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Abstract: Highly porous carbon electrodes for supercapacitors with high energy storage performance
were prepared by using a new precursor blend of aromatic polyimide (PI) and polyvinylidene
fluoride (PVDF). Supercapacitor electrodes were prepared through the electrospinning and thermal
treatment of the precursor blends of aromatic PI and PVDF. Microstructures of the carbonized
PI/PVDF nanofibers were studied using Raman spectroscopy. Nitrogen adsorption/desorption
measurements confirmed their high surface area and porosity, which is critical for supercapacitor
performance. Energy storage performance was investigated and carbonized PI/PVDF showed a high
specific capacitance of 283 F/g at 10 mV/s (37% higher than that of PI) and an energy density of
11.3 Wh/kg at 0.5 A/g (27% higher than that of PI) with high cycling stability.

Keywords: carbon nanofibers; supercapacitors; 6FDA–durene; PVDF; precursor blend; coin cells

1. Introduction

For energy storage devices such as lithium-ion batteries (LiBs) or supercapacitors,
electrode materials are one of the most critical components in determining energy storage
performance. For LiBs, high porosity of the electrode materials provides a large surface
area for Faradaic reaction and short distances for charge diffusion [1]. It is also well-known
that supercapacitors store electrical energy in the interface between an electrolyte and an
electrode, and that the utilization of porous electrode materials can enlarge their interfacial
area [2].

Carbon nanofibers (CNFs) have gained considerable attention as promising electrode
materials due to their superior electrochemical properties, chemical and thermal stability,
and ready synthesis [3–5]. They are obtained in the form of nonwoven mats, allowing
them to be used as an electrode directly without adding any binders or additives. One of
the typical methods for synthesizing CNFs is the thermal treatment of precursor polymer
nanofibers fabricated by electrospinning. Thermal treatment includes stabilization, which
is to treat electrospun nanofibers under air at around 250–400 ◦C, and carbonization, which
is to treat stabilized nanofibers under inert gas at over 800 ◦C. CNFs can be also produced
by catalytic chemical vapor deposition (CVD), with CVD-grown CNFs being known to
have high contents of crystalline carbon, resulting in high electrical conductivity [4,5].

To produce CNFs, polyacrylonitrile (PAN), polybenzimidazole (PBI), aromatic poly-
imides (PIs), and polyvinylidene fluoride (PVDF) have typically been reported as precursor
polymers [6–14]. Their copolymers and polymer blends have been also studied as pre-
cursors in order to improve the electrochemical properties of the resultant CNFs. For
copolymer precursors, vinyl imidazole, itaconic acid, and acrylic acid have been reported
as comonomers of PAN, and CNFs derived from these copolymers show higher electro-
chemical performance compared to those from PAN only [15–17]. It is also known that
using polymer blends as carbon precursors is effective in producing porous CNFs with
excellent energy storage performance. These polymer blends generally consist of precursor
polymers and sacrificial polymers such as polymethyl methacrylate (PMMA), polylactic
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acid (PLA), or polyvinylpyrrolidone (PVP) [18–21]. Sacrificial polymers show lower ther-
mal stability and can be decomposed during stabilization, resulting in a large surface area
and high porosity of the resultant CNFs. Li et al. produced porous carbon electrodes
for LiBs using PAN/PLA blends, showing a large surface area and good electrochemical
performance [19]. In addition to using sacrificial components to prepare polymer blends,
two polymers that can both act as carbon precursors are blended to produce CNF elec-
trodes. For example, aromatic PI/PBI blends were reported as effective CNF precursors
that exhibit excellent surface properties and energy storage performance [22,23].

Due to the energy storage mechanism, the surface area and porosity of electrode
materials are some of the most critical factors in improving the number of active sites.
Among precursor polymers, hexafluoroisopropylidene diphthalic anhydride (6FDA)-based
PIs have a high free volume due to the presence of bulky trifluoromethyl (CF3–) groups,
which can facilitate polymer chain rearrangement during stabilization [24]. Moreover,
highly porous carbon can be fabricated through the thermal treatment of 6FDA-based
PIs since the decomposition of CF3– groups can generate a large number of pores. It was
reported that CNFs derived from 6FDA-based PIs exhibit a large surface area and high
porosity compared to those derived from PAN or PBI with sacrificial polymers [10,11].

