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Abstract

Decreases in energy metabolism following traumatic brain injury (TBI) are attributed to 

impairment of glycolytic flux and oxidative phosphorylation. Glucose utilization post-TBI is 

decreased while administration of alternative substrates has been shown to be neuroprotective. 

Changes in energy metabolism following TBI happens in two phases; a period of hyper-

metabolism followed by prolonged hypo-metabolism. It is not understood how different cerebral 

metabolic states may impact substrate metabolism and ultimately mitochondrial function. Adult 

male or female Sprague Dawley rats were given sham surgery or controlled cortical impact (CCI) 

and were assigned one of two administration schemes. Glucose, lactate or beta-hydroxybutyrate 

(BHB) were infused i.v. either starting immediately after injury or beginning 6 h post-injury for 3 

h to reflect the hyper- and hypometabolic stages. Animals were euthanized 24 h post-injury. The 

peri-contusional cortex was collected and assayed for mitochondrial respiration peroxide 

production, and citrate synthase activity. Tissue acetyl-CoA, ATP, glycogen and HMGB1 were 

also quantified. Sex differences were observed in injury pattern. Administration based on cerebral 

metabolic state identified that only early lactate and late BHB improved mitochondrial function 

and peroxide production and TCA cycle intermediates in males. In contrast, both early and late 

BHB had deleterious effects on all aspects of metabolic measurements in females. These data 

stress there is no one optimal alternative substrate, but rather the fuel type used should be guided 

by both cerebral metabolic state and sex.
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1. Introduction

Traumatic brain injury (TBI) is now recognized as a serious health issue for which there are 

no treatments available. Impacts to the head initiate multiple cascades that contribute to 

ongoing secondary injuries and dysfunction. One of the well described cascades was first 

described by Yoshino et al., who was the first to define the different stages and recovery 

trajectory of cerebral glucose metabolism following TBI in rodents (Yoshino et al., 1991). It 

was shown that cerebral metabolism undergoes two specific metabolic stages after TBI that 

occur in both experimental models of TBI and humans. The first is an acute and transient 

hypermetabolic stage that is associated with an increase in extracellular potassium, 

glutamate and accumulation of calcium resulting in increased glucose utilization 

(Bergsneider et al., 1997; Hutchinson et al., 2009; Prins et al., 2013a). This is followed by a 

prolonged hypometabolic stage starting at 6 h post-injury with the duration being injury 

severity dependent (Gardner et al., 2014; Maudsley et al., 2017; Yeo et al., 2011). This phase 

has been associated with both inhibition of glycolysis and mitochondrial dysfunction 

(Hutchinson et al., 2009; Li et al., 2012; Verweij et al., 2000; Vink et al., 1994).

The role of glucose in metabolism cannot be addressed without consideration of the 

mitochondria, which have a prominent role in both phases of cerebral metabolic crisis and 

dysfunction has been observed from 30 mins to 7 days post-injury (Hill et al., 2017; 

Signoretti et al., 2001; Singh et al., 2006). The increases in cellular calcium and oxidative 

stress during the hypermetabolic period result in mitochondrial dysfunction that include 

inhibition of electron transport chain complexes and permeability transition pore opening 

(Buki et al., 1999; Greco et al., 2016; Kilbaugh et al., 2011; Kilbaugh et al., 2015; Mbye et 

al., 2008; Sullivan et al., 1999). In addition to damaged mitochondria, inhibition of 

glycolysis during the hypometabolic period can lead to insufficient entry of acetyl CoA into 

the TCA cycle resulting in decreased oxidative phosphorylation (Casey et al., 2008; 

Vagnozzi et al., 2007). Studies have shown that administration of exogenous substrates 

including ketones (BHB), lactate and pyruvate and additional administration of glucose to be 

neuroprotective following TBI (Carteron et al., 2018; Davis et al., 2008; Glenn et al., 2015; 

Greco et al., 2016; Maalouf et al., 2007; Prins et al., 2005; Prins and Hovda, 2009; Shi et al., 

2015; Shijo et al., 2017). Exogenous substrates are typically thought to bypass glycolysis 

and enter directly into the TCA cycle though the conversion to acetyl CoA and also reduce 

oxidative stress through direct scavenging, while additional glucose may support local tissue 

glucose insufficiency. Despite two very different patterns of cerebral metabolism, it has yet 

to be determined whether each of these substrates have preferential actions during different 

cerebral metabolic states.

In addition to supporting neuronal metabolism and viability, alternative substrates can 

promote glial health. In the adult brain, glycogen is stored in astrocytes, which can serve as a 

supplemental fuel for neurons in crisis (Cali et al., 2019). Increases in metabolic demand are 

typically met with increased blood flow to provide glucose and O2 (Yellen, 2018), but 

intense neural activity can quickly deplete local glucose and as glucose concentrations 

decrease towards the Km of hexokinase, phosphorylation becomes rate limiting (Brown and 

Ransom, 2007). However, glial glycogen enzymes can catabolize glycogen into lactate and 

pyruvate rapidly and without ATP to provide an alternative substrate to neurons (Carpenter 
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et al., 2015). Glycogen catabolism is biochemically favored under high metabolic conditions 

and low glucose and without neighboring glia, there will be increased neuronal death and 

decreased repair and plasticity. This supported by work from Shijo et al. that showed 

exogenous sodium pyruvate administered within 24 h of injury significantly improved 

astrocytic metabolism (Shijo et al., 2017). Astrocytes contain receptors for advanced 

glycation end products (RAGE) and toll-like receptor 4 (TLR4) receptors and are vulnerable 

to increased high mobility group box 1 (HMGB1). HMGB1 is a DNA binding protein that 

facilitates binding of other proteins to DNA. Binding of HMGB1 to either receptor promotes 

neuroinflammation and binding to astrocytic RAGE receptors results in a proinflammatory 

phenotype (Okuma et al., 2014; Pedrazzi et al., 2007). Following TBI, HMGB1 translocates 

from the nucleus to the cytoplasm and is released from dead and/or dying neurons (Gao et 

al., 2012; Okuma et al., 2014). Further from the injury core, HMGB1 intracellular 

expression is increased with concurrent increases in plasma HMGB1 (Okuma et al., 2012). 

