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A Clickable Analogue of Ketamine 
Retains NMDA Receptor Activity, 
Psychoactivity, and Accumulates in 
Neurons
Christine Emnett1,2,*, Hairong Li3,*, Xiaoping Jiang1, Ann Benz1, Joseph Boggiano1, 
Sara Conyers1, David F. Wozniak1,4, Charles F. Zorumski1,4,5, David E. Reichert3,4 & 
Steven Mennerick1,4,5

Ketamine is a psychotomimetic and antidepressant drug. Although antagonism of cell-surface NMDA 
receptors (NMDARs) may trigger ketamine’s psychoactive effects, ketamine or its major metabolite 
norketamine could act intracellularly to produce some behavioral effects. To explore the viability of this 
latter hypothesis, we examined intracellular accumulation of novel visualizable analogues of ketamine/
norketamine. We introduced an alkyne “click” handle into norketamine (alkyne-norketamine, A-NK) 
at the key nitrogen atom. Ketamine, norketamine, and A-NK, but not A-NK-amide, showed acute and 
persisting psychoactive effects in mice. This psychoactivity profile paralleled activity of the compounds 
as NMDAR channel blockers; A-NK-amide was inactive at NMDARs, and norketamine and A-NK were 
active but ~4-fold less potent than ketamine. We incubated rat hippocampal cells with 10 μM A-NK or 
A-NK-amide then performed Cu2+ catalyzed cycloaddition of azide-Alexa Fluor 488, which covalently 
attaches the fluorophore to the alkyne moiety in the compounds. Fluorescent imaging revealed 
intracellular localization of A-NK but weak A-NK-amide labeling. Accumulation was not dependent 
on membrane potential, NMDAR expression, or NMDAR activity. Overall, the approach revealed a 
correlation among NMDAR activity, intracellular accumulation/retention, and behavioral effects. Thus, 
we advance first generation chemical biology tools to aid in the identification of ketamine targets.

The non-competitive N-methyl-D-aspartate receptor (NMDAR) antagonist, ketamine, is a psychotomimetic, dis-
sociative anesthetic, and fast acting antidepressant in humans1–5 and has antidepressant-like actions in rodents6–8. 
Many questions remain about cellular effects underlying these actions. For instance, drugs with very similar 
actions on NMDARs may not share ketamine’s behavioral effects9. One explanation is that metabolites of keta-
mine could have psychoactive effects10. Another non-exclusive possibility is that ketamine or its metabolites could 
have undiscovered cellular targets relevant to their behavioral effects. For instance, as a weak base, the neutral 
species of ketamine may readily permeate cell membranes and bind intracellular targets11–13. Targets other than 
NMDARs have recently been proposed to underlie antidepressant effects10. However, the nature and mechanisms 
of any intracellular accumulation of ketamine are unclear.

Ketamine is an open channel blocker of NMDARs, a major class of glutamate receptors governing excitation 
in the vertebrate CNS. It is unusual among psychoactive NMDAR channel blockers in yielding a major metab-
olite, norketamine, which is also psychoactive. Although its plasma concentrations remain low relative to peak 
ketamine levels, norketamine has a significantly longer half-life in humans than ketamine (11 h vs. 2.5 h)14,15. 
Norketamine blocks NMDARs, but its detailed pharmacodynamic properties have not been explored16. It is 
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also unclear whether norketamine possesses the acute psychoactive and antidepressant activity of the parent 
compound.

Given that targets other than NMDARs may be important for some behavioral effects of ketamine, cellular 
visualization of ketamine analogues could help reveal unanticipated targets relevant to drug effects. Here, we use 
“click” chemistry, an approach that allows visualization of biologically active molecules by covalently linking them 
to their substrates and/or visual probes, to probe the possibility of intracellular accumulation.

To address competing ideas regarding ketamine’s actions, we tested ketamine, norketamine, and two novel 
analogues that can be visualized with click chemistry: alkyne norketamine (A-NK) and alkyne norketamine 
amide (A-NK-amide), a non-protonatable analogue. We found that three of the four compounds exhibited strong 
psychoactive effects, including antidepressant-like effects in the rodent forced swim test (FST). The fourth com-
pound, A-NK-amide, was much weaker in behavioral assays. The three behaviorally active compounds exhib-
ited channel block at NMDARs in hippocampal neurons, while A-NK-amide exhibited much weaker activity at 
NMDARs. A-NK-amide, unlike the active analogue A-NK, failed to strongly accumulate in intracellular com-
partments, retrospectively assessed using in situ click chemistry on dissociated, fixed neurons. The subcellular 
compartments labeled by A-NK were diverse, suggesting the possibility of multiple intracellular targets correlated 
with psychoactive effects. Thus, intracellular accumulation correlated with cellular and behavioral effects.

Our work establishes that the major metabolite of ketamine has psychoactive and antidepressant-like effects 
and demonstrates the importance of protonation for cell entry and/or retention. We introduce for the first time 
a visualizable probe that retains electrophysiological and behavioral properties of ketamine/norketamine while 
enabling visualization of drug localization. The probe revealed intracellular labeling potentially relevant to cellu-
lar actions of ketamine/norketamine.

Results
Norketamine and A-NK exhibit strong psychoactivity; A-NK-amide is weaker.  The compounds 
evaluated in the present work are shown in Fig. 1. Recent structure-activity work on ketamine showed that the 
methyl group on the central nitrogen atom is expendable for anesthetic activity17, so we performed chemical 
modifications with norketamine as precursor to the chemical biology analogues A-NK and A-NK-amide.

Ketamine exhibits a range of psychoactive effects, from acute (e.g., psychotomimetic, anesthetic at high doses) 
to delayed (e.g., antidepressant at low doses) behavioral changes. We first examined near-anesthetic doses of 
compounds to test acute psychoactive effects18. We quantified locomotor activity and rearing behavior for 60 min 
following a single i.p. injection. Ketamine at 100 mg/kg (n =​ 8) significantly increased the number of ambulations 
across the 60-min test session relative to vehicle controls (n =​ 7)[Treatment effect: F(1,13) =​ 11.88, p =​ 0.004], and 
the differences varied with time [Treatment x Time Blocks interaction: F(5,65) =​ 5.26, p =​ 0.001] (not shown). 
Further, ketamine decreased behavioral rearing frequency [Treatment effect: F(1,13) =​ 46.47, p <​ 0.00005], which 
also varied with time [Treatment x Time Blocks interaction: F(5,65) =​ 8.16, p =​ 0.0002] (not shown). Subsequent 
pair-wise comparisons confirmed that ketamine reduced rearing beyond Bonferroni multiple comparisons cor-
rection (p <​ 0.005) across the first 50 min of the test session. Differences were significant for ambulations during 
only the first 20 min (blocks 1, 2; p <​ 0.003). These results confirm observations on ambulatory activity and rear-
ing by others18.