PVDF has been investigated for use in the field of energy storage and harvesting,
such as in solid electrolytes and separators [25–29]. It has been also studied as a blend
component since it can provide a blend matrix with mechanical and dimensional stability.
PI/PVDF blends were reported as proton exchange membranes for fuel cell, separators for
LiBs, and gas separation membranes [30–32]. It was also reported that aromatic PI can act as
a nucleating agent for PVDF crystallization, which can make them compatible blends [33].
Moreover, PVDF is one of the carbon precursor polymers; however, the carbonization of
PVDF requires a catalyst or additional chemical treatment [12–14].

In this study, the strategy for producing highly porous CNF electrodes with high
energy storage performance is to use 6FDA-based PI/PVDF blends. 6FDA-based PI can
improve the thermal stability of PVDF, eliminating the need for additional compounds
or treatment, while the decomposition of PVDF that is less thermally stable than PI can
create additional pores on the surface of the resultant CNFs. CNFs were successfully
produced through the electrospinning and thermal treatment of PI/PVDF blends. Nitrogen
adsorption/desorption behavior was investigated to study the surface area and porosity
of CNFs. To measure supercapacitor performance, coin cells were assembled with CNF
electrodes derived from PI and PI/PVDF as symmetrical electrodes with an aqueous
electrolyte. Optimization of the blend ratio of PI and PVDF was conducted by measuring
the electrochemical properties of CNFs derived from PI/PVDF with different blend ratios.

2. Materials and Methods

To synthesize PI, 4,4-(hexafluoroisopropylidene) diphthalic anhydride (>99%, 6FDA),
2,3,5,6-tetramethyl-1,3-phenyldiamine (99%, durene-diamine), anhydrous dimethyl ac-
etamide (99.8%), triethylamine (99%), and ethylene diamine were purchased from Tokyo
Chemical Industry Co., Tokyo, Japan, and acetic anhydride was purchased from Sigma-
Aldrich, St. Louis, MO, USA. 1-Methyl-2-pyrrolidinone (99%, NMP) obtained from Tokyo
Chemical Industry Co. was used as a co-solvent for 6FDA–durene and PVDF (Sigma-
Aldrich, MW = 180,000). To evaluate the electrochemical properties, coin cells were as-
sembled using CR2032 coin blanks (MTI Corporation, Richmond, CA, USA) with glass
microfiber filters (separator, GE Healthcare Life, Marlborough, MA, USA) as a separator
and potassium hydroxide (Sigma-Aldrich, 99.99%) as an electrolyte.

6FDA–durene was synthesized according to the literature procedures [34]. The molec-
ular weight of the synthesized 6FDA–durene was 75,000 g/mol, determined using a gel
permeation chromatography (GPC) system equipped with Alliance e2695 (Waters Corpora-
tion, Milford, MA, USA) and tetrahydrofuran (THF) as a solvent. 6FDA–durene/PVDF
(90:10) dissolved in NMP was chosen as a precursor blend based on the preliminary study
for optimizing a blend ratio of PI and PVDF. The 16 wt% 6FDA–durene/PVDF dissolved
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in NMP was electrospun, and 6FDA–durene nanofibers were also prepared for comparison
using an electrospinning/spray system (ESR100, eS-robot®, NanoNC, Seoul, Korea). There
was a significant difference between the molecular weight of the synthesized PI (75,000)
and the purchased PVDF (180,000). Thus, to have appropriate electrospinnability and
comparable fiber diameters, the concentration of PI/PVDF and PI solutions were set as
16% and 20%, respectively. The applied voltage was controlled in the range of 9 to 15 kV
depending on environmental conditions such as relative humidity in the electrospinning
chamber. Electrospun nanofibers were stabilized at 350 ◦C in a box furnace (FX-05, Daihan
Scientific Co., Wonju, Korea) for 2 h under air, and carbonized at 800 ◦C in a tube furnace
(FT-860.3, Daihan Scientific) for 30 min under nitrogen.

