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Abstract: The stability of functionally graded simply supported fluid-conveying microtubes under
multiple physical fields was studied in this article. The strain energy of the fluid-conveying micro-
tubes was determined based on strain gradient theory, and the governing equation of the functionally
graded, simply supported, fluid-conveying microtube was established using Hamilton’s principle.
The Galerkin method was used to solve the governing equation, and the effects of the dimensionless
microscale parameters, temperature difference, and magnetic field intensity on the stability of the
microtube were investigated. The results showed that the dimensionless microscale parameters
have a significant impact on the stability of the microtube. The smaller the dimensionless microscale
parameters were, the stronger the microscale effect of the material and the better the microtube
stability became. The increase in the temperature difference decreased the eigenfrequency and critical
velocity of the microtube and reduced the microtube stability. However, the magnetic field had the
opposite effect. The greater the magnetic field intensity was, the greater the eigenfrequency and
critical velocity were, and the more stable the microtube became.

Keywords: strain gradient theory; functionally graded material; multi-physical fields; size effect;
critical velocity

1. Introduction

Microtubes have been widely used in micro-electro-mechanical systems [1], bioengi-
neering [2], modern medicine [3], and other fields [4] for resonators, actuators, fluid trans-
port, fluid storage, and drug delivery. As important functional components, the stability
of microtubes has an important impact on the whole system. Therefore, it is important to
further understand the dynamic behaviors of microtubes for their design and application.

Experiments have proven that the mechanical properties of materials at the microscale
are completely different from those at the macroscale. The size effect plays a key role in
microstructures [5–7], but classical continuum mechanics theory cannot accurately describe
the dynamic behaviors of microtubes. Hence, to accurately design and fabricate a mi-
crostructure, several higher-order continuum mechanics theories have been introduced,
such as modified couple stress theory, strain gradient theory, nonlocal continuum me-
chanics theory, and nonlocal strain gradient theory. These theories contain at least one
microscale parameter, which can accurately describe the influence of the size effect on the
microstructure performance.

Based on these higher-order continuum mechanics theories, some scholars have
conducted considerable theoretical research on microtubes. The complex viscoelasti-
cally coupled nonlinear equations of a fluid-conveying microtube were presented by
Ghayesh et al. [8] to analyze the influence of the velocity of the flowing fluid on the sys-
tem dynamics. Guo et al. [9] established a three-dimensional (3D) theoretical model with
modified coupled stress theory to study the effect of small length scales on two types of
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periodic motions. Dehrouyeh-Semnani et al. [10,11] investigated nonlinear size-dependent
resonant characteristics for conveying fluid via extensible microtubes subjected to harmonic
loads. Hu et al. [12] developed the nonlinear equations of motion for cantilevered, fluid-
conveying microtubes to analyze the possible size-dependent nonlinear responses based
on modified coupled stress theory. Based on strain gradient theory, Hosseini et al. [13]
established a cantilever dynamics equation for fluid-conveying microtubes based on three
length scale parameters. The effects of the length scale parameters, outer diameter, and
length–diameter ratio on the critical velocity and natural frequency of flutter were inves-
tigated. Yang et al. [14] studied the static post-buckling problem and the size-dependent
post-buckling configurations, and they analyzed the influence of the material length scale
parameters, outer diameter, flow velocity, and Poisson’s ratio on the dynamic character-
istics. Considering the size effects of the microflow and microstructure, Wang et al. [15]
studied the in-plane and out-of-plane bending vibrations of end-clamped, fluid-conveying
microtubes. The studies described above indicated that the length scale parameters of
materials have a significant impact on the stability of fluid-conveying microtubes. How-
ever, as the application environments of microtubes become more and more complex and
changeable, such as under the action of ultra-high temperatures, ultra-low temperatures,
high magnetism, and other physical fields, homogeneous microtubules of a single material
can no longer meet the application requirements.