Based on these results, we focused on rearing behavior as a sensitive indicator of psychoactive effects of 
ketamine-like compounds in the C57Bl/6 J mice studied here. In an interleaved cohort of animals, ambulatory 
activity following ketamine (50 mg/kg), norketamine, A-NK, and A-NK-amide (100 mg/kg each) did not differ 
among drugs or against vehicle control (Fig. 2a; n =​ 5 for each group), suggesting no anesthetic effects of any of 
the drugs. Doses were chosen based on relatively potencies from previous work16. There was, however, a drug by 
post-injection time interaction effect on ambulation (Fig. 2a), hinting at differences in psychoactivity sometime 
during the test session. In the more sensitive measure of rearing frequency, ketamine, norketamine, and A-NK 
had strong effects (Fig. 2b), but A-NK-amide was weaker than the other compounds; rearing frequency was sig-
nificantly reduced in the A-NK-amide treated mice only early in the session (Fig. 2b). Rearing duration showed 
similar effects (Fig. 2c). Collectively these results indicate that high, subanesthetic doses of ketamine, norket-
amine, and A-NK robustly depress rearing behavior, while A-NK-amide induces weaker psychoactive effects 
compared with ketamine and the other two analogues.

To test effects in the FST, a screen for antidepressant drugs, mice were dosed i.p. with 3 or 10 mg/kg of keta-
mine or with vehicle (n =​ 20 per condition) and then tested 3 h later on the FST6,8,9,19. An ANOVA conducted on 

Figure 1.  Structures of compounds used in the studies. The red ovals highlight the alkyne group exploited for 
click chemistry visualization. Colors of names are retained throughout figures in symbols, traces, and bar fills 
for the indicated compounds.
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Figure 2.  Ketamine, norketamine and A-NK, but not A-NK-amide, exhibit strong psychoactivity.  
(a) Ambulatory activity following i.p. drug injection at 50 mg/kg (ketamine) or 100 mg/kg (other compounds). 
rmANOVA showed a significant Treatment x Time Blocks interaction, [F(20,100) =​ 2.57, *p =​ 0.004], but 
additional contrasts showed no consistent drug induced change relative to vehicle controls (n =​ 5 animals per 
condition). (b) All drug treatments decreased vertical rearing frequency [Treatment effect: F(4,20) =​ 30.10, 
**p <​ 0.00005; Treatment x Time Blocks interaction: F(20,100) =​ 2.42, *p =​ 0.009], although the effect 
was smaller and more short-lived for A-NK-amide. Specifically, rearing was reduced (beyond Bonferroni 
correction) in the ketamine, norketamine, and A-NK groups for all time blocks (†p <​ 0.008), but A-NK-amide 
reduced rearing for only the first two time blocks (#p <​ 0.008). (c) Ketamine and analogues also decreased 
average rearing duration in the same test session [Treatment effect: F(4,20) =​ 30.51, p <​ 0.00005]. Durations 
were significantly decreased in each of the drug treatment groups relative to vehicle controls (*p <​ 0.002). 
However, rearing duration in the A-NK-amide group was significantly greater than duration in the other drug 
groups (#p <​ 0.0005). For A-C, n =​ 5 mice per condition. (d1) Ketamine reduced immobility time measured 
during the FST in mice 3 hours after administration of the indicated concentrations of ketamine (Treatment 
effect: p =​ 0.005). Both 3 mg/kg and 10 mg/kg significantly reduced immobility time (*p =​ 0.021 and 0.002, 
respectively, n =​ 20 mice per condition). (d2,d3) In separate experiments using control animals from the FST 
test, ambulatory activity and rearing behavior were evaluated 3 hr following following drug injection (Symbol 
colors as in D1, n =​ 13 mice per condition). No effect of drug on locomotion or rearing was detected. (e1–e3) 
Norketamine and A-NK (10 mg/kg) also significantly reduced immobility time in the FST (Treatment effect: 
p =​ 0.002; *p =​ 0.0005 and 0.019, respectively; n =​ 32–34 mice per condition), but had no effect on ambulations 
or rearing (n =​ 17–27). (f1–f3) A-NK-amide (10 mg/kg) did not significantly alter immobility time compared 
with cohort-matched controls (n =​ 25 per condition). General ambulatory activity and rearing were unaffected 
(n =​ 12 per condition). In D1 and E1 asterisks indicate significantly different from vehicle control in pairwise 
comparisons following ANOVA.
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these data (Fig. 2d1) revealed a significant effect of Treatment, [F(2,57) =​ 5.89, p =​ 0.005] on immobility time, 
with subsequent pair-wise comparisons showing that both the 3 and 10 mg/kg doses significantly reduced immo-
bility, (p =​ 0.021 and 0.002, respectively) compared to vehicle-treated mice. Another independent cohort of naive 
mice was injected with 3 or 10 mg/kg of norketamine or vehicle and then assessed on the FST to test the hypoth-
esis that the primary metabolite of ketamine (i.e., norketamine), may also have antidepressant-like properties. 
An ANOVA of these data yielded a significant effect of Treatment, [F(2,46) =​ 5.31, p =​ 0.008], on immobility 
time (n =​ 16–17 mice per condition). Follow-up comparisons indicated that the 10 mg/kg dose of norketamine 
resulted in a significant (beyond Bonferroni correction: p =​ 0.025) reduction in immobility time (p =​ 0.003) while 
the 3 mg/kg dose also decreased immobility (p =​ 0.039), relative to vehicle controls (data not shown). We rep-
licated the norketamine (10 mg/kg) finding alongside a test of A-NK (10 mg/kg), a synthetic analogue of nor-
ketamine in a separate cohort of animals (Fig. 2e1). An ANOVA of these data (n =​ 32–34 mice per condition) 
indicated a significant Treatment effect, [F(2,97) =​ 6.73, p =​ 0.002], on immobility and pair-wise comparisons 
showed that both norketamine and A-NK significantly reduced immobility relative to vehicle control injections 
(p =​ 0.0005 and 0.019, respectively). In contrast, injection of the other synthetic analogue, A-NK-amide, failed 
to affect immobility time in the FST compared to vehicle control injections (Fig. 2f1) in additional independent 
groups of naive mice (n =​ 25 per condition).

The FST was tested with a 3 hr delay and lower dose compared with initial tests of acute psychoactivity 
(Fig. 2a–c), so acute psychotomimetic or anesthetic effects should not have affected performance during the FST. 
Nevertheless, we examined the effects of ketamine, norketamine, A-NK, and A-NK-amide on general ambulatory 
activity and vertical rearing using the same dosing and post-injection delay used for FST testing. Ketamine (3 mg/kg  
and 10 mg/kg; n =​ 13 per condition) failed to show significant effects of either dose on ambulatory activity (total 
ambulations), and the same was true for norketamine (n =​ 17), A-NK (n =​ 18), and A-NK-amide (10 mg/kg, 
n =​ 12; Fig. 2d2,e2,f2). In addition, none of the drug treatments had any significant effects on vertical rearing fre-
quency at this later time point and lower dose (Fig. 2d3,e3,f3). These data suggest that it is unlikely that ketamine, 
norketamine or A-NK altered motor activity to cloud interpretation of the antidepressant-like effects of the drugs 
during the FST.

