
Acetate-induced apoptosis in colorectal carcinoma
cells involves lysosomal membrane permeabilization
and cathepsin D release
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Colorectal carcinoma (CRC) is one of the most common causes of cancer-related mortality. Short-chain fatty acids secreted by
dietary propionibacteria from the intestine, such as acetate, induce apoptosis in CRC cells and may therefore be relevant in CRC
prevention and therapy. We previously reported that acetic acid-induced apoptosis in Saccharomyces cerevisiae cells involves
partial vacuole permeabilization and release of Pep4p, the yeast cathepsin D (CatD), which has a protective role in this process.
In cancer cells, lysosomes have emerged as key players in apoptosis through selective lysosomal membrane permeabilization
(LMP) and release of cathepsins. However, the role of CatD in CRC survival is controversial and has not been assessed in
response to acetate. We aimed to ascertain whether LMP and CatD are involved in acetate-induced apoptosis in CRC cells. We
showed that acetate per se inhibits proliferation and induces apoptosis. More importantly, we uncovered that acetate triggers
LMP and CatD release to the cytosol. Pepstatin A (a CatD inhibitor) but not E64d (a cathepsin B and L inhibitor) increased acetate-
induced apoptosis of CRC cells, suggesting that CatD has a protective role in this process. Our data indicate that acetate induces
LMP and subsequent release of CatD in CRC cells undergoing apoptosis, and suggest exploiting novel strategies using acetate
as a prevention/therapeutic agent in CRC, through simultaneous treatment with CatD inhibitors.
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Colorectal carcinoma (CRC) is a leading cause of cancer
death worldwide (GLOBOCAN 2008), and thus finding new
prevention and therapeutic approaches is of prime impor-
tance. Propionibacteria, found in fiber-rich food and dairy
products, produce short-chain fatty acids (SCFA), mainly
propionate and acetate, which induce apoptosis in CRC cells.
Their potential in cancer prevention and therapy has thus
been proposed by several authors1–6 and understanding the
mechanisms underlying acetate-induced cell death should
provide new prevention/therapeutic strategies in CRC.

The lysosomal pathway of apoptosis involves partial
lysosomal membrane permeabilization (LMP), with subse-
quent release of proteases (such as cathepsins) into the
cytosol.7,8 However, the role of this pathway in cancer is
controversial. Transformation can lead to several lysosomal
changes, such as increased lysosomal volume, secretion of
proteases and total protease activity,9 and changes in the
subcellular localization of cathepsins B, D and L (CatB, CatD
and CatL, respectively).10 Such alterations become pro-
oncogenic when enhanced secretion of cathepsins initiates
proteolytic pathways that increase neoplastic progression.11

Increased cysteine cathepsin activity is important for
tumor angiogenesis, proliferation, growth and invasion.12

Cathepsins are often overexpressed in human cancers, and
high expression levels have been associated with increased
risk of relapse and poor prognosis.13 In contrast to their tumor-
promoting effects, there is also evidence that they function as
tumor suppressors.14 This opposing role depends on the
context: if cathepsins are released intracellularly they con-
tribute to cancer cell death, but if released extracellularly they
break down the extracellular matrix, stimulating angiogenesis
and migration.10

CatD is a lysosomal aspartyl protease involved in autop-
hagy and apoptosis, thus having a crucial role in cell fate and
tissue homeostasis.15 CatD has emerged as a central player
in the apoptotic response, although its role is cell-type and
context-dependent. Expression patterns of CatD protein are
divergent in CRC, suggesting a complex regulation and
function of this protease,16,17 though its precise role remains
poorly understood.

We previously showed that the vacuolar protease Pep4p,
the Saccharomyces cerevisiae CatD, translocates to the
cytosol during acetic acid-induced apoptosis, suggesting that
the release of a vacuolar protease during regulated cell death
is also conserved in yeast.18 We additionally showed that
Pep4p has a role in cell protection rather than in the execution
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of acetic acid-induced cell death. These results raised the
possibility that partial LMP and consequent CatD release was
involved in the response of CRC cells to acetate. Here, we show
that CatD is released from lysosomes and might protect CRC
cells from acetate-induced apoptosis. Our data therefore
establish the lysosome and CatD as novel targets of acetate in
CRC cells and indicate that CatD activity has important
repercussions in the sensitivity of CRC to acetate produced in
the intestine that might have prevention/therapeutic implications.