To improve the stability of microtubes in complex environments, novel functionally
graded materials (FGMs) have been proposed for microtubes. However, most research
is currently focused on functionally graded nanotubes. For instance, Zhang et al. [16]
employed the isogeometric finite element method to analyze the effects of boundary
conditions, geometric properties, and material parameters on the frequencies of carbon-
nanotube-reinforced and FGM-sector cylindrical shells. Based on non-local elasticity theory,
Hołubowski et al. [17] studied the transverse vibrations of single-walled carbon nanotubes
under a random load action. A nonlocal strain gradient elasticity approach was proposed
by Farajpour et al. [18] to study the mechanical behaviors of fluid-conveying nanotubes.
The effects of different nano-system/fluid parameters, including the fluid-solid interface
and the flow speed, on the nonlinear resonance, were analyzed. Bahaadini et al. [19,20]
used an extended Hamilton’s principle to obtain the size-dependent governing equations
and associated boundary conditions, and they analyzed the free vibrations of a nanotube
conveying nanoflow. Deng et al. [21] studied the size-dependent vibrations and stabil-
ity of multi-span, viscoelastic, functionally graded, fluid-conveying nanotubes using a
hybrid method.

The above studies indicated that the stability of functionally graded nanotubes can
be adjusted by designing the volume fraction index. Therefore, owing to their excellent
physical properties, functionally graded carbon nanotubes can be used in multiple physical
fields, such as thermo-magnetic fields. Tong et al. [22] established the dynamics equation
for functionally graded cantilevered nanotubes under thermo-magnetic coupling. The in-
fluences of the external magnetic field and temperature on the stability of functionally
graded material nanotubes were investigated. Based on the nonlocal Euler–Bernoulli beam
theory, Lyu et al. [23] derived the nonlinear governing equation of fluid-conveying carbon
nanotubes in elastic media under the action of thermal and magnetic fields. The effects of
the small scale, Knudsen number, elastic medium, magnetic field parameters, and tempera-
ture variations on the stability of the system were studied. Ghane et al. [24] analyzed the
influences of nonlocal parameters, the strain gradient length scales, the magnetic nanoflow,
the longitudinal magnetic field, and the Knudsen number on the eigenvalues and critical
flutter velocity of fluid-conveying thin-walled nanotubes under the action of a magnetic
field. Based on nonlocal elasticity theory and Euler–Bernoulli beam theory, Zhu et al. [25]
established the governing equation of cantilevered carbon nanotubes subjected to partially
distributed tangential forces, and they analyzed the influence of non-local parameters, the
Knudsen number, surface effects, and the magnetic field on the stability of cantilevered car-
bon nanotubes. Bahaadini et al. [26] analyzed the stability of cantilevered carbon nanotubes
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subjected to axial compressive loads. Hosseini et al. [27,28] studied the stability of carbon
nanotubes subjected to a longitudinal magnetic field and a hygrothermal environment.
The results showed that a longitudinal magnetic field could increase critical flow velocities
and natural frequencies of the single-walled carbon nanotubes.

All of the above studies were aimed at functionally graded fluid-conveying nanotubes,
and there have been relatively few studies on the stability of micrometer-scale functionally
graded fluid-conveying microtubes. For example, Babaei et al. [29] derived the nonlinear
equation of motion of functionally graded, porous, curved microtubes based on higher-
order shear deformation tube theory and Hamilton’s principle. A two-step perturbation
technique was used to solve the nonlinear equations of motion, and the effects of the mate-
rial length scale parameters, functional grading mode, porosity parameters, and nonlinear
elastic foundation on the system stability were analyzed. She et al. [30] established the
governing equation of functionally graded porous tubes via a nonlocal strain gradient
theory and analyzed the nonlinear bending and vibrational characteristics of porous micro-
tubes. Ansari et al. [31] combined modified coupled stress theory with first-order shear
deformation shell theory and deduced the motion equation and boundary conditions of
the system using Hamilton’s principle. The results demonstrated that the stability of the
microtube could be improved by increasing the value of the material property gradient
index. Talib et al. [32,33] studied the influence of the fluid flow velocity, gradient index,
and parameters of the material length scale on the vibrations and stability of functionally
graded, fluid-conveying microtubes. Setoodeh et al. [34] derived the governing equation
based on Euler–Bernoulli beam theory, strain gradient theory, and von Kármán geomet-
ric nonlinearities, and they used an analytical method to determine the size-dependent
nonlinear vibrational behaviors of functionally graded fluid-conveying microtubules.