Voltage dependence and kinetic studies of analogues.  There have been few evaluations of the effect 
of norketamine on NMDAR function16,20. No work has assessed activity of chemical biology analogues of keta-
mine/norketamine at NMDARs. In dissociated cultures of rat hippocampal neurons, we explored properties of 
the analogues on NMDAR function. All three NMDAR-active compounds exhibited voltage dependence at equi-
molar concentration (10 μ​M; Fig. 3), suggesting similar mechanism of action. Norketamine and A-NK exhibited 
indistinguishable block at −​70 mV but significantly different block at +​50 mV, suggesting that A-NK exhibits 
slightly weaker voltage dependence (Fig. 3e,f). Interestingly, the amide derivative was completely inert at 10 μ​M 
(Fig. 3d). At −​70 mV both norketamine and A-NK displayed significantly slower onset kinetics than ketamine, 
with A-NK exhibiting especially slow onset and offset kinetics during continuous agonist exposure (Fig. 3g). In 
summary, both norketamine and A-NK retained voltage dependence similar to ketamine, with subtle differences 
in kinetics, suggesting that both mimic the actions of the parent compound.

To compare relative potencies of the active analogues, we challenged cells with increasing concentrations 
of antagonist in the prolonged presence of 10 μ​M NMDA as agonist (Fig. 4). We found that norketamine was 
approximately 4-fold less potent than ketamine (IC50 ketamine: 0.4 μ​M, IC50 norketamine: 2.0 μ​M, n =​ 9–10, 
Fig. 4a,b,d) and A-NK was equipotent to norketamine (IC50: 1.8 μ​M, n =​ 9, Fig. 4c,d).

Figures 3 and 4 suggest that A-NK has slower kinetics than the parent compounds when applied during con-
tinuous agonist presentation. The most direct comparison is between A-NK and norketamine, because these 
two compounds proved equipotent at −​70 mV. We and others have previously shown that kinetics of trapping 
NMDAR channel blockers, including ketamine, is rate limited by low channel open probability21,22. The additional 
slowness of A-NK could result from intrinsically slow pharmacodynamics (drug binding and dissociation), or it 
could represent slow access to the NMDAR through routes other than aqueous diffusion. For instance, previous 
work has shown that ketamine can reach at least one site via a lipophilic pathway23. Given the enhanced lipo-
philicity that the hydrocarbon chain imparts to the analogue (cLogP A-NK: 3.86 ±​ 0.54 vs. ketamine: 2.75 ±​ 0.33 
vs. norketamine: 2.32 ±​ 0.33, see Methods), we hypothesized that A-NK may need to reach a non-aqueous binding 
site, causing kinetics to be rate limited by membrane partitioning, as seen with steroid modulators of GABAA 
receptors24. This is in contrast to local anesthetics acting at voltage-gated sodium channels, where hydropho-
bicity and a membranous access route speed drug actions25,26. If cellular accumulation or compartmentalization 
explains the slow kinetics of A-NK, then A-NK pre-application should speed the block observed upon ensuing 
agonist/A-NK co-application. To test this, we pre-applied A-NK for 60 s, followed by co-application with ago-
nist. We compared kinetics of block onset with kinetics observed in a co-application-only protocol. The rate of 
A-NK block upon NMDA co-application was unaffected by A-NK pre-application (Fig. 5). This suggests that 
A-NK pharmacodynamics accounts for the slow block during continuous agonist presentation, perhaps because 
of steric-hindrance from the bulky side chain. These data also support the idea that A-NK, like ketamine, is a 
use-dependent blocker because in the pre-application protocol, there was no evidence that A-NK interacted with 
the receptor/channel before agonist was presented27.

Results from Figs 3, 4 and 5 show that the psychoactive compound A-NK inhibits responses to sustained ago-
nist application. However, does the slow kinetics of A-NK hinder its ability to depress synaptic responses, which 
are generated in response to very brief agonist presentation? To address this question we applied norketamine 
and A-NK prior to evoking NMDAR-mediated EPSCs. Both drugs significantly reduced the peak of the EPSC 
(norketamine: 22.6 +​/−​ 3.0% reduction from baseline, n =​ 18, p <​ 0.05 paired t-test; A-NK: 30.5 ±​ 2.9% reduc-
tion from baseline, n =​ 20, p <​ 0.05). A-NK’s effect on the EPSC decay time course was only trend level (p =​ 0.045) 
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compared with a stronger effect of norketamine (Fig. 6a–c). Nevertheless, upon repetitive stimulation at 0.033 Hz, 
both norketamine and A-NK behaved nearly indistinguishably (Fig. 6d–g). Both had strong, cumulative effects 
on EPSC peak and total charge that slowly returned toward baseline following compound removal (Fig. 6f,g). 
These results are consistent with the idea that the primary mode of norketamine and A-NK inhibition of NMDA 
receptor function is through activation-dependent trapping block, similar to ketamine28–30. We conclude that the 
slower kinetics of A-NK do not prevent it from interacting with synaptic neurotransmission.

Figure 3.  Ketamine, norketamine and A-NK are NMDAR antagonists. (a–d) Representative traces depicting 
block and wash off at −​70 mV and +​50 mV for 10 μ​M ketamine (a), 10 μ​M norketamine (b), 10 μ​M A-NK (c), 
and 10 μ​M A-NK-amide (d). Calibration bar values in (a) correspond to all 4 panels. All the compounds, save 
A-NK-amide, were active. (e) Inhibition achieved near steady-state for the active compounds was calculated. 
At −​70 mV and at +​50 mV, both norketamine and A-NK were significantly different than ketamine, but at 
+​50 mV, norketamine exhibited significantly less block than the two compounds (n =​ 4–5, *p <​ 0.05, t-test 
Bonferroni correction for multiple comparisons). (f) The inhibition at +​50 mV was divided into the block 
achieved at −​70 mV to calculate a “block ratio” for all active compounds. This measure of voltage-sensitivity was 
significantly lower for norketamine compared to the two other compounds (n =​ 4–5 *p <​ 0.05, t-test Bonferroni 
correction for multiple comparisons). (g) The rate of block onset at −​70 mV was measured for all three active 
compounds. Norketamine exhibited significantly slower onset kinetics than ketamine, and A-NK displayed 
slower kinetics than both ketamine and norketamine (n =​ 4–5, *p <​ 0.05, t-test with Bonferroni correction for 
multiple comparisons).
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Figure 4.  Norketamine and A-NK are less potent than ketamine. (a–c) Representative traces depict 
inhibition by increasing concentrations (0.3, 1, 3, 30 μ​M) of ketamine (a), norketamine (b) and A-NK (c). 
Concentrations are given below each trace. (d) Steady-state block achieved in pooled results from cells 
challenged with the indicated concentrations. Concentration-response curves for ketamine, norketamine, and 
A-NK are shown (n =​ 9–10). Solid lines represent fits to the Hill equation of the form I =​ Imax* Cn/(IC50