Recently, plasma HMGB1 has also been investigated as a marker of injury severity (Au et 

al., 2012). The role of alternative substrates improving glial health is absolutely vital and has 

not been examined during the different metabolic stages after TBI.

While alternative substrates have been shown to be neuroprotective in both our lab and 

others, a criterion for administration has not yet been established. It also remains unclear 

which of these alternative substrates is optimal, how they impact neuronal and glial 

metabolism and how they are metabolized during the different metabolic stages of TBI. It is 

hypothesized that alternative substrate metabolism will be dependent on the cerebral 

metabolic state at the time of administration.

2. Methods

2.1. Subjects

Young adult male (n = 84) or female (n = 96) Sprague-Dawley rats were received from 

Charles River Breeding Labs (Hollister, CA) and maintained in standard temperature and 

lighting conditions (23 ± 2 °C, 12 h/12 h lighting cycle (06:00–18:00 h) with food and water 

available ad libitum. Rats were acclimated to their environment for 1wk prior to 

experimentation. Rats were randomized to drug and experimental groups listed in Table 1. 

Sample size was estimated using G*Power 3.1 (Universität Düsseldorf). Experimenters were 

blinded to conditions. All procedures were approved by the UCLA Chancellor’s Committee 

for Animal Research and the manuscript prepared according to ARRIVE guidelines for 

reporting animal research.

2.2. Cannulations

Anesthesia was induced with 3% isoflurane vaporized in 100% O2 and then maintained with 

2% isoflurane during surgery. The femoral artery and vein were cannulated with a 

polyethylene tube (PE-50) on the day of study and animals were restrained to a piece of 

cardboard during the length of infusion. After completion of infusion, the cannula was tied 

off and the area sutured closed and animals were returned to their home cage.
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2.3. CCI injury

Anesthesia was induced with 3% isoflurane vaporized in 100% O2 and then maintained with 

2% isoflurane during surgery. The head was positioned in a stereotaxic frame, a midline 

incision was made, and a 6-mm craniotomy was drilled centered at −4 mm anterior-posterior 

(AP), 5 mm midlateral (ML) relative to bregma. A CCI injury was produced on the exposed 

left cortex using an electronically controlled pneumatic piston cylinder (Hydraulics Control, 

Inc., Emeryville, CA) as previously described (Prins et al., 2004b). In the present study, the 

5 mm diameter flat rod tip was angled at 22.5° away from vertical and compressed the 

cortex at 1.9 m/s to a depth of 2 mm. After injury, a small piece of gel foam was placed over 

the craniotomy site to reduce bleeding and the wound sutured closed. Sham injured rats 

received only a craniotomy but no cortical injury.

2.4. Substrate administration and infusion

Groups received a 3 h i.v. infusion of either saline (0.9%), lactate (100 mM), beta-

hydroxybutyrate (BHB) (2 M) or glucose (30%) at a flow rate of 10.8 μl/s based on previous 

publications (Prins et al., 2004a, 2004b; Rice et al., 2002; Shijo et al., 2015). To best target 

treatment during hyper- or hypo-metabolic periods there were two distinct infusion start 

times. To target the hyper-metabolic state, early infusion was started immediately following 

injury, while late infusion began 6 h post-injury during the hypo-metabolic phase. 

Immediately prior to the start of infusion and immediately after, venous blood was collected 

in EDTA collection tubes and spun at 3000 g for 10 min and plasma was collected. Glucose 

and lactate were measured using Stat Profile Prime (Nova Biomedical) while BHB while 

measured using BHB Stat Site BHB test strips and meter (Stanbio).

2.5. Tissue fixation

Tissue was fixed using microwave irradiation in order to effectively reduce postmortem 

changes of energy-related metabolites/enzymes in the nervous tissues (Sharpless and Brown, 

1978). All animals were anesthetized with isoflurane before a beam of microwave irradiation 

at 2450 MHz and nominal output of 3.5 kW was focused for 2.45–2.90 s directly on the 

head (Thermex-Thermatron Model 4104 Microwave Fixation System, Louisville, KY). 

Individual irradiation time was adjusted based on the minimal time necessary for the 

temperature of the core to reach 80 °C, which is sufficient to denature enzymes (Guidotti et 

al., 1974). Rats were quickly decapitated and the brains were dissected hemispherically, 

placed into 1.5 ml Eppendorf tubes, and ipsilateral cortex was submerged into methylbutane 

on dry ice before storing at −70 °C prior to metabolite quantification.

2.6. Mitochondrial isolation

Rats were briefly restrained within a decapicone (Braintree Scientific, Braintree, MA) and 

euthanized by decapitation and the ipsilateral peri-contusional cortex was rapidly dissected 

and homogenized in ice-cold isolation buffer (225 mM mannitol, 25 mM sucrose, 10 mM 

Hepes, 1 mM EGTA, pH 7.4 at 4 °C). The homogenate was centrifuged at 4000 rpm for 3 

min. The pellet was discarded and the supernatant centrifuged at 14000 rpm for 8 min. The 

pellets were resuspended in 1.5 ml isolation media and 4 ul of 10% digitonin was added. 

The tubes were gently inverted 6 times and left to incubate on ice for 4 min and then spun at 
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14000 rpm for 8 min. The pellets were resuspended in 1 ml of isolation buffer and 10 mg/ml 

de-fatted bovine serum albumin was added. After a final centrifugation at 14000 rpm for 8 

min, the mitochondria were resuspended in 30 ul of EGTA free isolation media.