Chemical structures of the electrospun nanofibers were investigated by attenuated
total reflectance Fourier transform infrared (ATR-FTIR, 4100, Jasco, Easton, MD, USA).
Thermal stability was measured using thermogravimetric analysis (TGA, DTA-60, DSC-
60, Shimadzu, Tokyo, Japan) by heating up to 800 ◦C at a heating rate of 10 ◦C min−1.
The surface morphology of the electrospun and carbonized PI/PVDF nanofibers was
observed using scanning electron microscopy (SEM) with an SU8220 (Hitachi, Tokyo,
Japan) after sputter coating with gold. Raman spectroscopy was recorded to study the
carbon microstructures of carbonized PI/PVDF using an inVia reflex (Renishaw, UK) with
a 780 nm laser. Surface area and porosity of CNFs were obtained using nitrogen adsorp-
tion/desorption measurement on an Autosorb-iQ and a Quadrasorb SI (Quantachrome,
Boynton Beach, FL, USA). Specific surface area was calculated from nitrogen adsorption
isotherms using the Brunauer–Emmett–Teller (BET) equation, and pore size distribution
was calculated using density functional theory (DFT) methods.

Supercapacitor performance was investigated through cyclic voltammetry (CV),
cycling performance, and galvanostatic charge–discharge using a WBCS3000S (Wonatech,
Seoul, Korea). They were measured by assembling symmetric coin cells using two iden-
tical CNF electrodes without the use of binders or additives. Glass fiber membrane and
6.0 M potassium hydroxide (KOH) were introduced as a separator and an electrolyte,
respectively. The specific capacitance (Csp, F/g) was measured from CV measurements
using Equation (1) as follows:

Csp =
4
m

I
ν

(1)

where m is the mass of both electrodes (g), I the discharge current (A), and ν the scan rate
(V/s). Capacitance retention after 5000 cycles under the voltage range of −0.5 to 0.5 V and
a scan rate of 100 mV/s was measured to confirm the cycling stability.

From a galvanostatic charge–discharge test under a voltage range of 1.0 to 0 V and a
discharge current density range of 0.5 to 5 A/g, energy density (E, Wh kg−1) and power
density (P, W kg−1) were calculated using Equations (2) and (3), respectively, as follows:

E =
IdtdV
2m

(2)

P =
E
td

(3)

where Id is the discharge current (A), td the discharge time (s), and V the voltage window
(V). Electrochemical impedance spectra (EIS) were measured over the frequency range
from 100 kHz to 0.1 Hz using a 0.01 V amplitude on a PEC-L01 (Peccek, Japan).

3. Results and Discussion
3.1. Characterization of CNFs Derived from 6FDA–Durene/PVDF

FTIR analysis of the synthesized and electrospun 6FDA–durene were carried out, as
shown in Figure 1. Successful imidization is confirmed by distinctive bands at 1723, 1786,
and 1354 cm−1 for the C=O symmetric stretch, C=O asymmetric stretch, and C–N stretch
of imide, respectively. A peak for the C–F stretch is also found at 1207 cm−1. The chemical



Polymers 2021, 13, 720 4 of 13

structure of the electrospun PVDF nanofibers was also observed, and an adsorption peak
at 1178 cm−1 assigned to the symmetrical stretching of –CF2 groups is shown [35].
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Figure 1. FTIR (Fourier transform infrared) spectra of PI (aromatic polyimide), PVDF (polyvinylidene
fluoride), and PI/PVDF.

Synthesized 6FDA–durene and PVDF (90:10) were blended and then electrospun to
produce precursor blend nanofibers. Figure 1 also shows that peaks indicating 6FDA–
durene are clearly seen while those for PVDF do not appear in the FTIR spectra of the
PI/PVDF blend, which may result from a low content of PVDF (10%).

Figure 2 shows the thermal stability of electrospun PI and PI/PVDF nanofibers. PI
nanofibers show thermal stability up to 550 ◦C, at which the carbonyl groups in the imide
start to break [36]. It is also shown that a residue of 46% of the sample weight remains
at 800 ◦C. For PI/PVDF blend nanofibers, a slight weight loss occurs at 390 ◦C, which is
higher than the degradation temperature of PVDF (350 ◦C) [37,38]. It was reported that
carbonization of PVDF only required a catalyst or additional chemical treatment [12–14].
Blending with thermally stable polymers such as 6FDA-based PIs can enable PVDF to
withstand high temperatures and to convert to carbon without additional compounds or
treatment. Nevertheless, PVDF is less thermally stable than PI and it can be decomposed
during thermal treatments (i.e., stabilization and carbonization), resulting in the creation of
pores on the CNF surfaces.
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Figure 2. Thermogravimetric analysis of PI and PI/PVDF.