n +​ Cn), 
where Imax is maximum current in the absence of agonist, C is antagonist concentration, n is the Hill coefficient, 
and IC5αs the concentration inhibiting 50% of the response. The respective IC50 values and Hill coefficients 
for the compounds were estimated from fits to be: 0.4 μ​M and 0.7 (ketamine), 2.0 μ​M and 0.8 (norketamine) 
and 1.8 μ​M and 0.9 (A-NK). Ketamine was significantly more potent than norketamine and A-NK (p <​ 0.05, 
unpaired t-tests, from EC50 values obtained from fits to individual cells).
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A-NK intracellular accumulation.  One recent hypothesis suggests that ketamine may trigger antidepres-
sant downstream signaling pathways by binding nascent intracellular NMDA receptors resident in the endo-
plasmic reticulum12. A-NK and ANK-amide allowed us to incubate live cells with the unlabeled analogue, then 
visualize the localization of analogue following cell fixation and in situ fluorescence click chemistry with a flu-
orescent dye. After bath incubation with unlabeled A-NK or A-NK-amide in live cells, we washed away extra-
cellular analogue, fixed cells and “clicked” azide-Alexa Fluor 488 to residual compound (see Methods). Because 
localization occurred in fixed cells when excess extracellular alkyne was no longer present, we posit that this pro-
tocol should reveal sites of localization of the alkyne analogues at the time of fixation. We observed intracellular 
labeling in neurons, with accumulation of A-NK most evident. A-NK-amide accumulation was barely detectable 

Figure 5.  Pre-application of A-NK does not speed rate of block. (a) Representative trace of control current 
(black) in response to 30 μ​M NMDA or of current following a saline pre-application and immediate co-
application of NMDA and 10 μ​M A-NK. (b) Same as in A, except prior to the cyan trace, A-NK was pre-applied 
for 60 seconds. (c) The rate of onset of block (depicted by arrows in a, b) was calculated for both protocols by 
fitting a bi-exponential function to the drug onset and calculating a weighted time constant (τ​w). There was no 
significant difference between blocking rates during the different pre-application protocols (n =​ 5 each, p >​ 0.05, 
unpaired t-test).
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Figure 6.  A-NK inhibits synaptic EPSCs similarly to norketamine. (a,b) Representative traces of autaptic 
NMDAR EPSCs in saline (black) and the initial sweep following pre-application with 10 μ​M norketamine (a) or 
10 μ​M A-NK (b). Norketamine and A-NK were applied to separate cells with representative traces shown from 
the two populations. (c) A weighted tau (τ​w) was calculated from a bi-exponential fit to the decay of the EPSC. 
Norketamine significantly accelerated the rate of decay compared to saline controls (n =​ 18, *p <​ 0.05, paired 
t-test). A-NK reduced EPSC decay τ​w at trend level (p =​ 0.045, n =​ 20, paired t-test). (d,e) Representative traces 
from different cells in which progressive block by the compounds was assessed. Legends indicate the identity of 
the colored traces. (f,g) Plots of peak and total postsynaptic charge, normalized to baseline EPSCs before drug 
application, demonstrating that norketamine and A-NK reached maximum block and were washed out with 
an indistinguishable time course (n =​ 6–7, p >​ 0.05 unpaired t-test). Intersweep interval was 30 seconds in all 
recordings.
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above background (though statistically significant, Fig. 7a,b). Prolonged wash following fixation only modestly 
altered intensity and pattern of A-NK accumulation, suggesting that the analogue was indeed fixed in place by 
the protocol (Fig. 7c; n =​ 40 cells in 4 experiments, 64 ±​ 3% vs. 52 ±​ 3% increase in fluorescence with a 1 h wash 
following fixation, vs. DMSO control).

We tested whether A-NK accumulated in a specific cellular compartment by co-labeling with antibodies 
against proteins resident in specific organelles. Antibody co-labeling of A-NK with anti-PDI, an endoplasmic 
reticulum marker, failed to reveal specific overlap (Fig. 8a). Although overlap appeared higher with the Golgi 
marker giantin and the mitochondrial marker COXIV (Fig. 8b,c), the co-labeling revealed no selective accumu-
lation in any one compartment. We conclude that robust intracellular labeling characterizes an active ketamine/
norketamine analogue, but there appears to be no selective or specific compartmentalization.

Some studies suggest that ketamine may preferentially inhibit interneurons8 and/or may alter postsyn-
aptic (dendritic) glutamate signaling6,8. To test whether A-NK compartmentalization can help explain these 

Figure 7.  A-NK but not A-NK-amide strongly accumulates inside neurons. (a) Confocal imaging depicting 
cells exposed to DMSO, 20 μ​M A-NK-amide or 20 μ​M A-NK, permeabilized and stained with azide-Alexa 
Fluor 488 under copper-catalyzed “click” reaction conditions. Labeling is observed in the A-NK treated dish 
but is much weaker for A-NK-amide. Scale bar: 5 μ​m. (b) The amount of fluorescence in each condition was 
quantified (n =​ 15 neurons from 3 separate experiments, *p <​ 0.05, paired t-test). (c) Cells were incubated in 
10 μ​M A-NK for 1 h, followed by fixation. Cells were either processed immediately for click cyto-fluorescence 
or were washed for 1 h in phosphate-buffered saline before processing. Images are representative of three 
independent experiments. Scale bars in A and C: 5 μ​m.



www.nature.com/scientificreports/

1 0Scientific Reports | 6:38808 | DOI: 10.1038/srep38808

Figure 8.  A-NK staining involves multiple intracellular compartments. (a–c) Left panels depict confocal 
imaging of staining of cells exposed to 10 μ​M A-NK, permeablized and stained with azide-Alexa Fluor 488 
under copper-catalyzed “click” reaction conditions. Middle panels show immunofluorescence staining of the 
ER (anti-PDI, a), Golgi (anti-Giantin, b) or mitochondria (anti-COXIV, c). Right panels are merged images 
indicating that the A-NK staining did not overlay specifically with any of the organelle markers. Scale bar: 5 μ​m. 
(d) To test for preferential A-NK accumulation in dendrites and interneurons, we co-labeled with antibodies for 
GABA (red) and MAP2 (blue). The right panel shows A-NK accumulation. (e) Summary of A-NK fluorescence 
from confocal projections in somas and dendrites of interneurons (n =​ 19) and principal neurons (n =​ 17).
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observations, we co-labeled neurons with an antibody directed against GABA, a broad marker of hippocampal 
interneurons, and MAP2, a marker of dendrites (Fig. 8d, left). We examined A-NK accumulation on somas and 
dendrites of GABA and non-GABA cells (Fig. 8d, right) and found no evidence for preferential compartmentali-
zation in dendrites or in interneurons (Fig. 8e).