Results

Acetate induces apoptosis and inhibits cell proliferation
in CRC cell lines. CRC-derived cell lines HCT-15 and RKO
were treated with different concentrations of acetate for 24
and 48 h and cell viability assessed with the 3-[4,5-
dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT)
reduction test. After 24 h, there was no statistically significant
decrease in viability of acetate-treated cells in either cell line,
in comparison with untreated cells (not shown). The half-
maximal inhibitory concentration (IC50) of acetate was
therefore calculated from the mean values of MTT reduction
after 48 h of treatment: 70 mM and 110 mM for HCT-15 and
RKO cells, respectively (Figure 1a). IC50, 2� IC50 and an
intermediate concentration of acetate were used in subse-
quent studies.

The decrease in cell viability determined by MTT assay
might be due to decreased cell proliferation, increased cell
death or both. We therefore assessed cell proliferation after
exposure to acetate using sulforhodamine B (SRB) and
bromodeoxyuridine (BrdU) assays and apoptosis using
Annexin V/propidium iodide (AV/PI), caspase activity and
terminal deoxynucleotidyl transferase-mediated dUTP-fluor-
escein nick end labeling (TUNEL) assays, as well as sub-G1
population analysis by flow cytometry. The IC50 of acetate
reduced cell proliferation by approximately 30% and 65% in
HCT-15 and RKO cells, respectively, as determined by SRB
assay (Figure 1b). In HCT-15 cells, IC50 and 2� IC50 of
acetate reduced proliferation by approximately 17% and 75%,
respectively, as determined by BrdU assay (Figures 1c and d).

We next analyzed cell death through AV/PI staining and
found that acetate induced exposure of phosphatidylserine to
the outer leaflet of the plasma membrane in HCT-15 cells in a
dose-dependent manner (Figure 2a). The number of cells
stained with AV (AVþPI� plus AVþPIþ ) increased from
3.9% in the untreated control to 8.0, 18.2 and 47.9% after
exposure to 70, 100 and 140 mM acetate, respectively, and to
49.1% when cells were exposed to etoposide for 48 h
(Figure 2b). Levels of necrotic cells (AV�PIþ ) after
exposure to 70 or 100 mM acetate were very low. A higher
dose of acetate (140 mM) increased the number of necrotic
cells (B4% AV� /PIþ ), similarly to etoposide, although the
majority of the population (B48%) was in early and late
apoptosis (AVþPI� plus AVþPIþ ) (Figure 2b). These
results led us to conclude that acetate induces apoptosis
rather than necrosis. Accordingly, caspase 3 was also
activated in HCT-15 cells, as cleavage of the fluorogenic
caspase 3 substrate z-DEVD-AMC, expressed in arbitrary
fluorescence units/min/mg protein, increased from 3.6 in
HCT-15 control cells (untreated) to 24.4 after exposure to

140 mM acetate (Figure 2c). Similar results were obtained
when activation of total caspases was assessed by labeling
with the fluorescent pan-caspase inhibitor FICT-VAD-fmk (not
shown). We also assessed the levels of DNA strand breaks in
both the cell lines by TUNEL assay. In comparison to the
negative control, there were no significant differences in the
number of HCT-15 apoptotic cells after 48 h of treatment with
70 mM acetate (IC50) (0.5% versus 1.6%; Figure 3a), though
phenotypic alterations typical of apoptosis (such as apoptotic
bodies) were observed (Figure 3b). However, the number of
apoptotic cells increased significantly (7.2%) after 48 h of
treatment with 140 mM acetate (2� IC50) (Figure 3a). Expo-
sure to 110 mM acetate (IC50) induced a minor increase in the
number of apoptotic RKO cells, compared with low basal
apoptotic levels (1.6% versus 0.3%; Figure 3a), but again with
evident phenotypic alterations (Figure 3b). When treated with
220 mM acetate (2� IC50), the number of apoptotic RKO cells
increased significantly (65.5%; Figure 3a). Acetate also led to
a dose-dependent increase in the sub-G1 peak of HCT-15
cells, indicative of an apoptotic sub-population, and similar to
that of cells treated with etoposide (Figure 5b). Two peaks
corresponding to the G1 and G2/M phases of the cell cycle
were evident in DNA content histograms of HCT-15 control
(untreated) cells, with very few cells in the hypodiploid sub-G1
cell-cycle phase (2% of the total events acquired). Exposure
to etoposide or 140 mM acetate greatly increased the
percentage of hypodiploid cells to approximately 70% and
35%, respectively (Figure 5b).

