
The in vivo fluorescent bioimaging application of Eu/Gd:FAP nanocrystals was further
carried out in mice with subcutaneously transplanted tumors, with the aim of revealing
their potential in the bioimaging field.

2. Experimental Section
2.1. Materials

Calcium chloride dihydrate (CaCl2·2H2O, >99.9%), disodium hydrogen phosphate do-
decahydrate (Na2HPO4·12H2O, >99.9%), europium nitrate hexahydrate (Eu(NO3)3·6H2O,
>99.9%), gadolinium chloride hexahydrate (Gd(NO3)3·6H2O, >99.9%), and sodium fluoride
(NaF, >99.9%) were purchased from Sinopharm Chemical Reagent Co., Ltd. Ultrapure
water (>18 MΩ*cm, 25 ◦C) was used in the experiments. Human hepatocellular carcinomas
(HepG2) and human normal hepatocyte cells (L02) were purchased from Qingqi (Shanghai)
Biotechnology Development Co., Ltd. The BALB/c-nu mice and the rabbit were purchased
from the Animal Experiment Center of Wuhan University.

2.2. Preparation of Eu3+/Gd3+ Co-Doped FAP Nanocrystals

The Eu3+/Gd3+ co-doped FAP (Eu/Gd:FAP) nanocrystals were synthesized by the
hydrothermal method. The initial compounds were separately dispersed in deionized
water (CaCl2·2H2O, Eu(NO3)3·6H2O, Gd(NO3)3·6H2O, Na2HPO4·12H2O, NaF). First,
Na2HPO4·12H2O and NaF were dissolved together in water to achieve the mixing so-
lution A of PO4

3− (0.24 mol/L) and F− (0.08 mol/L). CaCl2·2H2O, Eu(NO3)3·6H2O, and
Gd(NO3)3·6H2O were dissolved together in water to achieve the mixing solution B of Ca2+

(0.386 mol/L), Eu3+ (0.008 mol/L), and Gd3+ (0.006 mol/L). Then, solution A (15 mL) was
poured into solution B (15 mL) and strongly stirred, and the NH3·H2O solution was added
to the above suspension with a resulting pH of about 9–9.5. Thereupon, the suspension was
transferred into a stainless-steel autoclave and treated at different temperatures (121 ◦C,
200 ◦C, and 300 ◦C) for 60 min. After cooling to room temperature, the resulting product
was separated via centrifugation under 2000 rpm and washed with ultra-pure water three
times. Finally, the product was dried using a freeze-drying method. In addition, the molar
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ratios of (Ca + Eu + Gd)/P, Eu/(Ca + Eu + Gd), and Gd/(Ca + Eu + Gd) were 1.67, 0.02,
and 0.015, respectively.

2.3. Characterization of Samples

The morphology and elemental composition were investigated by using a scanning
electron microscope (SEM, JEOL-7100F, Akishima, TKY, Japan) with energy dispersive
spectroscopy (EDS) and a high-resolution transmission electron microscope (HRTEM, JEM-
2100F, JEOL, Akishima, TKY, Japan). Crystalline phases and the phase composition were
analyzed using a powder X-ray diffractometer (XRD, D/Max- IIIA, Rigaku Co., T Akishima,
TKY, Japan). Fourier Transform Infrared (FT-IR, Thermo Nicolet 6700, Madison, WI, USA)
Spectroscopy was used to identify the chemical structure and phase composition of the
samples. The luminescence property was recorded with luminescence spectra using a
970CTR luminescence spectrophotometer (Shanghai Sanco, Shanghai, China). The equation
calculates the relative enhancement ratio (R) of luminescence intensity:

R =
I2 − I1

I1
× 100%

where, I1 is the Eu/Gd:HAP emission peak intensity, and I2 is the Eu/Gd:FAP emission
peak intensity.

2.4. Hemolysis and Cytotoxicity Evaluation

The hemolysis test was conducted using heparinized rabbit red blood cells (RBCs),
and a 5% RBC suspension was prepared in a 0.9 wt% NaCl solution. The Eu/Gd:FAP
suspension (1 mL) 0.9 wt% NaCl solution pre-incubated the RBC suspension. After that,
the mixture was incubated at 37 ◦C for 1 h, and the supernatant was separated with
centrifugation to check the light absorbance value (OD). Then, the RBCs were incubated
with deionized water and 0.9 wt% NaCl for the control groups (positive and negative). The
above results were used to calculate hemolysis % using the following equation:

Hemolysis% =
ODsample −ODneg

ODpos −ODneg
× 100%

The cytotoxicity of the samples was observed using human normal hepatocyte cells
(L02) and calculated using the following equation:

Inhibition% =
ODcontrol −ODexp

ODcontrol
× 100%

where, ODcontrol is the absorbance value of the control group and ODexp is the absorbance
value of the experiment sample.