The nanofibrous morphology of electrospun and carbonized PI and PI/PVDF was
observed via SEM, as shown in Figure 3. Figure 3a shows that the electrospinning of
6FDA–durene successfully forms nanofibers with fiber diameters of 770 ± 20 nm. After
carbonization, a decrease in fiber diameters to 740 ± 30 nm is found, as shown in Figure 3b.
In Figure 3c,d, it is observed that fiber diameters are increased by adding 10% PVDF to
PI, resulting in fiber diameters of 825 ± 50 nm for electrospun PI/PVDF and 770 ± 10 nm
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for carbonized PI/PVDF. It can also be seen that nanofibrous structures of both PI and
PI/PVDF are well preserved after the thermal treatment of stabilization at 350 ◦C and
carbonization at 800 ◦C due to their high thermal stability.
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Figure 3. Surface morphology of (a) as-spun PI, (b) carbonized PI, (c) as-spun PI/PVDF, and (d) car-
bonized PI/PVDF nanofibers.

Electrospun PI and PI/PVDF were stabilized and carbonized to produce CNFs, and
their carbon microstructures were observed by Raman spectroscopy, as shown in Figure 4.
Both carbonized PI and PI/PVDF nanofibers show two significant peaks around 1340 cm−1

(D-band) and 1590 cm−1 (G-band). It is known that D-band and G-band represent the
presence of disordered carbon and oriented graphitic carbon, respectively [39]. The relative
intensity ratio of the D-band to the G-band (ID/IG) was also measured, and PI/PVDF-
derived CNFs show a lower ID/IG ratio of 1.7 than that of PI-derived CNFs (1.9), which
means that more ordered carbon is formed in PI/PVDF-derived CNFs.

6FDA-based PIs are considered as an outstanding candidate for CNF precursors due to
their high free volume caused by the presence of bulky trifluoromethyl (CF3–) groups [40].
During oxidative stabilization, polymer chains are rearranged to convert to cyclic and
ladder-like structure and high free volume can enhance their mobility [41]. The addition
of PVDF can facilitate polymer chain rearrangement in PIs, resulting in lower ID/IG ratio.
Abeykoon et al. reported the fabrication of CNFs using PBI/PI blends, and CNFs-derived
PBI/PI blends contained more ordered carbon than those from PBI only [23].
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Figure 4. Raman spectra of CNFs (carbon nanofibers) derived from PI and PI/PVDF.

3.2. Surface Properties of CNFs Derived from 6FDA–Durene/PVDF

CNFs were characterized by nitrogen adsorption/desorption analyses as shown in
Figure 5a for carbonized PI and PI/PVDF nanofibers. Carbonized PI/PVDF adsorbs
700 cm3/g of nitrogen at 0.99 of the relative pressure, which is a 55% increase over car-
bonized PI. It can also be seen that CNFs derived from PI/PVDF present a high SSA of
1559 cm2/g, which is significantly higher than those from PI only (1210 cm2/g), as shown
in Table 1.
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Table 1. Surface properties of CNFs derived from (a) PI and (b) PI/PVDF.

SSA 1 (m2/g) TPV 2 (cm3/g) Vmicro
3 (m3/g) Vmeso

4 (m3/g)

PI 1210 0.580 0.496 0.084
PI/PVDF 1559 0.684 0.565 0.119

1 SSA: specific surface area. 2 TPV: total pore volume. 3 Vmicro: micro-pore (<2 nm) volume. 4 Vmeso: meso-pore
(2–50 nm) volume.

Figure 5b shows the DFT-calculated distribution of pore volumes in CNFs, which are
summarized in Table 1. It can be seen that the presence of 10% PVDF causes an 18% increase
in TPV, with a 14% increase in micro-pore volume and a 42% increase in meso-pore volume.
Due to the lower thermal stability of PVDF compared to PI, PVDF seems to be decomposed
during thermal treatments, which can create pores on the resultant CNF surface.

Among energy storage devices, supercapacitors store energy at relatively high rates
compared to batteries due to their simple energy storage mechanism of ion adsorp-
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tion/desorption at the electrode/electrolyte interface [42]. Thus, many researchers have
mainly focused on the enhancement of the surface area and porosity of electrode materials
to obtain expanded ion accumulation. One of the most common approaches is to use pore-
generating agents which exhibit low thermal stability. It was reported that porous CNFs
were successfully prepared by using PMMA as a pore-generating agent and that adding 5%
PMMA to PAN led to 11.1% and 30.8% increases in SSA and TPV, respectively [18]. PLA
was also used as a pore-generating agent due to its low thermal stability, and CNFs derived
from PBI/PLA exhibited 29.2% and 34.3% larger SSA and TPV, respectively, compared to
those from PBI only [20].