To better understand the vibration behavior of functionally graded fluid-conveying
microtubules, based on strain gradient theory and Hamilton’s principle, the governing
equation of functionally graded simply supported fluid-conveying microtubes under mul-
tiple physical fields is established in this paper. The properties of functionally graded
materials showed a power law distribution along the fluid-conveying microtube radius.
The Galerkin mothed was used to solve the governing equations, and the effects of the
microscale parameters, temperature change, and magnetic field on the vibration behavior
of the system are discussed in detail.

2. Governing Equations

In the present study, the schematic of a functionally graded simply supported fluid-
conveying microtube subjected to multiple physical fields is shown in Figure 1. In this
schematic, the length of the microtube is L, the velocity of the fluid is U, the inner radius of
the microtube is Ri, the outer radius of the microtube is Ro, the radius of the reference point
is r, the mass of a unit length of the microtube is m, and the fluid mass of a unit length of
the microtube is M.
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Figure 1. Schematic of the functionally graded, simply support, fluid-conveying microtube under 
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Figure 1. Schematic of the functionally graded, simply support, fluid-conveying microtube under
multiple physical fields.
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A functionally graded material is an advanced composite material, whose mechanical
properties are continuously changing. In this study, it is assumed that the mechanical prop-
erties of the functionally graded material change continuously across the microtube wall
thickness according to a power-law function. The mechanical properties of the functionally
graded material can be represented as [35]

E(r) = ViEi + VoEo (1)

G(r) = ViGi + VoGo (2)

ρ(r) = Viρi + Voρo (3)

Vi =

(
Ro − r

Ro − Ri

)n
(4)

Vo = 1−Vi (5)

where E, G, and ρ denote the elastic modulus, shear modulus, and density of the function-
ally graded material, respectively. Subscripts i and o denote the inner and outer surfaces,
respectively. V is the material volume fraction, and superscript n represents the power-law
index. In this work, the inner layer material of the functionally graded simply supported
fluid-conveying microtube was a zirconia ceramic, and the outer layer was aluminum.
Their material properties were Ei = 151 GPa, ρi = 5331 kg/m3, ai = 9.5 × 10−6 K−1,
Eo = 70 GPa, ρo = 2707 kg/m3, ao = 23.6× 10−6 K−1.

From Equations (1)–(5), it is known that when the index n = 0, the functionally graded
material degenerates into a single homogeneous ceramic material. When the index n = ∞,
the functionally graded material degenerates into a single homogeneous metal material.

Strain gradient theory is a widely used high-order continuum mechanics theory that
has been derived in the literature [13]. According to strain gradient theory, the strain energy
of an isotropic linear elastic continuum with a small deformation can be written as

Up =
1
2

∫ L

0

[
S
(

∂2w
∂x2

)2

+ K
(

∂3w
∂x3

)2]
dx (6)

where S = EI + 2GAl2
0 + 8

15 GAl2
1 + GAl2

2 , and K = 2GIl2
0 + 4

5 GIl2
1 . The parameters w,

li(i = 0, 1, 2), I, and A are the transverse displacement of the microtube, length scale
parameters of the functionally graded material, cross-sectional moment of inertia of the
microtube, and the cross-sectional area of the microtube, respectively.