2.5. In Vivo Bioimaging

In vivo bioimaging was carried out using BALB/c-nu mice (about 20 g) with a sub-
cutaneous transplantation of a HepG2 tumor. Eu/Gd/FAP powder was dispersed into
ultrapure water as 1 mg/1 mL and injected into nude mice through a tail vein injection. An
in vivo imaging test was conducted with a visible light imaging system (XRMSIII, Waltham,
MA, USA) after 0.5 h, 1 h, 2 h, and 4 h. The mice in the control group were injected with
the same volume of normal saline. Then, the tissues (heart, liver, spleen, pancreas, kidney,
and lung) were taken out and washed three times with PBS solution. The procedure was
continued for the tissue samples for imaging.
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3. Results and Discussion

3.1. Characterization of Eu3+/Gd3+ Co-Doped Fluoroapatite

The ratios of F substituted -OH are (i) 0%, (ii) 20%, (iii) 50%, and (iv) 100%, and
for Eu/Gd substituted Ca is 2%/1.5%. The XRD results (Figure 1a) show that there
is no obvious difference between the Eu/Gd:FAP and Eu/Gd:HAP nanoparticles. The
characteristic diffraction peaks, (002), (211), (112), (300), and (202) are largely assigned to
HAP (PDF JCPDS 86-0740) and FAP (PDF JCPDS 71-0880) with 2 theta degrees of 25.9, 31.9,
32.2, 32.9, and 34.1 degrees. With the increase in F substitution, the characteristic diffraction
peaks, such as (211), (112), and (300), display some broadening or sharpening. For 20% F
substitution, the broadening of the diffraction line could be due to crystallization inhibition
by F. While, increased F substitution (50% and 100%) causes increasing diffraction intensity
and sharper diffraction peaks, which infers a gradual change in the main crystalline phase
from HAP to FAP with increasing crystallinity. It can be confirmed that small doping of the
Eu/Gd element has little effect on the characteristic diffraction peaks, and FAP shows higher
crystallinity than HAP. FT-IR spectra (Figure 1b) reveal the characteristic vibrational peaks
of HAP at 3569 cm−1 and 631 cm−1 (-OH stretching vibration and bending vibration),
1100 cm−1 and 1030 cm−1 (ν3 PO4

3− asymmetric stretching), 603 cm−1, 564 cm−1 (ν4
PO4

3− antisymmetric stretching), and 962 cm−1 (ν1 PO4
3− asymmetric stretching). The

ionic radius of the F− ions are smaller than that of the -OH group, but its electronegativity
is higher than the latter. The crystallinity increase (Figure 1a), and the vibration strength
of -OH decreases, which indicates the increasing F substitution content. Moreover, a new
bond vibration is detected at 748 cm−1 for this. The vibrational peaks of the PO4

3− group in
the product can be identified at 1100 cm−1, 1030 cm−1, 962 cm−1, 564 cm−1, and 603 cm−1.
Moreover, the peak at 876 cm−1 represents HPO4

2−, which enhances with the substitution
of hydroxyl fluoride, as well as a peak at 1423 cm−1, which indicates the presence of
carbonate (vibrations of carbonate) and which means the sample was partially carbonized.
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Figure 1. (a) XRD patterns and (b) FTIR spectra of Eu/Gd:FAP nanoparticles: (i) Eu/Gd:HAP;
(ii) Eu/Gd:F(20%)AP; (iii) Eu/Gd:F(50%)AP; (iv) Eu/Gd:FAP.

Figure 1 displays the XRD patterns and FTIR spectra of samples.The as-dried Eu3+/Gd3+

(2%/1.5%) co-doped HAP (Figure 2a) and FAP (Figure 2b) nanoparticles are shown in
Figure 2. It has been suggested that F substitution leads to a reduction in the length of
the rod-like nanoparticles, which is consistent with our previous report [31]. The average
diameter × length size of Eu/Gd:FAP is 59.27 ± 13.34 nm × 18.69 ± 3.32 nm, obtained
by calculation and statistics no less than fifty times. From the morphology of the samples,
HAP (99.53± 21.03 nm× 24.29± 3.70 nm) is larger than FAP in crystal size, and it could be
the smaller aspect ratio of the rod-shaped particles for FAP (3.17, 4.10 for HAP). In addition,
the agglomeration of FAP is higher than HAP.
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Figure 2. SEM images of (a) Eu/Gd(2/1.5):HAP and (b) Eu/Gd(2/1.5):FAP.