6FDA-based PIs are considered to be excellent precursor polymers for highly porous
carbon [10,11,40]. During thermal treatment, the decomposition of bulky fluorinated
substituents in the 6FDA unit can generate pores, resulting in a high surface area and
high porosity in the resultant CNFs. It was reported that the surface properties of CNFs
derived from 6FDA–durene were further improved by surface treatment of the precursor
nanofibers prior to carbonization, leading to a 12.8% increase in SSA and a 10.3 % increase
in TPV [43].

3.3. Electrochemical Performance of CNFs Derived from 6FDA–Durene/PVDF

Coin cells were assembled with free standing carbonized PI and PI/PVDF nanofibers
without using additives or binders, and the supercapacitor performances of the CNF
electrodes were studied using CV and galvanostatic charge–discharge testing. To optimize
the blend ratio, CNFs derived from PI/PVDF with different ratios of 95:5, 90:10 and 85:15
were prepared, and their electrochemical properties were measured.

Figure 6a shows the CVs of CNFs derived from PI/PVDF with different blending
ratios conducted under a scan rate of 10 mV/s. It is clearly seen that all four CNF electrodes
show typical rectangular shapes for electrical double layer capacitors under a potential
range of –0.5 to 0.5 V, and that CNFs derived from PI/PVDF exhibit high capacitances
compared to those from PI only (206 F/g). Moreover, it can be found that CNFs derived
from PI/PVDF (90:10) show the highest capacitance of 283 F/g.

Recently, several 6FDA-based PIs have been reported as precursor polymers of CNF
electrodes, showing excellent energy storage performance. Porous CNF electrodes prepared
by using 6FDA–durene only without the use of any sacrificial compounds showed a specific
capacitance of 139 F/g at 10 mV/s with an ionic liquid electrolyte, which is higher than
those from PAN or PBI with the pore-generating materials [10]. Introducing PVDF can
further improve energy storage performance by enlarging the surface area and increasing
porosity, which are apparently higher than in PAN or PBI-based CNFs. It was also reported
that CNFs derived from crosslinked 6FDA–durene exhibited a high specific capacitance of
301 F/g compared to that of non-treated ones (205 F/g) with KOH [43]. CNFs derived from
6FDA-2-2′-bis(trifluoromethyl) benzidine (TFMB) were also reported, and steam-activated
CNFs showed a specific capacitance of 292 F/g at 10 mV/s with KOH [11]. It seems that
the addition of PVDF has a comparable effect on improving surface porosity and energy
storage performance with pre- (surface crosslinking of PI nanofibers before carbonization)
or post-treatment (steam activation of carbonized PI nanofibers).

Figure 6b,c show the CVs of CNFs derived from PI and PVDF/PI (90:10) with different
scan rates, respectively. At high scan rates, the interaction between the electrolyte ions and
the electrode surfaces and pores is limited, resulting in low specific capacitances [44]. Itt
is shown that PI/PVDF-derived CNF electrodes exhibit significantly higher capacitances
than PI-derived ones for all scan rates, as shown in Figure 6d.
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One of the great advantages of supercapacitors is their long cycle life, since they
store charges physically in the electrochemical double layers formed at the electrode
surface without irreversible redox reactions [45]. In Figure 7, the cycling stability of CNFs
derived from PI and PI/PVDF was evaluated by measuring the specific capacitance at
100 mV/s for every 100 cycles, and both exhibit a high capacitance retention of 92% after
5000 cycles. A high degree of reversibility demonstrates the stable cyclic performance of
these CNF electrodes.
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Galvanostatic charge–discharge was conducted to study energy storage performance
of CNF electrodes. Optimization of a blend ratio of PI and PVDF was also done with a
charge–discharge test under a current density of 0.5 A/g and a potential range of 1.0–0 V, as
shown in Figure 8a. Among CNFs, CNFs derived from PI/PVDF (90:10) show the longest
discharge time, resulting in the highest energy density of 11.3 Wh/kg, which is consistent
with the CV results in Figure 6a.
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Figure 8b,c show the discharge curves of CNFs derived from PI and PI/PVDF,
respectively, over a current density range of 0.5–5 A/g. It is apparent that CNFs de-
rived from PI/PVDF have higher energy densities due to the longer discharge times than
those from PI only (8.9 Wh/kg at 0.5 A/g).