The kinetic energy of a microtube can be expressed as

Tp =
m
2

∫ L

0

(
∂w
∂t

)2
dx (7)

The kinetic energy of the fluid in the microtube can be expressed as

Tf =
M
2

∫ L

0

[(
∂w
∂t

+ U
∂w
∂x

)2
+ U2

]
dx (8)

According to Maxwell’s equation, the work of a Lorentz force due to a longitudinal
magnetic field acting on the microtube can be expressed as [27]

Wm = σAH2
x

∫ L

0

∂2w
∂x2 dx (9)

where Hx and σ are the magnetic field intensity and permeability, respectively.
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According to thermoelastic theory, the thermal axial force generated by a temperature
difference and the work done by the thermal axial force on the microtube can be written
as [22]

WT = −
∫ L

0

EA
1− 2ν

a∆T
∂2w
∂x2 dx (10)

where a, ν, and ∆T are the coefficient of thermal expansion, Poisson’s ratio, and the
temperature difference of the temperature field, respectively.

The governing equation of the microtube can be obtained by applying Hamilton’s
principle as follows:

δ
∫ t2

t1

(
Tp + Tf −Up + Wext −MU2uL

)
dt =

∫ t2

t1

MU
(

∂wL
∂t

+ U
∂wL
∂x

)
δwLdt (11)

where Wext = Wm + WT . At both ends of a simply supported fluid-conveying microtube,
uL = wL = 0, and therefore, Equation (11) can be simplified as

δ
∫ t2

t1

(
Tp + Tf −Up + Wext

)
dt = 0 (12)

By substituting Equations (6)–(10) into Equation (12), the governing equation of a
simply supported fluid-conveying microtube can be obtained as follows:

S
∂4w
∂x4 − K

∂6w
∂x6 + (m + M)

∂2w
∂t2 + 2MU

∂2w
∂t∂x

+

(
MU2 − σAH2

x +
EA

1− 2ν
a∆T

)
∂2w
∂x2 = 0 (13)

For convenience of calculation, we introduce the following dimensionless quantities:

ξ = x
L , η = w

L , τ = t
L2

√
EI

m+M , u =
√

M
EI UL, β = M

m+M , v = σ AH2
x L2

EI , φ = (EA)L2a∆T
(EI)(1−2v) ,

ϕ =
GIl2

2
EIL2 , λ =

GAl2
2

EI , µ = EI
GAl2

2
, ψ = λ

(
µ + 2r0

2 + 8
15 r1

2 + 1
)
, κ= 2ϕ

(
r0

2 + 2
5 r1

2), r0 = l0
l2

, r1 = l1
l2

By substituting the dimensionless parameters above into Equation (13), the governing
equation of the simply supported fluid-conveying microtube can be written as

∂2η

∂τ2 + 2u
√

β
∂2η

∂ξ∂τ
+ ψ

∂4η

∂ξ4 +
(

u2 −v + φ
)∂2η

∂ξ2 − κ
∂6η

∂ξ6 = 0 (14)

For a simply supported fluid-conveying microtube, the boundary conditions are
as follows:

w(0) = w(L) = 0, u(0) = u(L) = 0, w′′′ (0) = w′′′ (L) = 0
S · w′′ (0)− K · w′′′′(0) = S · w′′ (L)− K · w′′′′(L) = 0

(15)

3. Galerkin Method

Equation (14) is a high-order partial differential equation, which can be discretized
into a second-order ordinary differential equation by the Galerkin method. To this end, the
transverse vibration displacement of the microtube is expressed as follows:

η(ξ, τ) =
N

∑
r=1

ϕr(ξ)qr(τ) (16)

where N is the order of the mode, qr(τ) is the r-th mode coordinate, and ϕr(ξ) is the basis
function of the r-th eigenmode. For a simply supported fluid-conveying microtube, the
basis function of the r-th eigenmode is shown as follows:

ϕr(ξ) =
√

2 sin(λrξ) (17)

where λr is the r-th-order eigenvalue of the corresponding simply supported beam.
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By substituting Equations (16) and (17) into Equation (14), multiplying both sides of
the equation by ϕs(ξ), integrating with respect to ξ over the interval [0,1], and making
use of the orthogonal property of the characteristic function, the following equation can
be obtained:

N
∑

r=1
ϕs(ξ)ϕr(ξ)

..
qr(τ) +

N
∑

r=1

(
u2 −v + φ

)
ϕs(ξ)ϕ

′′
r (ξ)qr(τ) +

N
∑

r=1
2u
√

βϕs(ξ)ϕ′r(ξ)
.
qr(τ)