As shown in Figures 3 and 4, the EDS results of the selected area (in Figures 3a and 4a)
reveal the presence of Ca, P, O, Gd, Eu, and F in the Eu/Gd:HAP and Eu/Gd:FAP product.
The molar ratios of (Ca + Eu + Gd)/P of Eu/Gd:HAP and Eu/Gd:FAP (Figures 3b and
4b) are 1.34 and 1.43, respectively. In Figures 3c–g and 4c–h, the EDS scan mapping of
each element are stochastic and uniform. Furthermore, the EDS mapping of Eu and Gd
(Figure 3g,h) unveils that those doping elements have successfully entered into the crystal
lattice of the product, as well as the F substitution element.
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TEM images of Eu/Gd co-doped FAP help to widen the size information as well as
microstructures. The morphology of Eu/Gd:FAP shows rod-shaped nanoparticles. The
fluoroapatite crystal structure is presented, and (201) and (211) lattice planes with an
interplanar spacing of 3.53 Å and 2.86 Å are assigned in high-resolution TEM images (inset
in Figure 5b,c).
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3.2. Fluorescence Properties

The fluorescence properties of rare earth elements would be significantly promoted
by doping into an apatite lattice, which could provide a hydrophobic environment from
fluorescence quenching and a lowered crystal symmetry environment for higher fluores-
cence emission. The trivalent europium ion has been a common choice in past research for
a lanthanide fluorescence probe with a special 4f6 electronic configuration and a strong
red luminescence in the visible spectral region. The intensive excitation wavelength is
centered at 394 nm in Figure 6a, contributing to the 5L6←7F0 energy level transition [35].
The strongest four emission peaks (in Figure 6b–d) are 591 nm, 617 nm, 651 nm, and
699 nm, assigned to 5D0→7F1, 5D0→7F2, 5D0→7F3, and 5D0→7F4 energy level transitions,
respectively. Luminescence emission intensity would slightly decline (in Figure 6e) due to
F ions (20% substitution) inhibiting HAP crystallization. When FAP is the main crystalline
phase, that is, 50% and 100% F substitution, higher emissions will be recorded. This is a
result consistent with the above XRD analysis.

J. Funct. Biomater. 2022, 13, x FOR PEER REVIEW 6 of 10 
 

 

fluoroapatite crystal structure is presented, and (201) and (211) lattice planes with an in-

terplanar spacing of 3.53 Å  and 2.86 Å  are assigned in high-resolution TEM images (inset 

in Figure 5b,c). 

 

Figure 5. (a) TEM image and (b,c) HRTEM images of Eu/Gd:FAP. Inset in (b): magnified HRTEM 

image of a single crystal with a d-spacing of 2.86 Å . 

3.2. Fluorescence Properties 

The fluorescence properties of rare earth elements would be significantly promoted 

by doping into an apatite lattice, which could provide a hydrophobic environment from 

fluorescence quenching and a lowered crystal symmetry environment for higher fluores-

cence emission. The trivalent europium ion has been a common choice in past research for 

a lanthanide fluorescence probe with a special 4f6 electronic configuration and a strong 

red luminescence in the visible spectral region. The intensive excitation wavelength is cen-

tered at 394 nm in Figure 6a, contributing to the 5L6←7F0 energy level transition [35]. The 

strongest four emission peaks (in Figure 6b–d) are 591 nm, 617 nm, 651 nm, and 699 nm, 

assigned to 5D0→7F1, 5D0→7F2, 5D0→7F3, and 5D0→7F4 energy level transitions, respectively. 

Luminescence emission intensity would slightly decline (in Figure 6e) due to F ions (20% 

substitution) inhibiting HAP crystallization. When FAP is the main crystalline phase, that 

is, 50% and 100% F substitution, higher emissions will be recorded. This is a result con-

sistent with the above XRD analysis. 

 

Figure 6. (a) Excitation spectra (λem = 617 nm) and fluorescent emission spectra (λex = 394 nm) of 

product at (b) 121 °C, (c) 200 °C, (d) 300 °C. (e) Luminescence enhancement relative ratio and (f) 

I591/I617 value at 300 °C for different F substitution. (g) Fluorescent emission spectra and (h) lumines-

cence enhancement relative ratio of Eu/Gd:FAP at different temperatures. (i) Eu/Gd:HAP; (ii) 

Eu/Gd:F(20%)AP; (iii) Eu/Gd:F(50%)AP; (iv) Eu/Gd:FAP. 