Polymer blends have been studied to produce highly porous CNF electrodes with
good energy storage performance. Previously, PBI/PI blends were chosen as precursors
for supercapacitor electrodes since both PBI and PI were well-known carbon precursor
polymers. It was reported that PBI/Matrimid® blends were good precursor candidates
for CNF electrodes, showing superior surface and electrochemical properties [22]. During
thermal treatment, Matrimid® was partially damaged, while its blends with PBI were
successfully converted to carbon. The addition of PBI improved the thermal stability
of the blend matrix through hydrogen bonding between PBI and PI. Matrimid®, which
is thermally unstable compared to PBI, and was partially decomposed during thermal
treatment, which resulted in the creation of pores in the CNF surface and thus improving
the surface area and porosity. As a result, the addition of 25% Matrimid® led to 48% and
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54% increases in specific capacitance and energy density, respectively. 6FDA-based PI
was also used to prepare PBI/PI blends for CNF precursors [23]. It was found that CNFs
derived from PBI/PI (70:30) blends exhibited 88% and 76% larger specific capacitance and
energy density, respectively, than those from PBI only.

Recently, biopolymers such as cellulose acetate or lignin have gained attention as
carbon precursors since they are widely available and are low-cost renewable sources.
Blends of PAN and these biopolymers were studied as CNF precursors for high thermal
stability and processability [46,47]. The resultant CNFs derived from PAN/cellulose acetate
and PAN/lignin showed improved energy storage performance compared to those from
PAN only due to their higher surface area and porosity.

The electrochemical impedance of the CNF electrodes was measured as shown in
Figure 9. The intercept of the semi-circle with the real axis represents the sum of the
resistance of the electrolyte, the intrinsic resistance of the electrode material, and the
interfacial resistance between the electrode and the current collectors [48,49]. Therefore,
the size of the semi-circle at high frequency is determined by the resistance of the electrode
materials [50]. The charge–transfer resistance (Rct) of the CNFs derived from PI/PVDF,
half of the value of the real semicircle in the high-frequency region, is 3.25 Ω/cm, which is
lower than those from PI (6.40 Ω/cm). Highly porous CNF electrodes enable fast electrolyte
ion accumulation and diffusion onto the electrode surface, resulting in low resistance and
superior energy storage performance.

Polymers 2021, 13, 720 10 of 13 
 

 

The electrochemical impedance of the CNF electrodes was measured as shown in Figure 9. 
The intercept of the semi-circle with the real axis represents the sum of the resistance of the elec-
trolyte, the intrinsic resistance of the electrode material, and the interfacial resistance between the 
electrode and the current collectors [48,49]. Therefore, the size of the semi-circle at high frequency 
is determined by the resistance of the electrode materials [50]. The charge–transfer resistance (Rct) 
of the CNFs derived from PI/PVDF, half of the value of the real semicircle in the high-frequency 
region, is 3.25 Ω/cm, which is lower than those from PI (6.40 Ω/cm). Highly porous CNF elec-
trodes enable fast electrolyte ion accumulation and diffusion onto the electrode surface, resulting 
in low resistance and superior energy storage performance.  

 
Figure 9. EIS (electrochemical impedance spectra) of CNF electrodes derived from PI and PI/PVDF. 

The large surface area of the electrode materials leads to short distances for charge diffusion, 
low resistance, and good cyclic stability in supercapacitors [42]. It can be confirmed that successful 
preparation of highly porous CNF electrodes using PI/PVDF as precursor blends results in supe-
rior energy storage performance such as high specific capacitances, energy densities, and electric 
conductivity. In addition to the surface properties of electrode materials, it is known that super-
capacitor performance is governed by the type of electrolyte used, which determines the voltage 
window. Energy density is proportional to the square of the operating voltage, and thus using 
ionic liquid electrolyte with a high working voltage can improve energy densities [51]. It was 
found that CNFs derived from 6FDA–durene exhibited a high energy density of 63.4 Wh/kg (at 1 
A/g) with an ionic liquid electrolyte [10]. Thus, it seems worthwhile to investigate the supercapac-
itor performance of porous CNF electrodes derived from PI/PVDF with an ionic liquid to obtain 
further improved performance. 