To address whether intracellular accumulation is associated with nascent or recycled NMDARs, we used 
HEK cells, which do not express endogenous NMDARs. We transfected cells with DsRed and NMDAR subu-
nits or DsRed alone as a control and imaged A-NK accumulation. We found that A-NK accumulated in both 

Figure 9.  A-NK accumulation does not require NMDAR presence. (a) HEK cells were transfected with either 
DsRed alone or with NMDAR subunits GluN1a and GluN2B as indicated. Cells were incubated with 10 μM 
A-NK for 15 min, then fixed and processed for click cyto-fluorescence. Scale bar: 5 μ​m (b). Quantification 
of fluorescence intensity from 5 independent experiments relative to sibling negative control dishes (DMSO 
treated; *p <​ 0.01). (c,d) Channel activation does not increase A-NK labeling in neurons. (c) Images of neurons 
co-incubated in 50 μ​M D-APV to prevent channel activation during A-NK exposure or in co-agonists 10 μ​M 
NMDA and 10 μ​M glycine to activate channels (1 h incubations). Scale bar: 5 μ​m. (d) Summary from 40 neurons 
in 4 independent experiments showing that channel activation slightly but significantly decreased A-NK 
accumulation (*p <​ 0.05), in contrast to expectations that permeation of the NMDAR may facilitate A-NK 
entry. (e,f) Depolarization does not reduce A-NK entry. (e) Neurons were incubated in 10 μ​M A-NK in normal 
saline or in saline containing 120 mM KCl to reduce the resting membrane potential to near 0 mV. Scale bar: 5 μ​
m. (f) Summary of A-NK accumulation from 30 neurons in 3 experiments. Depolarization slightly increased 
A-NK accumulation (*p <​ 0.01), opposite of an electro-attraction mechanism of entry and retention.
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NMDAR-transfected cells and in control cells at similar levels (Fig. 9a,b), suggesting that intracellular accumula-
tion is not accounted for by interaction with intracellular NMDARs.

This result also suggests that permeation of A-NK through surface NMDARs down its electrochemical gradi-
ent is not an important mechanism by which A-NK accumulates. To test this directly, we challenged neurons with 
A-NK while co-treating with 50 μ​M D-APV to prevent channel opening or while co-treating with agonist (10 μ​M 
NMDA and 10 μ​M glycine) to open channels and provide opportunity for A-NK entry. Subsequent visualization 
revealed that A-NK accumulation was not increased and in fact was slightly reduced by agonist co-treatment 
relative to D-APV treatment (Fig. 9c,d).

Finally, we addressed whether the difference in accumulation between positively charged A-NK and electro-
neutral A-NK-amide might result from electrostatic attraction of protonated A-NK to the negative membrane 
potential of the intracellular compartment. This experiment further tests the validity of the assumption that the 
uncharged form of ketamine is the only major permeant species. To test this, we incubated cells in A-NK with 
120 mM KCl (replacement for NaCl) to reduce the membrane potential. If cell permeation was aided by neg-
ative membrane potential we would expect that intracellular staining would be reduced in cells treated with 
KCl. Instead, A-NK accumulation was slightly altered in the direction opposite of our prediction (Fig. 9e,f). 
Although we cannot fully exclude the possibility that membrane potential disruption caused by fixation influ-
enced retention, the difference in A-NK and A-NK amide accumulation does not appear to be caused by electro-
static attraction.

Discussion
Ketamine is a multifaceted psychoactive drug whose mechanisms of action are still under exploration. This paper 
addressed two questions regarding its actions. First, we examined the properties of norketamine, the major pri-
mary metabolite of ketamine, on psychoactivity, including performance during the FST, the most extensively used 
test for assessing the behavioral effects of antidepressant drugs in rodents31,32, and we also evaluated norketamine’s 
activity at NMDARs. Our work indicates that norketamine is subtly different than ketamine in its effects on 
NMDARs but could participate in the psychoactive actions of ketamine. Second, we introduce a novel chemical 
biology probe that has actions similar to ketamine and norketamine. Because of its similar effects, it and subse-
quent generations of analogues can be used to visualize and/or biochemically label novel targets of ketamine’s 
actions in neurons.

Previous work examining norketamine at NMDARs confirmed that it is neuroactive, but the work did little 
to characterize its mechanism of action. Here, we provide evidence that norketamine and the analogue A-NK 
both mimic ketamine’s actions at NMDARs and in tests of ketamine-like psychoactivity. Both norketamine and 
A-NK displayed characteristics consistent with voltage-dependent, open- channel blockers. The alkyne chain 
considerably slowed A-NK’s rate of block during exogenous agonist application (Figs 3 and 4). In contrast to ster-
oid modulators of GABAA receptors, for instance33, this slowing was not attributable to differences in the rate of 
access to the receptor. Instead, receptor interactions of A-NK are slow relative to norketamine, perhaps resulting 
from steric effects imparted by the alkyne side-chain. We note that all of our in vitro recordings were performed 
in the absence of physiological Mg2+, and Mg2+ influences the interaction of ketamine-like compounds with the 
NMDAR channel9,34. We therefore cannot exclude the possibility that Mg2+ might change the details of the vari-
ous analogues’ interactions with NMDARs. In this regard, it is encouraging that our in vivo results (Fig. 1) largely 
parallel the in vitro findings.

Interestingly, we found that the A-NK-amide structure abolishes activity at NMDARs, has decreased behavio-
ral effects, and reduces intracellular retention/labeling. We did detect significant short-term psychoactive effects 
(Fig. 2b,c) and significant intracellular fluorescence labeling above background levels, confirming the success of 
the click reaction (Fig. 7b). The weak A-NK-amide labeling could reflect poor permeation of the plasma mem-
brane or poor intracellular retention. Either way, A-NK-amide seems to differ from the other analogues in its 
potential for interaction with intracellular targets. Permeation and retention could be governed by drug phys-
icochemical properties. Estimated pKa values for the compounds in this study are as follows: ketamine (7.18), 
norketamine (6.78), A-NK (6.88), and A-NK-amide (−​4.1). Calculated cLogP values are ketamine (2.75), nor-
ketamine (2.32), A-NK (3.86), and A-NK-amide (3.26). Thus A-NK-amide has high lipophilicity and is not pro-
tonated. It is therefore unclear what would reduce its permeation and retention; simple lipophilicity is often 
not sufficient to predict membrane permeability35. One possibility is that permeation of the positively charged 
analogue A-NK is facilitated by an active process that shuttles A-NK across the membrane. This process does not 
appear to involve permeation of the NMDAR channel itself or more general electro-attraction (Fig. 9). Another 
possibility is that by virtue of its status as a weak base, A-NK is better retained than A-NK-amide, perhaps in 
part by being trapped in its protonated state within acidic organelles13 and subsequently fixed in place. Binding 
to intracellular NMDARs does not appear to constitute a major mechanism of intracellular retention of A-NK 
(Fig. 9a,b).