It has been reported that the pH influences the cell death
pathway induced by SCFA produced by propionibacteria, that
is, SCFA trigger apoptosis at pH 7.5 in HT-29 cells but
necrosis at pH 5.5.1 In our study, the pH of the culture medium
after 48 h of incubation with acetate was closer to 7.5 than to
5.5 in both HCT-15 and RKO cell lines and was similar to that
of the control culture (Table 1). In RKO cells, the pH of the
control culture medium (pH¼ 8.00) was higher than that of
HCT-15 cells (pH¼ 7.45), probably due to the different
composition of the growth medium (DMEM (Dulbecco’s
Modified Eagle’s Medium) for RKO cells and RPMI for
HCT-15 cells) and to the different growth rates of these cell
lines. Taken together, our results show that, under our
experimental conditions, acetate induced apoptosis.

Acetate induces lysosomal permeabilization and cathe-
psin D release to the cytosol. We next investigated
whether the lysosomal pathway was involved in acetate-
induced apoptosis in CRC cells. We measured LMP both by
staining with the lysosomotropic agent Acridine Orange (AO)
and by immunoblot detection of CatD in cytosolic fractions.
AO is a weak base that moves freely across membranes
when uncharged and accumulates in acidic compartments
like lysosomes in its protonated form, where it forms
aggregates that fluoresce bright red. LMP is associated with
proton release, which renders lysosomes more alkaline and
hence with decreased red fluorescence. LMP was monitored
qualitatively by fluorescence microscopy and quantitatively
by flow cytometry, by measuring the percentage of cells with
loss of lysosomal AO red fluorescence. Etoposide was used
as a positive control, as it destabilizes lysosomes and
induces LMP through CatD release to the cytosol.19–21
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Fluorescence microscopy analysis of both the cell lines
stained with AO showed that a high percentage of control
cells exhibited intact acidic lysosomes (i. e., high levels of red
fluorescence corresponding to accumulation of AO in acidic
lysosomes) and a reduced percentage of cells with diffused
green fluorescence (corresponding to non-lysosomal AO)
(Figure 4a). By contrast, exposure to acetate led to a
decrease in the percentage of cells with red fluorescence,
associated with an increase in the percentage of cells with
green fluorescence, indicative of LMP (Figure 4a). Similar
results were obtained in cells treated with etoposide. These

differences were more pronounced in cells treated with
2� IC50 acetate than in cells treated with IC50 concentra-
tions. Quantification of AO-stained cells was performed by
flow cytometry; cells with red fluorescence levels lower than
the threshold of AO-positive staining of untreated cells were
considered to exhibit LMP. Cells with LMP increased from
approximately 3.6% in untreated cells to 11.7, 25.8 and
49.1% in cells exposed to 70 mM (IC50), 100 mM and 140 mM
(2� IC50) acetate, respectively (Figure 4c). These results
demonstrate that acetate induces LMP in a dose-dependent
manner.

Figure 1 Determination of acetate IC50 values and proliferation analysis in CRC cell lines treated with acetate. (a) HCT-15 and RKO cells were incubated with different
concentrations of acetate for 48 h or with fresh complete medium as a negative control, and IC50 values determined by MTT reduction assay. (b) Cell proliferation analysis by
SRB assay in CRC cells treated with acetate. Cells were incubated with IC50 and 2� IC50 concentrations of acetate (respectively, 70 mM and 140 mM for HCT-15 and 110 mM
and 220 mM for RKO) for 48 h. Values represent mean±S.E.M. of at least three independent experiments. ***Pr0.001, compared with negative control cells. (c) Cell
proliferation analysis by BrdU incorporation assay in HCT-15 cells treated with acetate (70 mM and 140 mM) for 48 h; values represent mean±S.E.M. of at least three
independent experiments *Pr0.05; ***Pr0.001, compared with negative control cells. (d) Representative photographs of BrdU incorporation assay in HCT-15 cells treated
with acetate (70 mM and 140 mM) for 48 h. phase contrast (PC; � 100); DAPI (4’,6-diamidino-2-phenylindole), FITC (fluorescein isothiocyanate) and merged (� 200) were
obtained by fluorescence microscopy
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As lysosomal proteases such as CatD are released from
lysosomes to the cytosol after LMP, their detection in the
cytosolic fraction is indicative of LMP. We therefore treated
HCT-15 and RKO CRC cells with two concentrations of acetate
(IC50 and 2� IC50 for each cell line), or with etoposide, and
detected CatD in whole-cell extracts and in cytosolic fractions by
western blot (Figure 4d). We found that CatD is expressed in

whole-cell lysates and that untreated cells exhibited very low
levels of CatD in the cytosol. Notably, we found that exposure to
etoposide and to IC50 and 2� IC50 concentrations of acetate led
to CatD release to the cytosol, indicating that acetate induces
LMP in a concentration-dependent manner and further suggest-
ing that acetate induces a lysosomal pathway of apoptosis in
both the cell lines. We also observed that exposure to acetate