+
N
∑

r=1
(1 + ψ)λ4

r ϕs(ξ)ϕr(ξ)qr(τ)−
N
∑

r=1
κϕs(ξ)ϕ

(6)
r (ξ)qr(τ) = 0

(18)

Equation (18) can be written in matrix form as follows:

M
..
qr(τ) + C

.
qr(τ) + Kqr(τ) = 0 (19)

where qr(τ) is the population vector in generalized coordinates, and (·) is the derivative
with respect to time τ. The mass matrix [M], the damping matrix [C], and the stiffness
matrix [K] can be written as

[M]sr =
∫ 1

0
ϕs(ξ)ϕr(ξ)dξ; [C]sr = 2u

√
β
∫ 1

0
ϕs(ξ)ϕ′r(ξ)dξ;

[K]sr = (u2 −v + φ)
∫ 1

0
ϕs(ξ)ϕ

′′
r (ξ)dξ + ψλ4

r

∫ 1

0
ϕs(ξ)ϕr(ξ)dξ − κ

∫ 1

0
ϕs(ξ)ϕ

(6)
r (ξ)dξ

Equation (19) can be converted into a first-order equation of state, and all modes of
the system can be solved using the MATLAB software. The stability characteristics of the
system can be judged by the eigenvalues.

In the expression of the present solution, the eigenfrequency is a complex value, the
real part of the eigenfrequency represents the damping of the system, and the imaginary
part of the eigenfrequency represents the frequency of the system. If the real part Re(ω) = 0
and the imaginary part Im(ω) > 0, the system is stable. If the real part Re(ω) < 0 and
the imaginary part Im(ω) = 0, the system loses its stability by divergence. If the real part
Re(ω) < 0 and the imaginary part Im(ω) > 0, the flutter instability occurs.

4. Numerical Results and Discussion

In this section, the length scale parameters of functionally graded materials were
selected as l = l0 = l1 = l2 = 17.6 µm [36], the ratio of the inner and outer diameters
was d/D = 0.8, the ratio of the length to the outer diameter was L/D = 20, the den-
sity of the fluid in the microtube was ρ f = 1000 kg/m3, the magnetic permeability was
σ = 4π × 10−7 H/m, and the dimensionless microscale parameter was δ = D/l. We will
investigate the effects of the dimensionless microscale parameters, temperature differences,
and magnetic field intensity on the dynamic behaviors of the microtube.

4.1. Validation of Model

To verify the correctness of the calculation results, the material length scale parameters
were ignored, and the calculated results from this work and the literature [37] are plotted
in Figure 2 for the same parameter values. The results of both calculations were in good
agreement, which proved the correctness of the results from this work.
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4.2. Influence of Parameters on Vibration Characteristics of Microtube

In the following study, the dimensionless microscale parameter values of δ = 1 and
3 and the magnetic field intensity values of Hx = 0, 2 × 107, and 4 × 107 A/m were
considered. ∆T is the temperature difference relative to room temperature, and its values
were ∆T = 0, 50, and 100 K. The stability characteristics of the microtube under different
parameters were studied.

First, the magnetic field effects were ignored, and the dimensionless microscale pa-
rameter was set to δ = 1 and 3. The stability of the microtube at various dimensionless
velocities and three different temperature differences for δ = 1 was determined, as shown
in Figure 3.
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Figure 3. Dimensionless eigenfrequency variations with dimensionless flow velocity for various
temperature differences (δ = 1). (a) Real part. (b) Imaginary part.

It can be seen from Figure 3 that with the increase in the dimensionless velocity, the
frequency of the system gradually decreased. When the first-order frequency was zero, the
first-order damping bifurcated, and the system diverged. The corresponding dimensionless
flow velocity is called the critical velocity. The critical velocity of the system at the tempera-
ture differences of 100, 50, and 0 K were 10.683, 11.131, and 11.654, respectively. When the
dimensionless flow velocity was zero, the corresponding first-order natural frequencies
were 36.6088, 34.9673, and 33.2447, and the second-order natural frequencies were 146.8286,
145.2193, and 143.592, respectively.