2.7. Protein determination

Protein concentrations were measured using a Lowry DC kit (BioRad, Hercules, CA) with 

bovine serum albumin used as concentration standards.

2.8. Mitochondrial respiration

The respiratory activities of isolated brain mitochondria were measured polarimetrically 

with a Clark-type oxygen electrode apparatus (Hansatech Instruments, Norfolk, England). 

Mitochondria were suspended at a protein concentration of 0.5 mg/ml in buffer containing 

125 mM KCl, 20 mM HEPES, 2 mM K2HPO4, 0.01 mM EGTA, 1 mM MgCl2 (pH 7.0) at 

37 °C, plus glutamate (5 mM) and malate (0.1 mM). Addition of ADP (0.5 mM) was used to 

initiate State 3 (phosphorylating) respiration. Oligomycin (2.5 μg/ml), an inhibitor of the 

mitochondrial ATP synthase, was used to induce State IV (resting) respiration. Maximal 

respiration was initiated with the addition of the protonophore uncoupler, FCCP (54 nM). 

Rates of oxygen consumption are expressed as nmol O2/mg mitochondrial protein/min). The 

respiratory control ratio (RCR) is defined as the rate of ADP-stimulated oxygen 

consumption (State III) divided by the rate of respiration determined in the presence of 

oligomycin (State IV).

2.9. Mitochondrial H2O2 production

Adapted from Starkov (Starkov, 2010), deenergized mitochondria (0.5 mg/ml) were 

suspended in 200ul of respiration buffer containing 4/U of horseradish peroxidase and 10 

μM Amplex red. The background fluorescent signal was read for 120 s (555ex/581em). 

NAD+ linked respiratory substrates were added and baseline H2O2 production was recorded 

for 120 s. 10 μM rotenone was added to stimulate H2O2 production and production was 

again recorded for 120 s.

2.10. Western blots

Tissue homogenates were lysed in RIPA buffer (25 mM Tris-HCl, 150 mM NaCl, 1% 

NP-40, 1% sodium deoxycholate, 0.1% SDS, pH 7.6 at 4 °C) containing a cocktail of 

protease inhibitors (Calbiochem). Equal amounts of protein were separated by SDS-PAGE 

(4–12% Bis-Tris gels, Invitrogen) and transferred to PVDF membranes (Invitrogen), blocked 

in TBST plus 5% non-fat milk and then incubated with the following primary antibody: 

HMGB-1 (Abcam, ab18256) overnight at 4 °C. The membranes were then washed and 

TBST and incubated for 1 h at room temperature. The washed membranes were then treated 

with enhanced chemiluminescence detection reagent (Thermo Scientific). All Blots were 

developed using ChemiDoc XRS+ Molecular Imager (BioRad) and analyzed using Quantity 

One software (BioRad). Band densities were normalized to the total amount of protein 

loaded per lane using Sypro Ruby (BioRad).
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2.11. Citrate synthase activity

Citrate synthase activity was quantified in isolated mitochondria according to 

manufacturer’s instructions (Sigma-Aldrich).

2.12. Metabolic quantification

Microwave irradiated tissue was utilized to prevent endogenous breakdown of glycogen 

(Sigma-Aldrich), ATP (Abcam) and acetyl CoA (Sigma-Aldrich), while mitochondria were 

deproteinated with perchloric acid. Metabolites were quantified according to manufacturer’s 

instructions.

2.13. Statistical analysis

Data are expressed as means ± SEM of n different experiments or a five-number summary of 

the data set. Differences between independent groups were assessed using either Student’s t-
test or one-way ANOVA, with Tukey’s test for comparison between groups using SPSS 

Software 25. (SPSS, Inc., Chicago, IL). P < .05 was considered to be statistically significant.

3. Results

3.1. Timing of metabolic intervention matters

The cerebral metabolic crisis observed following TBI involves both the disruption of cellular 

respiration (glycolysis) and bioenergetics (oxidative phosphorylation). Exogenous delivery 

of alternative substrates including ketones (BHB), lactate and pyruvate have been shown to 

improve different outcome measures after TBI. While each of these compounds have shown 

differential abilities to act as free radical scavengers and improve mitochondrial function, it 

is yet unknown if perceived benefits are dependent on the cerebral metabolic state at the 

time of delivery and if this is further influenced by sex.

3.2. Plasma levels of alternative substrates

Plasma levels of BHB, glucose and lactate were measured immediately prior to infusion and 

after as demonstrated by (Fig. 1A/F). There were no significant effects of early or late 

glucose administration of plasma glucose in injured female animals. In glucose treated 

males, plasma glucose was significantly reduced by 28% at 9 h post-injury (F(2, 11), f = 

4.612, p = .035) compared to pre-infusion levels (Fig. 1B). This decrease may represent 

either changes in plasma glucose in relation to food restriction during infusion (Wang et al., 

2010) or increased cerebral uptake. Activity of the pentose phosphate pathway has been 

shown to increase by 6 h post-injury and increased glucose shunting to this pathway may be 

responsible for the decrease. This supports the decreased ROS production observed in males 

24 h post-injury that received late glucose administration (Fig. 4A). Plasma levels of lactate 

remained unchanged in males (Fig. 1C) while improving mitochondrial function and could 

represent immediate utilization as a substrate or conversion to pyruvate. Interestingly despite 

having no effect on mitochondrial function, plasma lactate was significantly decreased by 

early administration ((F(2, 29), f = 4.316, p = .023) (Fig. 1H). Differences in uptake of 

lactate may be sex-specific as actions of estrogen receptor-α on mitochondria can regulate 

lactate dehydrogenase activity (Nagai et al., 1988). Fasting has also been shown to increase 
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monocarboxylic transporter expression in female mice (Schutkowski et al., 2014). 