Figure 2 Acetate induces apoptosis and not necrosis in CRC cells. Apoptosis determined by Annexin V fluorescein isothiocyanate (AV-FITC) and propidium iodide (PI)
assay in HCT-15 cells after incubation with 70 mM, 100 mM and 140 mM of acetate for 48 h. Cells were incubated with fresh complete medium or etoposide (50 mM) as a
negative and positive control, respectively. (a) Representative histograms of HCT-15 cells double-labeled with AV and PI. Percentages of apoptotic cells (positive for AV) are
the sum of the lower and upper right panels. (b) Quantitative analysis of AV/PI staining in HCT-15 cells. Values represent mean±S.E.M. of at least three independent
experiments. *Pr0.05; ***Pr0.001, comparing each subset of cells (AV�PI� , AV�PIþ , AVþ PI� , AVþ PIþ ) to the respective negative control cells.
(c) Quantitative analysis of caspase 3 activity in HCT-15 cells after incubation with 70 mM, 100 mM and 140 mM of acetate for 48 h. Values represent mean±S.E.M. of three
independent experiments. *Pr0.05; **Pr0.01; ***Pr0.001, compared with negative control cells
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increased Pro-CatD levels in the cytosol of both the cell lines
(Figure 4d). The apparent decrease in cytosolic Pro-CatD levels
in RKO cells treated with 2� IC50 compared with IC50

concentrations of acetate seems to be due to increased
processing to mature CatD.

Cathepsin D release protects cells from acetate-induced
apoptosis. To test whether the apoptotic phenotype of
HCT-15 and RKO cells exposed to acetate depends on
CatD, we inhibited lysosomal CatD with pepstatin A (PstA)
and cathepsins B (CatB) and L (CatL) with (2S,3S)-trans-
Epoxysuccinyl-L-leucylamido-3-methylbutane ethyl ester
(E64d). PstA, but not E64d, increased apoptotic levels
induced by acetate (Figure 5a). Indeed, incubation of
HCT-15 cells and RKO with PstA before incubation with the

2� IC50 concentration of acetate increased the number of
TUNEL-positive cells, though only reaching statistical sig-
nificance in HCT-15. E64d did not significantly alter apoptotic
levels of either cell line under the same conditions
(Figure 5a). PstA-treated HCT-15 cells exposed to acetate
also exhibited a higher percentage of cells with sub-G1 DNA
content than cells treated with acetate alone, indicative of
higher apoptotic levels (Figures 5b and c). By contrast,
inhibition of CatD in cells exposed to etoposide decreased
the sub-G1 population (Figures 5b and c), in agreement with
previous reports showing that CatD has a pro-apoptotic role
in etoposide-induced cell death.21 These results therefore
indicate that CatD has a protective role in acetate-induced
apoptosis in CRC cells, as has been observed in
S. cerevisiae cells for Pep4p, the human CatD ortholog.18

Figure 3 Acetate increases levels of TUNEL-positive cells. Apoptosis analysis in HCT-15 and RKO cells by TUNEL assay, after incubation with IC50 and 2� IC50 acetate
concentrations (70 mM and 140 mM for HCT-15; 110 mM and 220 mM for RKO) for 48 h. (a) Analysis of TUNEL assay in HCT15 and RKO cells. Values represent
mean±S.E.M. of at least three independent experiments. *Pr0.05; ***Pr0.001 compared with negative control cells. (b) Representative images (� 200) of DAPI (4’,6-
diamidino-2-phenylindole), FITC (fluorescein isothiocyanate) and merged were obtained by fluorescence microscopy. PC, phase contrast
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Figure 4 Acetate induces LMP, analyzed by lysosomal pH alterations and CatD release to the cytosol. (a) HCT-15 and RKO cells were incubated with acetate
(70 mM, 100 mM and 140 mM, for HCT-15 cells; 110 mM, 140 mM and 220 mM, for RKO cells) for 48 h or with fresh complete medium or etoposide (50mM) as a negative and
positive control, respectively. LMP was detected by AO staining and visualization by fluorescence microscopy. Representative images (� 400) are shown. (b) Representative
images of monoparametric histograms of green fluorescence (FL3 area (log)) in HCT-15 cells treated as in (a). (c) Percentage of HCT-15 and RKO cells displaying LMP quantified
by flow cytometry analysis of AO staining after exposure to acetate as described in (a). Values represent mean±S.E.M. of three independent experiments. *Pr0.05; **Pr0.01
compared with negative control cells. (d) Effect of acetate on the expression and release of cathepsin D to the cytosol in HCT-15 and RKO cells, comparing whole-cell lysates
(total) and cytosolic fractions (cyto). Cells were treated with IC50 and 2� IC50 acetate concentrations (respectively, 70 mM and 140 mM for HCT-15 cells and 110 mM and 220 mM
for RKO cells) for 48 h or with fresh complete medium or etoposide (50mM) as a negative and positive control, respectively. Actin was used as a loading control
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Discussion