Figure 4 presents the dimensionless eigenfrequency variations with the dimension-
less flow velocity for three temperature differences when the dimensionless microscale
parameter was δ = 3. When the first-order frequency was zero, the critical velocities of
the divergence of the microtube were 1.166, 3.645, and 5.018, respectively. However, when
the dimensionless flow velocity was 8.792, 9.441, and 10.041, respectively, the first-order
frequency increased from zero again and coupled with the second-order mode, resulting in
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the mode-coupled flutter instability of the microtube. In addition, when the dimensionless
flow velocity was 14.327, 14.733, and 15.122, respectively, the first-order mode diverged
again, and the second-order and third-order modes underwent coupled flutter instability.
When the dimensionless velocity was zero, the first-order natural frequencies were 3.662,
11.441, and 15.761, and the second-order natural frequencies were 55.202, 59.307, and
63.149, respectively.
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It can be seen from Figures 3 and 4 that when with the increase in the temperature
difference, the critical velocity and natural frequency of the microtube decreased, and
the microtube was more prone to instability. When the temperature difference was the
same, the larger the dimensionless microscale parameter was, the smaller the critical
velocity and natural frequency of the microtube became. Moreover, with the increase in
the dimensionless velocity, the divergent instability of the microtube occurred first, and
then the mode-coupled flutter instability occurred. The reason for this change was that the
larger the dimensionless microscale parameter was, the larger the microtube structure size
was, and the weaker the microscale effect of the material became.

Next, the temperature effects were ignored, and dimensionless microscale parameters
of δ = 1 and 3 and magnetic field intensities of Hx = 0, 2× 107, and 4× 107 A/m were
selected. The stability of the microtube under different values of the magnetic field intensity
was analyzed, as shown in Figures 5 and 6.
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Figure 5 shows the dimensionless eigenfrequency variations with the dimensionless
flow velocity under different magnetic fields when the dimensionless microscale parameter
was δ = 1. The microtube frequency gradually decreased as the dimensionless flow velocity
increased. When the first-order frequency decreased to zero, the critical velocity of the
microtube under magnetic field strengths of Hx = 0, 2× 107, and 4× 107 A/m were 11.653,
12.799, and 15.745, respectively. In addition, when the dimensionless flow velocity u = 0,
the first-order natural frequencies were 36.609, 40.209, and 49.462, and the second-order
natural frequencies were 146.827, 150.549, and 161.195, respectively.
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Figure 6 shows the dimensionless eigenfrequency variations with the dimensionless
flow velocity under different magnetic fields when the dimensionless microscale parameter
was δ = 3. The critical velocity of the microtube at magnetic field strengths of Hx = 0,
2× 107, and 4× 107 A/m were 5.017, 7.294, and 11.716, respectively. When the dimension-
less flow velocity increased to 10.039, 11.716, and 14.486, the first-order mode frequency
increased from zero, resulting in mode-coupled flutter with the second-order modal cou-
pling. Moreover, with the increase in the dimensionless flow velocity, the first-order mode
diverged again, the second and third modes were coupled, and flutter instability occurred.
When the dimensionless flow velocity was u = 0, the first-order natural frequencies cor-
responding to magnetic field strengths of Hx = 0, 2× 107, and 4× 107 A/m were 15.761,
22.912, and 36.806, and the second-order natural frequencies were 63.154, 41.369, and
91.719, respectively.

It can be concluded from Figures 5 and 6 that increasing the magnetic field intensity
could significantly improve the critical velocity and stability of the microtube. When the
magnetic field intensity was the same, the larger the dimensionless microscale parameter was,
the smaller the critical velocity was, and the worse the stability of the microtube became.