Significant changes were found in plasma BHB in both male and female animals. In BHB 

treated males, both early and late administration of BHB resulted in significant plasma 

increases above 100% (F(2,24), f = 5.076, p = .015) (Fig. 1D). While baseline plasma 

glucose and lactate did not differ between males and females, baseline female plasma BHB 

was significantly lower compared to baseline male BHB. 0.28 ± 0.04 vs. 0.53 ± 0.12 

mmol/L, respectively, p = .008 (data not shown). Further BHB was significantly increased 

by over 500% in females (F(2, 33), f = 163.8, p = .000) (Fig. 1I), potentially suggesting 

different mechanisms of metabolism that can result in supraphysiological levels that may 

have deleterious effects on the brain and organ function. Indeed, it is not yet understood how 

the brain is able to differentiate between what is a beneficial vs. detrimental level of 

circulating ketones (Fedorovich et al., 2018).

3.3. Mitochondrial respiration

Results for the changes in mitochondrial respiration 24 h after TBI in males and females are 

shown in Figs. 2 and 3, respectively, while statistical information is located in Supplemental 

Tables 1–7. The results will be presented by each alternative substrate. Glucose: While 

glucose has been shown to improve learning, potential benefits have not been explored 

acutely and exogenous glucose may prove beneficial during hyperglycolysis. In sham males, 

as previously demonstrated, there is a significant decrease in state 3 dependent respiration 

and respiratory control ratio (RCR) after CCI (Fig. 2). In contrast, while there was a 

significant effect on state 3 respiration in females there were no overall changes in RCR 

(Fig. 3). Although glycolysis has been shown to be inhibited at later time points after TBI, 

acute glucose administration may support higher metabolic needs and thereby delay and/or 

lessen the magnitude of the hypo-metabolic period. In males, both early and late glucose 

administrated significantly increased state 3 compared to vehicle treated injured animal and 

respectively (Fig. 2A). Further, late glucose doubled state 3 respiration compared to sham 

and early glucose treated animals (Fig. 2A). Glucose also increased mitochondrial 

uncoupling (state 4). Early glucose increased rates compared to sham and vehicle CCI 

animals (Fig. 2E). Late glucose had similar effects compared to sham and vehicle CCI (Fig. 

2A/E). Early and late glucose in males also significantly increased maximal respiratory 

capacity (Fig. 2L) compared to vehicle CCI and respectively. Early and late glucose had the 

opposite effect in females, resulting in reduced maximal rate compared to shams (Fig. 3G). 

While glucose treated mitochondria were more uncoupled, there were no differences in RCR 

compared to females where late glucose caused a significant decrease in RCR compared to 

vehicle CCI (Fig. 3J). BHB: One of the benefits afforded by BHB is in its ability to bypass 

the glycolytic blockade via conversion to acetyl CoA and direct entry into the TCA cycle. In 

males, early and late BHB significantly increased state 3 respiration compared to vehicle 

CCI) and (Fig. 2B). Early and late BHB had opposite effects in females. Early BHB 

significantly decreased state 3 respiration while late BHB increased it compared to vehicle 

CCI (Fig. 3B). In females, early BHB decreased uncoupling while late BHB increased 

uncoupling compared to shams and vehicle CCI and early BHB in females and respectively 

(Fig. 3E). In females, early BHB reduced maximal respiration compared to shams while late 

BHB significantly decreased maximal respiration compared to sham it was improved 

compared to vehicle CCI and early BHB (Fig. 3H). While no significant changes in RCR 
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were observed in males from BHB treatment (Fig. 2M), in females, decreases in state 3 from 

early BHB and increases in state 4 respiration from late BHB significantly worsened RCR 

compared to vehicle CCI (Fig. 3K). Lactate: Similar to BHB, lactate’s main advantage is its 

role as a fuel source independent of glycolysis. Exogenous lactate is thought to be converted 

to pyruvate, further supplementing the acetyl CoA pool. In males, early lactate prevented 

injury induced changes in state 3 respiration while maintaining RCR (Fig. 2C). Conversely, 

late lactate did not improve state 3 respiration compared to vehicle CCI and reduced 

maximal respiratory capacity although RCR was not changed compared to shams. RCR was 

unchanged in female lactate treated animals despite significant improvement in state 3 

respiration from late lactate and changes in maximal respiration from both early and late 

lactate treatment (Fig. 3C/I). Combination: The intention of this study was to identify which 

alternative fuel type may best suit different metabolic needs and to additionally address 

whether a combination of treatment may have an additive effect on improving outcome. 

Candidate substrates were chosen based on mitochondrial respiration and were only 

identified in males. Subsequent experiments to determine mechanism of action were only 

done in candidate substrates in males. Despite no effect of injury at 24 h in females, the 

surprising finding that substrate addition following injury impaired normal mitochondrial 

function and given the importance nature of understanding the basis of sex differences, 

necessitated the need to identify mechanism of action. In males, both early lactate and late 

BHB were chosen as candidates for combination treatment. Combination treatment 

significantly increased state 3 respiration while also increasing uncoupling (fig. D/H). A 

separate analysis was done to determine if combination treatment improved outcome 

compared to early lactate or late BHB. State 4 uncoupled respiration was significantly 

increased compared to both early lactate (F(4, 29), f = 4.818, p = .043) and late BHB (F(4, 

29), f = 4.818, p = .007).