CRC is a leading cause of mortality in Europe, and its global
therapeutics market is worth billions of Euros (GLOBOCAN).
Worldwide variations in colorectal cancer incidence suggest
that dietary and lifestyle factors contribute to its etiology and

are important risk factors for CRC. CRC is most susceptible to
dietary influence, and a higher intake of dietary fibers can
reduce the risk of CRC.22 SCFA, particularly propionate and
acetate, are the end products of fermentation of physiological
bacteria, namely propionibacteria, which are present in dietary
fibers and several dairy products frequently consumed.23 Both

Figure 5 CatD has a protective role in acetate-induced apoptosis. Effect of the specific CatD inhibitor (PstA) and CatB and CatL inhibitor (E64d) on apoptosis in HCT-15 and RKO
cells treated with acetate. PstA (100mM) was pre-incubated for 16 h and then co-incubated with acetate for 48 h. E64d (10mM) was pre-incubated for 1 h and then co-incubated with
acetate for 48 h. (a) Apoptosis analysis by TUNEL assay. Values represent mean±S.E.M. of at least three independent experiments. **Pr0.01; ***Pr0.001 compared with
negative control cells. # Pr0.05; ## Pr0.01; ### Pr0.001 comparing acetate treatment with or without PstA or E64d. (b) Analysis of the effect PstA on the sub-G1 subpopulation
of acetate-treated HCT-15 cells by flow cytometry. Representative histograms corresponding to HCT-15 cells treated with 100 mM and 140 mM acetate with or without PstA.
Percentage of sub-G1 cells are shown. Cells were incubated with fresh complete medium or etoposide (50mM) as a negative and positive control, respectively. (c) Analysis of the
distribution of cell-cycle phases in HCT-15 cells after acetate treatment in absence/presence of PstA. Values represent mean±S.E.M. of at least three independent experiments.
*Pr0.05; **Pr0.01; ***Pr0.001 comparing the percentage of sub-G1 populations of treated cells with that of untreated cells (negative control/dimethyl sulfoxide (DMSO))
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pure SCFA and propionibacteria culture supernatants from the
dairy species Propionibacterium freudenreichii and Propioni-
bacterium acidipropionici induce apoptosis in CRC cells
in vitro.1–3 Moreover, administration of P. freudenreichii
in vivo significantly increased the number of apoptotic
epithelial cells damaged by 1,2-dimethylhydrazine, a carcino-
genic agent, without affecting the survival of healthy normal
colonic mucosa.4,5 These characteristics indicate that propio-
nibacteria might have a protective role against colon cancer,
acting as a probiotic, and point to a useful role of propioni-
bacteria and their metabolites propionate, butyrate and
acetate as powerful agents for CRC prevention or therapy.

We showed that acetate per se induces apoptosis in
CRC-derived cell lines HCT-15 and RKO, by inducing DNA
fragmentation, caspase activation, phosphatidylserine expo-
sure to the outer leaflet of the plasma membrane and the
appearance of a sub-G1 population. The concentrations used
in our study were in the physiological range; total SCFA
concentrations from 50–200 mM have been reported in the
intestinal lumen of a wide range of vertebrates and in most
cases remain at constant high levels throughout the bowel
length.24,25 Our results are thus in agreement with previous
reports showing that propionibacteria supernatants, as well as
pure acetate and/or propionate, induce apoptosis in HT-29
and CACO-2 CRC cell lines.3 In these cells, a mixture of
acetate and propionate induced caspase 3 activation, nuclei
shrinkage, chromatin condensation and nuclei fragmentation
into apoptotic bodies. It was also demonstrated that mito-
chondria have a critical role in this process, evidenced by
increased mitochondrial outer membrane permeability and
enhanced reactive oxygen species accumulation in response
to acetate and propionate, alone or in combination.3 These
authors also identified the mitochondrial adenine nucleotide
translocator (ANT) as a potential SCFA target, suggesting that
mitochondria and ANT are involved in the cell death pathway.3