Although A-NK exhibited more intracellular uptake/retention compared with A-NK-amide, A-NK did not 
exhibit clear selective partitioning into a single organelle sub-compartment within neurons. We consider two 
caveats to the conclusion that A-NK yields a realistic picture of ketamine/norketamine intracellular distribu-
tion. First, A-NK was not anchored before imaging, so diffusion beyond initial preferential sites of accumulation 
could have occurred during processing. Wash following fixation did not notably alter the accumulation pattern 
(Fig. 7c), suggesting that the compound is ultimately fixed in place, but we cannot exclude rapid redistribution 
during fixation. This issue has been dealt with in other contexts by introducing a photolabel to anchor the ana-
logue in situ prior to fixation36,37. On the other hand, non-covalently anchored optical probes retain specific 
organelle distribution in other situations38–40. A second caveat is that the higher lipophilicity of A-NK over nor-
ketamine and ketamine may lead to a different distribution than the parent compounds. Because A-NK-amide, 
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which shares high lipophilicity with A-NK, exhibits poor intracellular accumulation, we argue that lipophilicity 
is unlikely to lead to different intracellular accumulation properties compared with ketamine and norketamine. 
Rather, the intracellular accumulation of A-NK suggests that intracellular targets could participate in the unique 
actions of ketamine11,12.

The broad intracellular distribution of the analogues (and presumably ketamine/norketamine) also raises 
the question of specificity of any intracellular actions. Previous reviews of intracellular ketamine actions have 
suggested that ketamine may have specific intracellular actions11,12. How could such non-selective distribution of 
drug be associated with specific, compartmentalized functional effects? One possibility is that not all intracellular 
binding sites for ketamine and its analogues are functionally relevant11.

Norketamine, ketamine, and A-NK each induced strong acute psychotomimetic effects and reduced immobil-
ity time in the FST assay. Although limiting compound quantities precluded full time course studies, the FST was 
performed with a 3 h delay, to help ensure that other acute psychoactive effects did not contribute to FST results. 
Although NMDAR activity is one commonality among these compounds that could trigger behavioral effects, 
our data suggest that other intracellular targets might be important for behavioral and perhaps synaptic effects of 
ketamine analogues, some of which take several hours to manifest in both humans and rodents6,9,41,42. This could 
explain why the pharmacologically similar compound memantine does not share ketamine’s antidepressant-like 
effects9. Memantine, unlike A-NK, ketamine, and norketamine, is nearly fully protonated at physiological pH 
(pKa 10.3, 99% protonated at physiological pH20), which may prevent it from entering cells.

Another possibility is that a common downstream metabolite of the ketamine core structure medi-
ates the antidepressant-like effect10. A common metabolite for both ketamine and norketamine is 
6-hydroxynorketamine10, a neuroactive compound but weak NMDAR antagonist43. The cyclohexane ring, which 
is modified in both ketamine and norketamine to form these hydroxyketamine and hydroxynorketamines, can 
also be modified in A-NK. Although ketamine is rapidly metabolized to produce norketamine through demeth-
ylation, our observed differences as well as those reported previously17 suggest that longer alkyl chains such as 
those in A-NK and A-NK-amide are not lost through metabolic pathways, leaving the terminal alkyne intact. It 
therefore seems unlikely that a common downstream metabolite of ketamine, norketamine and A-NK can explain 
the behavioral effects, although it is possible that a common metabolite helps explain the acute behavioral effect 
of A-NK-amide observed at high concentration (Fig. 2b,c). Furthermore, cellular esterase/amidases are unlikely 
to explain the lack of cellular labeling or weak behavioral activity of A-NK-amide; precedent examples from the 
literature on local anesthetics show that amidation is correlated with increased in vivo stability (procainamide, 
lidocaine) over that of procaine44–46.

Methods
Mice and drug treatments.  The study was carried out in strict accordance with the recommendations in 
the Guide for the Care and Use of Laboratory Animals of the National Institute of Health. The protocol(s) was/
were approved by the Washington University Animal Studies committee. All efforts were made to minimize ani-
mal discomfort by use of anesthesia/analgesia.

Male C57BL/6 J mice (Jackson Labs) that were 2–2.5 months old were administered ketamine (3–100 mg/kg), 
norketamine (3–100 mg/kg), A-NK (10–100 mg/kg), A-NK-amide (10–100 mg/kg), or vehicle via intraperitoneal 
injection. Vehicle was matched across all conditions for each experiment and included up to 30% DMSO or 7% 
Cremophor-EL in 0.9% saline. Drug effects on behavioral performance were evaluated immediately (acute psy-
choactivity studies) or three hours (forced swim test, FST) post- injection.

Forced Swim Test (FST).  Mice were transported from a housing room to the test room where they remained 
for at least 1 h before testing commenced. The FST procedure involved testing drug- and vehicle-treated mice by 
placing a mouse inside one of two 2000 ml glass beakers (144 mm diam.) that contained 1600 ml of water at 
24 ±​ 1 °C where each remained for a 6-min trial. An opaque partition was placed between the beakers, and the 
water was changed for each pair of subjects. Testing of drug- and vehicle-treated mice was counterbalanced across 
the two beakers with typically one drug- and one vehicle-injected mouse being tested at the same time. A video 
camera positioned above the beakers was used to record an overhead view of the mice, which was used to evaluate 
their performance. Immobility, defined as a lack of extraneous movement except for that required to keep the 
head above water, was quantified (seconds) during the last 4 min of the trial by an observer who viewed the video 
recording and was unaware of the treatment status of individual mice.

Locomotor activity.  To examine the effects of the drug treatments on general activity/exploratory 
behavior levels, mice were evaluated over a 1-h period in transparent polystyrene enclosures measuring 
47.6 ×​ 25.4 ×​ 20.6 cm high, according to our previously published procedures47. Each enclosure was surrounded 
by two frames containing pairs of photocells. Beam breaks were recorded by a computer, and measured param-
eters were quantified by standard algorithms (MotorMonitor, Kinder Scientific LLC, Poway, CA). Dependent 
variables that were analyzed included total ambulations (whole body movements), which were derived from a 
lower frame used to measure horizontal movement, and vertical rearing frequency, which was computed using a 
second frame that was raised slightly above the first.