3.4. ROS production

TBI has previous been shown to increase mitochondrial ROS production in male injury 

models and the current results are consistent with these studies (Kumar Sahel et al., 2019) 

(F(3, 19), f = 8.363, p = .014) (Fig. 4). Both BHB and lactate have varying degrees of free 

radical scavenging properties that reduce oxidative stress, assist mitochondrial function and 

potentially prevent energy collapse. Both timepoints of administration of BHB (F(3, 22), f = 

8.363, p = .001), (F(3, 22), f = 8.363, p = .004) and lactate (F(3, 22), f = 9.237, p = .010), 

(F(3, 22), f = 9.237, p = .000), significantly reduced mitochondrial peroxide production, 

respectively (Fig. 4B/C). Although late glucose had a 102% decrease in peroxide production 

and may be due to pentose phosphate pathway shunting, neither treatment timepoint nor 

combination had a significant effect (Fig. 4A). In females, there was no observed injury 

effect. Although both glucose and BHB treatment impaired mitochondrial function, only late 

BHB increased peroxide production compared to sham (F(3, 21), f = 4.614, p = .044) and 

early BHB (F(3, 21), f = 4.614, p = .014) (Fig. 5B) and is likely due to increased 

mitochondrial uncoupling.

3.5. Metabolic intermediates/TCA cycle

Changes in cerebral metabolism following TBI have overwhelmingly been attributed to 

either disruptions of glycolysis or end point mitochondrial function. Less is known of how 
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alterations in the initiation and progression of the TCA cycle may contribute to 

mitochondrial function and ultimately cerebral metabolism. Acetyl CoA: Under normal 

glucose conditions, acetyl CoA is produced by the oxidative decarboxylation of pyruvate or 

through ß-oxidation of fatty acids within the mitochondrial matrix. Acetyl CoA can also be 

produced extramitochondrially through the breakdown of citrate. In males, acetyl CoA was 

reduced by half though not significant. Both BHB (F(4, 28), f = 4.064, p = .013) and lactate 

(F(4, 28), f = 4.064, p = .030) significantly increased tissue acetyl CoA, likely due to 

increased conversion of BHB to acetyl CoA and lactate to pyruvate (Fig. 6). There was no 

injury effect in females although early glucose increased acetyl CoA (F(3, 20), f = 3.36, p 

= .023) and could represent increased glycolysis (Fig. 7A). Similar to males, early BHB 

significantly increased acetyl CoA (F(3, 22), f = 7.765, p = .040) while late BHB actually 

reduced tissue content (F(3, 22), f = 7.765, p = .05) (Fig. 6B). Lactate did not result in any 

significant changes. Citrate Synthase: Citrate synthase is the first step of the TCA cycle and 

limits its rate. It is dependent on levels of oxaloacetate and acetyl CoA as well as ratios of 

ATP:ADP and NADH:NAD+. Citrate Synthase activity was significantly reduced in male 

injured animals (F(4, 29), f = 3.587, p = .036) (Fig. 6B). There was a trend towards 

improvement with lactate and combination treatments, but they were not significant. There 

was also an injury affect within the female group (F(3, 16), f = 8.031, p = .008) (Fig. 7D–F). 

Activity continued to be decreased with either late glucose (F(3, 14), f = 4.411, p = .034) 

(Fig. 4D) and early (F(3, 16), f = 8.031, p = .003) and late (F(3, 16), f = 8.031, p = .005) 

BHB treatment (Fig. 7E).

3.6. Stress signals

During periods of metabolic demand, local blood glucose utilization increases as well as 

breakdown of glycogen to provide lactate as fuel via the lactate shuttle. TBI places further 

increased demands on brain metabolism and may lead to dissociation between glycolysis 

and oxidative phosphorylation, resulting in a type of “stress-signal” for energy need and 

activation of damage-associated molecular patterns (DAMPs). ATP: Despite evidence of 

mitochondrial dysfunction and disruption of the TCA cycle, no significant differences were 

seen between sham, vehicle CCI or drug treated male animals (Fig. 6C). In female animals, 

there was no significant impact of injury or glucose or lactate treatment (Fig. 7G/I). In late 

BHB animals however, ATP was significantly reduced by 273% compared to sham (F(3, 20), 

f = 5.982, p = .007) or 263% in early BHB (F(3, 20), = 5.982, p = .013) treated animals (Fig. 

7H). Glycogen: In the adult brain, glycogen is predominantly found in astrocytes. Its main 

proposed function is to act as an energy substrate when transient local tissue energy 

demands exceed available blood glucose. In male animals, there was no injury effect of 

significantly decreased glycogen. BHB (F(4, 29), f = 4.992, p = .023), lactate (F(4, 29), f = 

4.992, p = .010 and combination (F(4, 29), f = 4.992, p = .006) however, significantly 

increased tissue glycogen content (Fig. 8A). In females, similar results were found. Early 

glucose was found to increase tissue content compared to both sham (F(3, 22), f = 4.595, p 

= .038) and late treatment (F(3, 22), f = 4.595, p = .015) (Fig. 9A). Both early (F(3, 21), f = 

2.480, p = .035) and late lactate (F(3, 21), f = 2.480, p = .035) had significant increases as 

well (Fig. 9C). HMGB1: Release of HMGB1 from injured and necrotic cells can serve as a 

“danger-signal” to neighboring microglia and contributes to overactivation of the immune 

system, mediated through the RAGE receptor. Although there were no significant injury 
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differences in males or females, HMBG1 was reduced by 77% (Fig. 8B) and 76% (Fig. 9D–

F), respectively, within the ipsilateral cortex, consistent with studies observing immediate 

decreases in HMGB1 within the contusion area.

4. Discussion

The current study shows that neuroprotective properties of alternative substrates are time and 

sex dependent. Several studies have identified alternative substrates that confer 

neuroprotection, but have not established a rationale for timing of administration. We have 

established two distinct criteria of administration, either during the hyper- or hypo-metabolic 

stage following TBI. We have shown that alternative substrates deemed to be 

neuroprotective are metabolized differently at different post-injury metabolic time points and 

that combination of treatments within a short period may not be advantageous. More so, 

nuances in substrate behavior are also outcome measure specific. Further, the vast majority 

of alternative substrate work has been completed in male animals. We show that in our 

female animals, candidate substrates identified as neuroprotective in males actually worsen 

outcomes in females and switching substrate types can act as a stressor following injury. 

This establishes that alternative substrate administration following TBI should be matched 

by both sex and metabolic stage.