The cell microenvironment may be a determinant for the
type of cell death induced by toxic stimuli. The pH of the
human colon lumen ranges from 5.5–7.5. SCFA produced by
P. freudenreichii trigger apoptosis in HT-29 cells at pH 7.5 but
necrosis at pH 5.5. At pH 7.5, propionibacterial SCFA were

shown to induce cell-cycle arrest in the G2/M phase and
morphological characteristics of apoptotic cell death, like
membrane blebbing, chromatin condensation and fragmenta-
tion, phosphatidylserine exposure and formation of apoptotic
bodies.1 In accordance with these reports, we showed that
acetate induces apoptosis in HCT-15 and RKO cells without
altering the extracellular pH (complete medium). We also
demonstrated that acetate alone inhibits proliferation in both
the cell lines, in agreement with previous reports.1

We have previously demonstrated in the yeast S. cerevisiae
that acetic acid induces a mitochondria-mediated apoptotic
process18 with several features similar to apoptosis induced
by SCFA in CRC cells. Notably, the mitochondrial inner mem-
brane AAC carrier, the yeast ortholog of mammalian ANT,
was required for mitochondrial outer membrane permeabili-
zation and cytochrome c release in yeast cells committed to
apoptosis induced by acetic acid. We also observed that
Pep4p, the yeast CatD, was released from the lysosome-like
vacuole to the cytosol in response to acetic acid.18 As acetic
acid and acetate trigger apoptosis through an analogous
pathway in both yeast and CRC cells, respectively, we
hypothesized that partial LMP with CatD release might also
be involved in acetate-induced apoptosis in CRC cells. The
involvement of lysosomes in apoptotic cell death, mainly
through partial LMP, has gained increased attention.7 It is now
established that they are important contributors to cancer cell
death, increasing interest in exploiting lysosomal cell death
pathways as a potential target in cancer therapy.10 LMP
followed by release of lysosomal contents to the cytosol,
especially cathepsins, seems to be the critical step of the
lysosomal death pathway. The most relevant human cathe-
psins are the proteases CatB and CatL and the sole lysosomal
aspartic protease CatD. They are most abundant in the
lysosome26 and remain active at a neutral pH.27 Overexpre-
ssion of cathepsins often occurs in human cancers, and high
levels of their expression can be associated with increased
risk of relapse and poor prognosis.13 However, besides the
tumor-promoting effects of these proteases, there is evidence
that cathepsins may also function as tumor suppressors.14

Little is known about the role of the lysosomal pathway in
cell death regulation in CRC. It has been shown that
resveratrol, a naturally occurring polyphenol, triggers a
caspase-dependent intrinsic pathway of apoptosis involving
lysosomal CatD in CRC cells. The authors provide evidence
that CatD, though not CatB or CatL, mediates resveratrol
cytotoxicity in DLD1 and HT29 cell lines, inducing lysosome
leakage with increased cytosolic CatD.28 In this study, we
aimed to investigate the mechanisms underlying acetate-
induced apoptosis in CRC cells, focusing on the role of the
lysosomal pathway through LMP and CatD release. We
showed, for the first time, by different approaches that
exposure of CRC cells to acetate leads to LMP, release of
CatD to the cytosol and accumulation of Pro-CatD and mature
CatD. We also showed that inhibiting CatD with PstA, a widely
used specific inhibitor of CatD enzymatic activity,21,28–33

increased acetate-induced apoptosis in CRC cells. Interest-
ingly, in yeast, deletion of Pep4p confers higher susceptibility
to acetic acid, while cells overexpressing Pep4p display
higher resistance.18 Recently, it has also been demonstrated
that Pep4p has a dual cytoprotective function, anti-apoptotic

Table 1 Measurement of pH in acetate-treated cells

Condition pH

HCT-15
RPMI 7.45
Untreated cells 7.07
Acetate

70 mM 7.18
100 mM 6.93
140 mM 7.06

RKO
DMEM 8.00
Untreated cells 8.01
Acetate

110 mM 8.01
140 mM 8.20
220 mM 8.16

Determination of pH values in the culture medium of CRC cells, after incubation
with acetate for 48 h. Untreated cells were incubated with fresh complete
medium. Data represent means of at least three independent experiments
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and anti-necrotic, during S. cerevisiae chronological aging via
the polyamine pathway.34 Our data in CRC cells are thus in
agreement with the results obtained in yeast. Taken together,
our results point to a function of CatD in cell protection rather
than in the execution of acetate-induced cell death, in both
CRC and yeast.