The effect of high doses of ketamine (50–100 mg/kg) and analogues (100 mg/kg) were assessed using the loco-
motor instrumentation described above and a modified procedure previously utilized with rats to evaluate the 
effects of high doses of ketamine and metabolites48. Relevant dependent variables were ambulations and vertical 
rearing, which served as measures of psychoactivity (see Results). The acute, high-dose effects of ketamine on 
these behaviors have been interpreted as psychotomimetic-like effects18. Animals dosed with vehicle, ketamine, 
norketamine, A-NK, and A-NK-amide were all evaluated during the same session, in an interleaved design, 
immediately following i.p. injection.
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The same instrumentation and general procedures described above were used to assess possible 
activity-related drug effects in the FST studies by evaluating the same doses with the former methods.These con-
trol studies involved mice that had served as vehicle controls in the FST. Locomotor assessments were performed 
1–2 weeks later on the 1-h locomotor activity test following drug (10 mg/kg) or vehicle injections using the same 
post-injection delay interval (3 h) that was utilized in the FST studies.

Hippocampal cultures.  Hippocampal cultures were prepared as either mass cultures or microcultures (as 
indicated in figure legends) from postnatal day 1–3 female rat pups anesthetized with isoflurane, under proto-
cols consistent with NIH guidelines and approved by the Washington University Animal Studies Committee. 
Methods were adapted from earlier descriptions49–52. Hippocampal slices (500 μ​m thickness) were digested with 
1 mg ml−1 papain in oxygenated Leibovitz L-15 medium (Life Technologies, Gaithersburg, MD, USA). Tissue was 
mechanically triturated in modified Eagle’s medium (Life Technologies) containing 5% horse serum, 5% fetal calf 
serum, 17 mM D-glucose, 400 μ​M glutamine, 50 U ml−1 penicillin and 50 μ​g ml−1 streptomycin. Cells were seeded 
in modified Eagle’s medium at a density of ~650 cells mm−2 as mass cultures (onto 25 mm cover glasses coated 
with 5 mg ml−1 collagen or 0.1 mg ml−1 poly-D-lysine with 1 mg ml−1 laminin) or 100 cells mm−2 as microcultures 
(onto 35 mm plastic culture dishes coated with collagen microdroplets on a layer of 0.15% agarose). Cultures were 
incubated at 37 °C in a humidified chamber with 5%CO2/95% air. Cytosine arabinoside (6.7 μ​M) was added 3–4 
days after plating to inhibit glial proliferation. The following day, half of the culture medium was replaced with 
Neurobasal medium plus B27 supplement (Life Technologies).

Electrophysiology.  Whole-cell recordings were performed at room temperature from neurons cultured 
for 4–7 days (exogenous applications of agonist) or for 10–12 days (EPSCs) using a Multiclamp 700B amplifier 
(Molecular Devices, Sunnyvale, CA, USA) and Digidata 1440 A converter with Clampex 10.1 software. Young 
cells were favored for biophysical experiments with exogenous applications to minimize spatial voltage-clamp 
errors and to keep current amplitudes small. For recordings, cells were transferred to an extracellular (bath) 
solution containing (in mM): 138 NaCl, 4 KCl, 2 CaCl2, 10 glucose, 0.01 glycine and 10 HEPES, pH 7.25 
adjusted with NaOH. Solutions were nominally Mg2+ free to promote NMDAR activation. D-(-)−​2-Amino-
5-phosphonopentanoic acid (D-APV, 25–50 μ​M) was included until seal formation to prevent excitotoxicity. 
Solutions with adjusted composition described below were perfused using a gravity-driven local perfusion sys-
tem from a common tip. The estimated solution exchange times were <​100 ms (10–90% rise), estimated from 
junction current rises at the tip of an open patch pipette. For synaptic recordings, these solutions contained (in 
mM) 0.001 2,3-dihydroxy-6-nitro-7-sulfonyl-benzo[f]quinoxaline (NBQX) and 0.025 bicuculline methobromide 
or 0.01 gabazine. EPSCs were elicited from single-cell microcultures by brief depolarization to 0 mV to elicit a 
breakaway axonal action potential49. For exogenous NMDA application, 0.25 mM CaCl2 was used (in APV-free 
perfusion solutions) to minimize Ca2+-dependent NMDAR desensitization53,54. This concentration balanced 
stability of NMDA responses with cell/membrane seal stability. Tetrodotoxin (250 nM) was added to prevent 
network activity when evoked synaptic activation was not required. Unless otherwise noted, exogenous NMDA 
concentration was 30 μ​M. The open-tip resistance of patch pipettes was 3–6 MΩ when filled with an internal 
solution containing (in mM): 130 cesium methanesulfonate, 0.5 CaCl2, 5 EGTA, 4 NaCl, and 10 HEPES at pH 
7.25, adjusted with KOH. Holding voltage was typically −​70 mV unless otherwise noted. Access resistance for all 
recordings was 8–10 MΩ and was compensated for current amplitudes >​2 nA.

HEK Cells and transfection.  Procedures were essentially similar to those previously published by our 
group55,56. Briefly, HEK 293 cells were cultured in Dulbecco’s modified Eagle’s medium (Life Technologies) sup-
plemented with 10% fetal bovine serum and 1 mM glutamine. Cells on a 35 mm culture plate were transfected 
with wild-type GluN1a subunit DNA (pRc/CMV vector; 0.3 μ​g), GluN2B subunit DNA (pcDNA1; 1 μ​g), and 
DsRed fluorescent protein DNA (pDsRed2–1;Clontech, Mountain View, CA 0.05 μ​g). The separate plasmids were 
co-transfected using Lipofectamine2000 (Life Technologies) according to the manufacturer’s protocol. Using this 
method, DsRed fluorescence predicts functional NMDAR expression with more than 80% accuracy55,56.