4.1. Metabolic state and sex determine alternative substrate metabolism males

Both early and late treatment of each substrate stimulated ADP-driven O2 consumption 

(state 3 respiration), implying increased glycolytic flux and mitochondrial demand, however 

only early administration of lactate prevented mitochondrial uncoupling (proton leak, state 

4) (Fig. 2). Both late lactate and early BHB attenuated mitochondrial uncoupling as reflected 

in improved mitochondrial function/coupling (RCR). Lack of improvement of early glucose 

on mitochondrial function and sustained ROS production suggests just the addition of 

substrates is inefficient in preventing mitochondrial collapse and suggest other means of 

neuroprotection are necessary.

In addition to acting as a fuel source, lactate and BHB have both been shown to protect 

against glutamate excitotoxicity (Jourdain et al., 2016; Llorente-Folch et al., 2016; Maalouf 

et al., 2007; Youssef, 2015). Despite both early BHB and lactate reducing ROS (Fig. 4B/C), 

mitochondria from early BHB remained uncoupled (Fig. 4B) and may be due to differences 

in neuroprotective strategies against excitotoxicity. BHB’s actions are likely mediated 

through its scavenging abilities, while lactate has direct action on the mitochondria via the 

aspartate-glutamate carrier and could potentially prevent changes in mitochondrial 

membrane potential that would prevent uncoupling (Llorente-Folch et al., 2016). Pyruvate is 

a known glutamate scavenger and increased conversion of lactate to pyruvate could enhance 

this capability (Li et al., 2014; Zlotnik et al., 2012).

A controversial finding is the significant stimulation of state 3 respiration by late glucose 

(Fig. 2). This suggests that despite known decreases in NAD+ (Clark et al., 2007; Deng-

Bryant et al., 2011; Tavazzi et al., 2005) and GAPDH activity (Izumi and Zorumski, 2010), 

glycolytic flux can be stimulated and decreases in glycolytic flux during hypometabolism 

may instead represent a coping strategy to reduce secondary damage and promote repair, but 
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retains the capacity to deal with a second insult. Late glucose also significantly reduced ROS 

production (Fig. 4A) that can likely be attributed to increased shunting of glucose to pentose 

phosphate pathway, production of NADPH and thus increased antioxidant capacity. Despite 

the capacity to reduce ROS production early impairment of mitochondrial function by initial 

calcium rise and ROS was not reversible. Increased blood glucose can also initiate the polyol 

pathway, resulting in increased inflammation that can affect mitochondrial function (Chung 

et al., 2003; Xu et al., 2016). We were also interested in effects of combining substrates that 

appeared to best increase mitochondrial function. Based on this, we combined early lactate 

with late BHB. Animals were infused with lactate 0–3 h, saline 3–6 h and finally BHB 6–9 h 

post-injury. Similarly, combination treatment stimulated state 3 respiration, but surprisingly 

mitochondrial were uncoupled and ROS production was not reduced compared to using 

BHB and lactate separately (Fig. 4). We think this could imply that while the brain is 

prepared to alternate to one other fuel source and adapt, adding a second within a short 

period of time may act a metabolic stressor. Increased cerebral ketone concentrations may 

displace lactate oxidation, resulting in lactate accumulation and further placing demand on 

already impaired glucose utilization (Pan et al., 2000; Rolleston and Newsholme, 1967).

4.2. Females

Unlike males, despite an injury-induced significant decrease in state 3 respiration, overall 

RCR was not significantly impacted by injury (Fig. 3) and changes were not observed in 

ROS production (Fig. 5A–C). This signifies a different injury timeline compared to males 

that may impact that has been previously observed. Neither glucose nor lactate had 

significant impact on RCR, but both early and late BHB significantly reduced RCR (Fig. 3). 

Studies on exogenous BHB supplementation overall are lacking, but especially in women. 

Exogenous BHB is known to affect blood glucose and the hormones ghrelin and insulin 

(Stubbs et al., 2018; Sumithran et al., 2013). In women it lowers estrogen and can increase 

cortisol (Bergendahl et al., 1999; Estacio et al., 1996; Rosen and Petty, 1974; Ryan et al., 

2018). Differential effects on mitochondrial function could be due to interference in 

signaling to estrogen receptors located on the mitochondria. In the single study observing 

exogenous ketones on female rats and TBI, BHB did not improve tissue extravasation in 

injured animals and increased basal tissue extravasation in healthy naïve shams (Orhan et al., 

2016). As the females do not appear to be as metabolically impacted as males, additional 

glucose and lactate may not be perceived as stressors as they are both routinely metabolized 

by the brain.

4.3. Somewhere in the middle (of the TCA cycle)

Despite numerous studies on glycolytic flux and mitochondrial function following TBI, the 

pathway that links the two, the TCA cycle, remains understudied. The TCA cycle is 

regulated by its first enzyme, citrate synthase. Citrate synthase is homeostatically regulated 

by the energy conditions of the cell, specifically the ratios of ATP:ADP and NADH:NAD+ 

that signal the cell’s energy needs are being met (Pietrocola et al., 2015). Other conditions 

that increase amounts of acetyl CoA and succinyl CoA can inhibit enzyme activity as well 

leading to decreased electron flux into the mitochondria.
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4.4. Males

We compared injury against our most effective treatment groups. While injury alone reduced 

acetyl CoA by 108% (Fig. 6A), it was not significant, though it does suggest glycolytic flux 

has decreased and is consistent with current literature. This may also suggest inhibition of 

the pyruvate dehydrogenase complex and/or shunting of pyruvate to other pathways. No 

significant differences in mitochondrial acetyl CoA were found in males or females. This 

may be due to limitations of the assay. Acetyl CoA is quickly converted in highly metabolic 

tissues and requires the use of irradiation fixation to measure. Although mitochondrial 

samples were immediately deproteinated, this may not have been able prevent acetyl CoA 

degradation. We found that both lactate and BHB increased acetyl CoA content (Fig. 6A). 