The role of CatD expression in colon carcinogenesis is
controversial and poorly understood. CatD protein levels in
CRC clinical cases show divergent expression patterns,
suggesting a complex regulation and function of this
protease.17,28,35–41 One study showed that the average CatD
protein content was not different in 59 CRC when compared
with normal mucosa, but individual tumors demonstrated
marked changes in CatD expression levels.16 Measurement
of protein content of tumor versus normal pairs on western
blots revealed loss of CatD in 450% of CRC. However,
two-fold increases in CatD protein levels were also observed
in B1/3 of tumors, supporting the concept that CRC develop
via divergent molecular pathways and that CatD may function
differently in different cancers.16 Another study analyzed
surgical specimens of 100 primary CRC with different grades
of differentiation and determined that immunoreactivity for
CatD was negative in the cytoplasm of normal colorectal
epithelial cells adjacent to carcinoma. CatD expression in
carcinoma cells was present in 68% of the cases, and CatD
positivity was higher when the grade of differentiation was
higher.17 Yet another study showed that the majority of CRC
(93/106) stained positive for CatD, whereas normal colon was
almost completely negative.35 It is therefore apparent that
some, but not all, CRC cells overexpress CatD in comparison
to normal colon mucosa.

In the present study, we showed that CRC cell lines HCT-15
and RKO express CatD and are sensitive to physiological
levels of acetate, suggesting that the levels of CatD observed
might differ from those of normal colon cells. However, we
could not test this hypothesis ‘in vitro’ because the only
available ‘normal’ human colon mucosal epithelium-derived
cells NCM460 (INCELL Corporation, San Antonio, TX,
USA)42 also express CatD and behave similarly to RKO cells
in response to acetate (data not shown). According to
information provided by INCELL, NCM460 cells have
acquired a tumorigenic phenotype due to their extended time
in culture.

The protective role of CatD demonstrated by our data might
partly explain why CatD is overexpressed in some CRC
clinical cases in comparison to normal colon mucosa. We
therefore hypothesize that increased expression of this
protease might be beneficial to cancer cells and thus that
CatD might have an ‘oncogenic-like effect’, allowing CRC cells
to survive in the presence of physiological levels of SCFA in
the colon.

In summary, our novel findings show that acetate induces
partial LMP and consequent release of CatD to the cytosol in
CRC cells. Our results also indicate that inhibition of CatD
enzymatic activity sensitizes CRC cells to acetate-induced
apoptosis, suggesting that CatD, like Pep4p in yeast, might
have a protective role in this process. However, the mechan-
ism involved remains elusive and will warrant further
investigation. Our observations indicate that CatD protects
cells from acetate exposure, prompting further exploiting the

differential sensitivity of CRC to acetate. Inhibiting
CatD function therefore emerges as a novel prevention/
therapeutic strategy in CRCs, particularly in the case of
CRCs with decreased levels of CatD. Specifically
increasing the sensitivity of CatD-overexpressing CRCs
without affecting normal colon mucosa cells will likely require
nanodelivery systems of CatD inhibitors such as PstA to
specifically target CRC cells, in combination with strategies to
increase acetate concentrations in the colon, namely emer-
ging nutraceuticals.

Materials and Methods
Cell lines and culture conditions. HCT-15 and RKO cell lines derived
from human CRC were maintained at 37 1C under a humidified atmosphere
containing 5% CO2. HCT-15 cells were grown in RPMI medium with L-glutamine
and HEPES supplemented with 10% heat inactivated fetal bovine serum, 100 U/ml
penicillin/streptomycin. RKO cells were grown in DMEM supplemented with 1 mM
sodium pyruvate, 1.5 g/l sodium bicarbonate, 10% fetal bovine serum, 100 U/ml
penicillin/streptomycin. Cells were seeded and adhered onto appropriate sterile
plates for 24 h before treatments.

Assessment of cell viability by MTT reduction assay. Cells were
incubated with different concentrations of sodium acetate, henceforth referred to
as acetate, for 48 h. Freshly prepared MTT was added at a final concentration of
0.5 mg/ml in PBS pH 7.4 and plates incubated in the dark for 2 h at 37 1C.
In all, 500 ml of acidic isopropanol (0.04 M HCl in absolute isopropanol)
were added to each well, followed by 30 min of orbital shaking in the dark, to
solubilize the formazan crystals. Absorbance was read at 570 nm in a microplate
reader (SpectraMax 340PC, Molecular Devices, Sunnyvale, CA, USA). Results
were expressed as a percentage of sample absorbance in relation to the negative
control (untreated cells).