Confocal Imaging.  For evaluating labeling of A-NK and A-NK-amide, stocks of 10 mM compound were 
prepared in DMSO and diluted to 10 μ​M in culture medium for 1 h at 37 °C. The drugs were then washed from 
the cells three times with PBS. Cells were then fixed with 4% paraformaldehyde and 0.05% glutaraldehyde 
for 10 min. Cells were washed with PBS and then exposed to click reaction labeling for 1 h in the dark using 
azide-conjugated Alexa Fluor 488 (1 μ​M). The click buffers contained 100 μ​M Tris[(1-benzyl-1H-1,2,3-triazol-
4-yl)methyl]amine (TBTA), 2 mM (+​)- Sodium L-ascorbate in distilled water, 1 μ​M azide-Alexa Fluor 488 in 
DMSO, 1 mM CuSO4. Pilot experiments demonstrated that additional membrane permeabilization beyond cell 
fixation was not required for azide-Alexa Fluor 488 entry. Experiments examining in situ click labeling compared 
A-NK and A-NK-amide click labeling with control conditions in which all click reagents were present except 
pre-incubation in A-NK or A-NK. As expected, the control fluorophore incubation yielded some background 
fluorescence above that obtained with no fluorophore (46.2 ±​ 4.0 fluorescence units to 105.2 ±​ 8.4 fluorescence 
units from 20 fields in four independent experiments). All reported fluorescence values in text and figures rep-
resent labeling above the background labeling performed with all click reagents (including fluorophore) present, 
but without pre-incubation in unlabeled analogue. For antibody co-labeling experiments, we incubated in 10 μM 
A-NK for 1 h at 37 °C then fixed cells with 4% paraformaldehyde in phosphate buffered saline for 10 min. After 
washing, we incubated in primary antibody (anti-PDI, Giantin, or COX IV at 1:2000) in 4% normal goat serum 
and 0.04% Triton X-100 in phosphate buffered saline for 2 h. Cells were subsequently incubated in secondary 
antibody (Alexa Fluor 647, 1:500) for 1 h, then clicked (azide-Alexa Fluor 488) for another hour in the above 
conditions.
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Calculated LogP and pKa derivations.  Calculated LogP (cLogP) and pKa values were calculated using 
software available on the virtual computational chemistry laboratory, www.vcclab.org57. cLogP values are repre-
sented as the average ±​ SD of the output by 6 different algorithms consulted for the calculation. pKa values were 
calculated using SPARC online software58 or were obtained from the literature59.

Drugs and reagents.  Anti-PDI (Abcam Cat# ab2792, RRID:AB_303304), Anti-COXIV (Abcam 
Cat# ab16056, RRID:AB_443304) and Anti-Giantin (Covance Research Products Inc Cat# PRB-114C-200, 
RRID:AB_10063713) antibodies were all chosen for established specificity60–62. (R,S)-Ketamine and (R,S)- nor-
ketamine were obtained from Tocris as racemic mixtures. Racemic (R,S)-A-NK and (R,S)-A-NK-amide were 
synthesized as described below, starting from racemic norketamine. Norketamine was synthesized using previ-
ously published methods17; and the alkyne (A-NK) or amide (A-NK-amide) were synthesized by alkylation or 
amidation of norketamine. There was no attempt to resolve diasteromers, and all subsequent transformations 
likely resulted in racemic products. 1H NMR and 13C NMR spectrometry was performed on an I400 Varian Inova 
NMR instrument (Agilent, Palo Alto, CA, 400 MHz for 1H NMR and 100.5 MHz for 13C NMR). High resolution 
positive ion electrospray mass spectra were obtained on a Bruker MaXis 4 G Q-TOF mass spectrometer.

Alkyne-Norketamine, A-NK (1).  Norketamine (13 mg, 0.058 mmol) and finely ground potassium car-
bonate (16 mg, 0.12 mmol) were dissolved in DMF (N, N-dimethylformamide) in a 5-ml reaction vessel. 5-Iodo-
1-pentyne (33.8 mg, 0.17 mmol) was added to the solution. The vessel was sealed, and the reaction solution was 
heated to 100 °C for 24 h. After the reaction solution was cooled to room temperature, the solution was dissolved 
in dichloromethane (5 ml), and washed with 10% sodium thiosulfate (1 ml ×​ 2), and brine (1 ml ×​ 2). The organic 
phase was separated and dried over anhydrous sodium sulfate. The solution was filtered under vacuum and con-
centrated to viscous liquid. The crude product was purified by silica gel column chromatography eluting with 
hexane: ethyl acetate (3:2) to afford a light yellow viscous liquid (16 mg, 95.2%). 1H NMR (400 MHz, CDCl3): 
δ​ 7.54 (dd, J =​ 7.6 Hz, 1 H), 7.35 (dd, J =​ 8.0 Hz, 1 H), 7.30 (t, J =​ 7.6 Hz, 1 H), 7.22 (t, J =​ 7.6 Hz, 1 H), 2.78–2.74 
(m, 1 H), 2.51–2.40 (m, 3 H), 2.23–2.20 (m, 2 H), 2.16–2.13 (m, 1 H), 2.07 (s, 1 H), 2.02–1.98 (m, 1 H), 1.88 (t, 
J =​ 2.6 Hz, 2 H), 1.80–1.76 (m, 3 H), 1.66–1.61 (m, 2 H). 13C NMR (100.5 MHz, CDCl3): 209.31, 138.71, 134.03, 
131.49, 129.52, 128.92, 126.94, 84.35, 70.15, 68.84, 41.40, 39.76, 39.44, 29.58, 28.22, 22.20, 16.48. HRMS (ESI): 
calculated for C17H20ClNO [M+​H]+: 290.1306; found 290.1302.

Alkyne-Norketamine Amide, A-NK-amide (2).  4-Pentynoic acid (10.8 mg, 0.11 mmol) and HBTU 
(43.7 mg, 0.12 mmol) were dissolved in DMF (200 μ​l) in a 1 ml vial. N, N-diisopropylethylamine (60 μ​l, 
0.34 mmol) was added to the solution, and the reaction solution was stirred for 15 min. Then a solution of norket-
amine (19 mg, 0.085 mmol) in DMF (65 μ​l) was added to the solution, and the reaction was stirred at room tem-
perature overnight. The crude product was purified on a short silica gel column with an elution of hexane: ethyl 
acetate (3:2) to afford a yellow viscous liquid (17 mg, 65.7%). 1H NMR (400 MHz, CDCl3): δ​ 7.92 (d, J =​ 8.0 Hz, 
1 H), 7.58 (br, 1 H), 7.38–7.22 (m, 3 H), 3.96 (dd, J =​ 14.4 Hz, 1 H), 2.43–2.32 (m, 6 H), 2.08–2.06 (m, 1 H), 1.92 (s, 
1 H), 1.83–1.72 (m, 3 H), 1.63 (t, J =​ 14.8 Hz, 1 H). 13C NMR (100.5 MHz, CDCl3): 209.63, 169.57, 134.74, 133.83, 
132.37, 131.15, 129.80, 126.52, 83.03, 69.42, 68.23, 39.45, 38.55, 35.88, 31.24, 22.54, 14.88. HRMS (ESI): calculated 
for C17H18ClNO2 [M+​Na]+: 326.0918; found 326.0938.

Statistical analyses.  Behavioral data were analyzed using one-way or repeated measures (rm) analysis of 
variance (ANOVA) models. These models included one between-subjects variable (Treatment) and the rmANO-
VAs also included one within-subjects variable (Time Blocks) for analyzing the general ambulatory and vertical 
rearing data. The Huynh-Feldt adjustment of alpha levels was utilized for all within-subjects effects containing 
more than two levels to protect against violations of sphericity/compound symmetry assumptions underlying 
rmANOVA models. Pairwise comparisons were conducted following relevant, significant overall ANOVA effects, 
which were subjected to Bonferroni correction when appropriate. Upaired t tests, Bonferroni corrected for mul-
tiple comparisons where appropriate, were used to analyze electrophysiological and cyto-fluorescence results.
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