The 5D0→7F1 transition, magnetic dipole transition at 591 nm, is an invariable inte-

grated intensity less influenced by Eu3+ surroundings. While, the 5D0→7F2 transition is ex-

tremely dependent on the vicinity of Eu3+ ions, the so-called hypersensitive transition. In 

general, the symmetry/asymmetry for Eu3+ can be instructed by the ratio of I617/I591 [36], 

Figure 6. (a) Excitation spectra (λem = 617 nm) and fluorescent emission spectra (λex = 394 nm)
of product at (b) 121 ◦C, (c) 200 ◦C, (d) 300 ◦C. (e) Luminescence enhancement relative ratio and
(f) I591/I617 value at 300 ◦C for different F substitution. (g) Fluorescent emission spectra and (h) lu-
minescence enhancement relative ratio of Eu/Gd:FAP at different temperatures. (i) Eu/Gd:HAP;
(ii) Eu/Gd:F(20%)AP; (iii) Eu/Gd:F(50%)AP; (iv) Eu/Gd:FAP.
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The 5D0→7F1 transition, magnetic dipole transition at 591 nm, is an invariable inte-
grated intensity less influenced by Eu3+ surroundings. While, the 5D0→7F2 transition is
extremely dependent on the vicinity of Eu3+ ions, the so-called hypersensitive transition. In
general, the symmetry/asymmetry for Eu3+ can be instructed by the ratio of I617/I591 [36],
where I591 and I617 refer to the intensity of 5D0→7F2 and 5D0→7F1 transition, respectively.
The I617/I591 value is listed in Figure 6f. For 20%, the F substitution is smaller than others,
which could be due to lower crystallinity, as mentioned in Figure 1a. Moreover, it was
observed that Eu/Gd:FAP, which are prepared at different hydrothermal temperatures
(Figure 6g), can also obviously promote the fluorescence properties, as shown in Figure 6h.
According to the results, the higher temperature (300 ◦C) is the better temperature for
the material preparation due to the increasing crystallinity of the products relating to the
thermal diffusion of Eu3+ to the Ca2+ sites in the crystal lattice [3].

3.3. Biosafety Evaluation

As shown in Figure 7, it was carried out by hemolysis and cytotoxicity tests. No
distinct hemolysis is observed, and the hemolysis rate is less than 0.1% (Figure 7a) for
concentrations as high as 1 mg/mL during 3 h. The cell viability of the samples is far
greater than 100%, suggesting non-cytotoxicity to L02 cells (co-cultured concentrations up
to 200 µg/mL). The results both show the advantages of biological safety for apatite, so the
material tends to be used as a bioimaging agent in the biomedical field.
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Sample 3: Eu/Gd:FAP, Sample 4: Eu/Gd:HAP; 200 and 50 means the concentrations co-cultured with
cells, unit is µg/mL.

3.4. In Vivo Imaging

In vivo fluorescent imaging was conducted, as shown in Figure 8. Compared with
the blank control group, the Eu/Gd:FAP treated groups have a significant fluorescent
imaging signal, which means that the material will enter the organs in vivo and act as
a fluorescent bioimaging agent. There was no significant signal in these tissues in the
heart, spleen, and lung, but a weak signal in the liver and kidney, as seen in Figure 8b.
An intense radiance signal was detected after the tail was intravenously administered
for 0.5 h. Moreover, the fluorescence signal lasts for a long time and has no remarkable
attenuation within 4 h. Moreover, the weak signal in the liver, kidney, and spleen infers
a higher clearance by the reticuloendothelial system (RES) [37,38]. A nonremarkable
accumulation in healthy tissues/organs, quick uptake, or scavenging by RES are the
potential advantages of nano-biomaterials in clinical settings. Furthermore, this could be
confirmed by gradually increasing the radiance signal on the mouse’s neck and armpit,
areas with abundant lymphatic systems (Figure 8a). Importantly, the tumor tissue of
the Eu/Gd:FAP-treated groups, with their stronger and longer radiance signals, indicate
higher accumulation owing to the enhanced permeation and retention effect [39,40]; thus,
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it also may be used as a tumor-targeting material for delivering anti-cancer drugs for an
integrated diagnosis and treatment platform. The organs and tissues of the nude mice
display no apparent abnormality and damage by observing the section (hematoxylin and
eosin staining, in Figure 9).
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4. Conclusions

In summary, we successfully prepared Eu/Gd co-doped fluoroapatite nanocrystals as a
luminescent-enhancing agent. Due to F substitution, the resulting Eu/Ga:FAP has a smaller
aspect ratio, higher crystallinity, and luminescence emission, suggesting the transformation
of the main crystalline phase from HAP to FAP. With increasing hydrothermal temperatures,
the crystallinity of Eu/Ga:FAP is further improved. Moreover, the fluorescence properties
are significantly enhanced as a result of Eu3+ asymmetrical surroundings. The biosafety
was verified by conducting hemolysis and cytotoxicity tests, and the tissue sections also
showed no damage or abnormality. In comparison to healthy organs, Eu/Gd:FAP has a
much higher accumulation in tumors, with a stronger and longer radiance signal. These
findings contribute in several ways to our understanding of rare earth doped FAP and
provide the basis for further research. More research is required to examine the long-term
efficacy and safety of the material.
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