Given the stimulation of state 3 respiration this was expected as both BHB and lactate 

should be converted into acetyl CoA. Injury significantly reduced citrate synthase activity 

and was only improved by combination treatment. Lack of acetyl CoA in injured animals 

likely contributes to the decline in enzymatic activity; however, acetyl CoA was significantly 

increased in both lactate and BHB indicating while enzymatic activity was not rescued 

indicating another mechanism of inhibition. As shown in Fig. 6C, ATP was not significantly 

decreased and is not a candidate. Continued inhibition may instead be driven to changes in 

the NADH:NAD+ ratio. NAD+ is consumed through many mechanisms following TBI, 

including degradation by the DNA repair enzyme, PARP that can lead to redox imbalance 

(Clark et al., 2007; Won et al., 2012).

4.5. Females

In contrast to males no injury effect was seen on tissue acetyl CoA content (Fig. 7A–C). 

Although there was no injury effect, early glucose increased acetyl CoA (Fig. 7A) and is 

likely due to stimulation of glycolysis from additional glucose, implying though there is no 

significant change in RCR, there is still a high metabolic need immediately following injury 

in females. Demand appears to be further increased in early BHB animals as acetyl CoA is 

increased (Fig. 7B). In contrast, late BHB significantly decreased compared to injured 

animals and raises the possibly that demand is so high, glycolysis cannot keep up with acetyl 

CoA production such that it is measurable. Alternatively, it could be due to mitochondrial 

inhibition and thus negative feedback on citrate synthase and glycolysis. Unsurprisingly, as 

lactate had no significant effects on RCR, acetyl CoA was not affected. Despite adequate 

acetyl CoA, citrate synthase activity was significantly reduced in injured animals (Fig. 7D–

F). Similarly, this could be due changes in NADH:NAD+ ratio. In addition to degradation of 

NAD+ by PARP, mitochondrial inhibition at complex I will prevent conversion of NADH to 

NAD+ (Blacker and Duchen, 2016; Pryde and Hirst, 2011), thus maintaining a high 

NADH:NAD+ ratio as may be evidenced by decreased RCR in late glucose and continued 

citrate synthase inhibition. Though activity is decreased in injury and glucose groups (Fig. 

7D), it does not appear a limiting step as no significant changes in ATP present (Fig. 7G–I). 

Both BHB groups also had significantly diminished activity (Fig. 7E) that could be further 

compounded by BHB metabolism. Conversion of BHB to acetyl CoA requires NAD+ as a 

cofactor. In addition, elevated levels of acetyl CoA production can directly inhibit citrate 

synthase. BHB metabolism also results in the production of succinate that interfere with 

enzyme activity as well (Newman and Verdin, 2014). This may be more applicable to early 

BHB as late BHB ATP content was significantly reduced compared to shams. The 
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combination of low acetyl CoA, decreased citrate synthase activity and uncoupled 

mitochondria likely all contribute to this decrease. Acetyl CoA was not affected by lactate 

treatment (Fig. 7B) and appears to attenuate decreases in enzyme activity. In addition to its 

role as a fuel source, lactate may contribute to repletion of NAD+. Following TBI, 

nicotinamine phosphoribosyltransferase (NAMPT) is upregulated and increases production 

of nicatinamine mononucleotide (NMN) (Chen et al., 2012). In the presence of abundant 

oxaloacetate (OAA), lactate and OAA are converted into malate and pyruvate via the lactate-

malate transhydrogenase and requires NMN as a cofactor (Kane, 2014). Excessive pyruvate 

under uncoupled glycolysis and oxidative phosphorylation, which mimics anaerobic 

conditions, favors the conversion of pyruvate to lactate, creating NAD+ in the process (Burns 

and Manda, 2017). Inhibition of citrate synthase (Fig. 7D–F) could lead to build up of OAA 

and in combination with excess lactate lead to conversion of both to pyruvate and malate.

4.6. Alternative substrates prevent cellular stress and promote glial health

The timeline of glycogen breakdown and replenishment has not been established in the brain 

following TBI. Glycogen was decreased by 62% in injured animals, but was not significant 

(Fig. 8A). This may reflect ongoing replenishment processes and require looking at 

immediate time points to capture adequate glycogen breakdown. All treatment groups had 

significantly higher glycogen content compared to injured animals (Fig. 8A), although the 

mechanisms are likely different. Early excess lactate is proposed to prevent glycogen 

breakdown by decreasing energetic “stress-signals” from neurons to astrocytes. In addition 

to glucose, lactate can also use glycogenesis to replace glycogen stores (Stevenson et al., 

1987). In the case of BHB, by providing an alternative fuel, ingested glucose could be 

shunted to glycogenesis, while combination treatment may be driven by both or either 

treatments. HMGB1 has been shown to decrease in contusional tissue (Gao et al., 2012), 

while increasing amounts are show in peri-contusional and non-injured tissues (Gao et al., 

2012). While our data show a pattern that in is alignment with published studies, it was not 

significant (Fig. 8B). This may be due to limitations in technique. Homogenates were 

obtained from the entire ipsilateral irradiated cortex and thus, based on regional differences 

in expression, our effect may be washed out.