In the work described above, the stability of functionally graded, simply supported,
fluid-conveying microtubes with a single physical field varied was conducted, but the sta-
bility of the system under multi-field coupling was not considered. Therefore, temperature
differences of ∆T = 0 and 50 K and magnetic field intensities of Hx = 0 and 2× 107 A/m
were selected, and the stability of the microtube in the thermo-magnetic coupled field was
studied. The results are shown in Figures 7 and 8.
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As shown in Figure 7, when ∆T = 0 K and Hx = 0 A/m, the critical velocity of the
microtube was ucr = 11.653. When ∆T = 50 K and Hx = 0 A/m, the critical velocity of
the microtube was ucr = 11.132. When ∆T = 0 K and Hx = 2× 107 A/m, the critical
velocity of the microtube was ucr = 12.799. When ∆T = 50 K and Hx = 2× 107 A/m,
the critical velocity of the microtube was ucr = 12.326. Owing to the opposite effects of
the temperature difference and magnetic field, the critical velocity of the microtube in the
coupled field was between those of the two single physical fields.
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Similar results can be found in Figure 8. When ∆T = 0 K and Hx = 0 A/m, the critical
velocity of the microtube was ucr = 5.017. When ∆T = 50 K and Hx = 0 A/m, the critical
velocity of the microtube was ucr = 3.642. When ∆T = 0 K and Hx = 2× 107 A/m, the
critical velocity of the microtube was ucr = 7.294. When ∆T = 50 K and Hx = 2× 107 A/m,
the critical velocity of the microtube was ucr = 6.426. In addition, due to the increase in the
dimensionless micro-scale parameters, the microscale effect of the material decreased. For
the four cases, when the dimensionless flow velocity increased to 9.44, 10.141, 10.784, and
11.323, respectively, the first- and the second-order modes of the microtube were coupled,
leading to flutter instability. It can be concluded from Figures 7 and 8 that the stability
of the microtube under multiple physical fields depends on the parameter values of each
physical field. The magnetic field can increase the stability of the microtube, while the
temperature field can reduce the stability of the microtube.
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4.3. Influence of Parameters on Critical Velocity of Microtube

Figure 9 shows the variations in the critical velocity of the microtube with the tempera-
ture difference and magnetic field strength. With the increase in the temperature difference,
the critical velocity of the microtube decreased, while the critical velocity of the microtube
increased with the increase in the magnetic field intensity. Furthermore, the smaller the
dimensionless microscale was, the greater the critical velocity and the more stable the
microtubes were. When the dimensionless microscale parameter was δ = 3, the microtube
was prone to divergence at low flow velocities and flutter instability at high flow velocities.
However, when the temperature difference was ∆T = 45 K, the critical velocity of the
divergence was reduced to zero. Therefore, controlling the temperature difference and
increasing the magnetic field intensity can effectively improve the critical velocity and
stability of the microtube.
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5. Conclusions

In this paper, we investigated the stability of functionally graded simply supported
fluid-conveying microtubes under multi-physical fields. The Galerkin method was used to
solve the eigenfrequency of the microtube, and the effects of temperature change and mag-
netic field intensity on the stability of the microtube at different dimensionless microscales
were analyzed. As well, some conclusions were obtained as follows:

Increasing the dimensionless microscale parameter will lead to a decrease in the eigen-
frequency and critical velocity. When the dimensionless microscale parameter was δ = 3,
with the increase in the dimensionless flow velocity, the instability of the microtube changed
from first-order mode divergence to a higher-order mode-coupled flutter instability, which
lowered the stability of the microtube.

Increasing the temperature difference will lead to decreases in the eigenfrequency and
critical velocity, and the greater the temperature difference is, the worse the stability of the
microtube will become. Under the action of a magnetic field, with a higher magnetic field
intensity, the natural frequency and critical velocity of the microtube will increase, and the
microtube will become more stable.

The stability of the microtube can be significantly improved by decreasing the tem-
perature difference and increasing the magnetic field intensity under the action of a ther-
momagnetic coupled field. Therefore, in a high-temperature field, the influence of the
temperature difference on the stability of the system can be effectively reduced by selecting
an appropriate magnetic field intensity to improve the stability of the microtube.
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