Another approach to improving energy storage performance is to introduce pseudocapaci-
tance, which involves reversible faradaic reactions. For pseudocapacitors, metal oxides or conduc-
tive polymers have been investigated as electrode materials. Moreover, metal oxide/carbon com-
posite electrodes are widely studied [52–55]. It seems possible that these porous CNF electrodes 
derived from PI/PVDF can act as an excellent carbon matrix for composite electrodes. More study 
will be conducted to see their potential as electrode materials for other energy storage devices. 

4. Conclusions 
Highly porous CNFs were fabricated through the electrospinning and thermal treatment of 

precursor blends of 6FDA-based PI and PVDF. Thermally stable PI enabled successful conversion 
to carbon, while PVDF played a role in the creation of pores on CNF surfaces due to its relatively 
lower thermal stability. Nitrogen adsorption/desorptiinon data confirmed that the addition of 
PVDF to PI successfully developed a larger pore volume and a wider pore size distribution on the 
CNF surface. According to CV and galvanostatic charge–discharge testing, the best composition of 
PI/PVDF (90:10) was selected as a CNF precursor. CNFs derived from PI/PVDF showed a high 
specific capacitance of 283 F/g at 10 mV/s (37% higher than those from PI) and an energy density of 
11.3 Wh/kg at 0.5 A/g (27% higher than those from PI) with high cycling stability, confirming the 
successful fabrication of highly porous CNF electrodes using a new precursor blend of PI and 
PVDF. Further improvement of supercapacitor performance was expected by fabricating compo-

Figure 9. EIS (electrochemical impedance spectra) of CNF electrodes derived from PI and PI/PVDF.

The large surface area of the electrode materials leads to short distances for charge dif-
fusion, low resistance, and good cyclic stability in supercapacitors [42]. It can be confirmed
that successful preparation of highly porous CNF electrodes using PI/PVDF as precursor
blends results in superior energy storage performance such as high specific capacitances,
energy densities, and electric conductivity. In addition to the surface properties of elec-
trode materials, it is known that supercapacitor performance is governed by the type of
electrolyte used, which determines the voltage window. Energy density is proportional
to the square of the operating voltage, and thus using ionic liquid electrolyte with a high
working voltage can improve energy densities [51]. It was found that CNFs derived from
6FDA–durene exhibited a high energy density of 63.4 Wh/kg (at 1 A/g) with an ionic liquid
electrolyte [10]. Thus, it seems worthwhile to investigate the supercapacitor performance
of porous CNF electrodes derived from PI/PVDF with an ionic liquid to obtain further
improved performance.

Another approach to improving energy storage performance is to introduce pseudoca-
pacitance, which involves reversible faradaic reactions. For pseudocapacitors, metal oxides
or conductive polymers have been investigated as electrode materials. Moreover, metal
oxide/carbon composite electrodes are widely studied [52–55]. It seems possible that these
porous CNF electrodes derived from PI/PVDF can act as an excellent carbon matrix for
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composite electrodes. More study will be conducted to see their potential as electrode
materials for other energy storage devices.

4. Conclusions

Highly porous CNFs were fabricated through the electrospinning and thermal treat-
ment of precursor blends of 6FDA-based PI and PVDF. Thermally stable PI enabled suc-
cessful conversion to carbon, while PVDF played a role in the creation of pores on CNF
surfaces due to its relatively lower thermal stability. Nitrogen adsorption/desorptiinon
data confirmed that the addition of PVDF to PI successfully developed a larger pore volume
and a wider pore size distribution on the CNF surface. According to CV and galvanostatic
charge–discharge testing, the best composition of PI/PVDF (90:10) was selected as a CNF
precursor. CNFs derived from PI/PVDF showed a high specific capacitance of 283 F/g at
10 mV/s (37% higher than those from PI) and an energy density of 11.3 Wh/kg at 0.5 A/g
(27% higher than those from PI) with high cycling stability, confirming the successful
fabrication of highly porous CNF electrodes using a new precursor blend of PI and PVDF.
Further improvement of supercapacitor performance was expected by fabricating compos-
ite electrodes with these porous CNF electrodes as a carbon matrix and using conductive
polymers or metal oxides for pseudocapacitance.
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