5. Conclusions

While many studies have shown alternative substrates can have neuroprotective properties, 

their effects on the entire metabolic pathway remain unclear. This is the first study to 

examine the contribution of cerebral metabolic state on substrate metabolism. We have 

shown that neuroprotective qualities of alternative substrates are dependent on cerebral 

metabolic state (Fig. 10). Despite being assumed to be neuroprotective, substrates 

administered at a suboptimal time can have deleterious effects on metabolic pathways. We 

also addressed how alternative substrates primarily explored in male rodents are metabolized 

in females. Our data show that at 24 h post-injury males and females have different injury 

patterns. In addition, exogenous BHB significantly worsened metabolic outcomes in female 

rats compared to males and implores the need to study both sexes and study them 

independently of each other. Our also open the possibility of revisiting “failed” alternative 

substrates as they may have just not been administered at the correct time. Exogenous 
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glucose has been shown to improve performance in the spontaneous alternation task in naïve 

animals and could have benefits later during recovery. Our study is currently limited by only 

analyzing a single acute timepoint. Other groups have shown different aspects of injury that 

peak at different times in males vs. females that includes cytoskeletal damage (Kupina et al., 

2003) and inflammatory patterns (Villapol et al., 2017). To date, no one has yet 

characterized female cerebral metabolism or mitochondrial function following as has been 

completed in male animals (Hall et al., 2004; Prins et al., 2013b; Singh et al., 2006; Yoshino 

et al., 1991). Future studies are needed such that we understand what the injury profile 

means in regard to outcome and allows the ability to design interventions as appropriately 

needed. Further work is needed to determine the long-term effectiveness of a single acute 

infusion on metabolism. While in the rat changes in cerebral metabolism are chronologically 

similar between animals, this is not observed clinically. Hyper- and hypo-metabolism 

happen in differing ranges between patients and currently imaging techniques such as 

fludeoxyglucose-positron emission tomography (FDG-PET) is the only way to confirm 

cerebral metabolic state. While informative, these techniques are not feasible for every 

patient and often are not able to be done repeatedly to track recovery. Finding a minimally 

invasive correlate to cerebral metabolism is necessary to determine what fuel type a patient 

should receive and provides a method to track recovery. In addition, this study shows that 

substrates may act partially imperfect depending on the outcome variable. This provides 

justification to begin making decisions of what substrate types may be the most beneficial, 

while also exposing sex-differences in metabolism that could potentially worsen outcomes 

and emphasizes the need for clarity in understanding of injury mechanism and metabolism 

between male and female TBI patients.
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Abbreviations:

BHB Beta-hydroxybutyrate

CCI Controlled cortical impact

FDG-PET fludeoxyglucose-positron emission tomography

Glc Glucose

HMGB1 High Mobility Group Box 1

NAMPT Nicotinamide phosphoribosyltransferase

NMN Nicotinamide mononucleotide
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RCR Respiratory control ratio

TLR4 Toll-like receptor 4

TBI Traumatic brain injury
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Fig. 1. 
Blood plasma concentrations of Glucose, Lactate and BHB in injured animals prior to and 3 

and 9 h post-injury. A-E, male animals. F–I, female animals. Average (±SEM) for blood 

concentrations. # for BHB, compared to pre-BHB only. *p < .05.
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Fig. 2. 
Mitochondrial respiration from male peri-contusional ipsilateral cortex 24 h post-injury in 

sham or treated animals. *compared to sham, #compared to CCI, & compared to early vs. 

late administration, p < .05. Statistical values available in Supplemental Tables 1–4.
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Fig. 3. 
Mitochondrial respiration from female peri-contusional ipsilateral cortex 24 h post-injury in 

sham or treated animals. *compared to sham, #compared to CCI, &compared to early vs. late 

administration, p < .05. Statistical values available in Supplemental Tables 5–7.
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Fig. 4. 
Mitochondrial peroxide production in males. A. Sham and vehicle CCI compared to glucose. 

B. Sham and vehicle CCI compared to BHB. C. Sham and vehicle CCI compared to lactate. 

D. Sham and vehicle CCI compared to combination. *compared to sham, #compared to CCI. 

p < .05.
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Fig. 5. 
Mitochondrial peroxide production in females. A. Sham and vehicle CCI compared to 

glucose. B. Sham and vehicle CCI compared to BHB. C. Sham and vehicle CCI compared to 

lactate. *compared to sham, #compared to CCI. &compared to early vs. late administration p 

< .05.
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Fig. 6. 
TCA Cycle intermediates and ATP content in males. A. Acetyl CoA content in injured vs. 

optimal treatment groups. B. Citrate synthase activity in injured vs. optimal treatment 

groups. C. ATP content in injured vs. optimal treatment groups *compared to sham, 
#compared to CCI. p < .05.
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Fig. 7. 
TCA Cycle intermediates and ATP content in females. A-C. Acetyl CoA content in A. 

Glucose B. BHB and C. lactate. D-F. Citrate synthase activity in D. glucose B. BHB C. 

lactate. Groups. G-I. ATP content in A. glucose B. BHB C. lactate *compared to sham, 
#compared to CCI &compared to time. p < .05.
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Fig. 8. 
Markers of astrocytic health in males. A. Glycogen content B. Densitometric ratios for 

HMGB1/total protein. #compared to CCI. p < .05.
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Fig. 9. 
Markers of astrocytic health in females. A-C Glycogen content. A. glucose B. BHB C. 

lactate. D-F Densitometric ratios for HMGB1/total protein D. glucose E. BHB F. lactate. 
⁎compared to sham. &compared to time. p < .05.
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Fig. 10. 
Differential effects of substrate administration based on early (E) or late (L) administration 

and sex. Positive effects are represented in green, negative effects in red and neutral in black.

Greco et al. Page 29

Exp Neurol. Author manuscript; available in PMC 2021 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Greco et al. Page 30

Table 1

Experimental groups.

MITO (E/L) Irradiated (E/L)

Veh-SHAM (3/3) (3/3)

Veh-CCI (6/6) (6/6)

GLC (6/6) (6/6)

BHB (6/6) (6/6)

LAC (6/6) (6/6)

COMBO** (6) (6)

Experimental groups and n for either male or females. Veh, vehicle; GLC, glucose; BHB, beta-hydroxybutyrate; LAC, lactate; COMBO, early LAC 
+ late BHB; E, early administration; L, late administration

**
in males only.
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