Cell proliferation assays

SRB: Cells were incubated with different acetate concentrations for 48 h, fixed in
ice-cold methanol containing 1% acetic acid, and incubated with 0.5% (w/v) SRB
dissolved in 1% acetic acid for 1.5 h at 37 1C. After washing with 1% acetic acid,
SRB was solubilized with 10 mM Tris, pH 10. Absorbance was read at 540 nm in a
microplate reader (SpectraMax 340PC Molecular Devices). Results were
expressed relatively to the negative control (untreated cells), which was
considered as 100% of cell proliferation.

BrdU incorporation: Cells were seeded in plates containing glass coverslips,
exposed to acetate for 48 h and incubated with 10 mM BrdU for 1 h. Cells were
fixed with 4% paraformaldehyde and nuclear incorporation of BrdU was detected
by immunofluorescence. Coverslips were mounted on Vectashield Mounting
Medium with DAPI (4’,6-diamidino-2-phenylindole) and the percentage of positive
nuclei (BrdU index) was determined from 4500 cells/datum point.

Apoptosis assays

TUNEL: Cells were exposed to DMSO control, etoposide or different concentra-
tions of acetate for 48 h. When cathepsin inhibitors were used, cells were pre-
incubated with PstA or E64d for 16 h and 1 h, respectively, and then co-incubated
with acetate or etoposide for 48 h. Cytospins of both floating and attached cells
were fixed with 4% paraformaldehyde for 15 min at room temperature (RT). Cells
were washed in PBS and permeabilized with ice-cold 0.1% Triton X-100 in 0.1%
sodium citrate. TUNEL was performed following the manufacturer’s instructions
(‘In situ cell death detection kit, fluorescein’, Roche, Mannheim, Germany). Slides
were mounted on Vectashield Mounting Medium with DAPI and maintained at
� 20 1C until visualization in a fluorescence microscope (Leica DM 5000B, Leica
Microsystems, Wetzlar, Germany).

Caspase 3 activity: Cells were exposed to etoposide or acetate for 48 h. Both
floating cells and attached cells were collected, washed twice with PBS, and lysed
in Lysis Buffer (10 mM Tris, pH 7.5, 0.1 M NaCl, 1 mM EDTA, 0.01% Triton X-100)
through three freeze/thaw cycles. In all, 50 ml of total extracts (1 mg/ml) were
incubated with 50ml 200mM z-DEVD-AFC (Biomol, Plymouth Meeting, PA, USA)
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in 2� reaction buffer (20 mM PIPES, pH 7.4, 4 mM EDTA, 10 mM DTT) and
fluorescence of cleaved AFC was measured using a fluorescence microplate
reader (Fluoroskan Ascent FL, Thermo Fisher Scientific Inc., Waltham, MA, USA).

AV/PI staining: Cells were treated with etoposide or acetate for 48 h. Both floating
and attached cells were collected and washed in PBS. In all, 1� 106 cells were
resuspended in 200ml 1� binding buffer and incubated with 8ml AV-fluorescein
isothiocyanate (BD Biosciences, San Jose, CA, USA) and 15ml 50mg/ml PI for
15 min in the dark. Samples were analyzed in a flow cytometer (Epics XL, Beckman
Coulter, Miami, FL, USA) equipped with an argon-ion laser emitting a 488-nm beam
at 15 mW. Monoparametric detection of red fluorescence was performed using FL-3
(488/620 nm) and detection of green fluorescence was performed using FL-1 (488/
525 nm). In all, 20 000 cells were analyzed per sample and data analyzed using
FlowJo software (version 7.6, Tree Star Inc., Ashland, OR, USA).

Sub-G1 cell population analysis: Cells were treated with DMSO, etoposide or
acetate for 48 h. When PstA was used, cells were pre-incubated as described above.
Both floating and attached cells were collected, washed with PBS and incubated with
70% cold ethanol for 15 min. Cells were then washed twice with PBS, incubated with
RNase A (200mg/ml) for 15 min in the dark at 37 1C and with propidium iodide
(0.5 mg/ml) for 30 min at RT before analysis on a flow cytometer, as described above.
FlowJo software was used to generate DNA content frequency histograms and
quantify the amount of cells in the individual cell-cycle phases, including the sub-G1
population assumed as corresponding to apoptotic cells.

LMP assessment

AO staining analysis by fluorescence microscopy : Cells were seeded in six-well
plates containing glass coverslips, and exposed to etoposide or acetate for 48 h.
Cells were then incubated with 1mM AO for 15 min at 37 1C and washed with
PBS. Coverslips were mounted over glass slides with PBS and immediately
observed and photographed using a fluorescence microscope (Leica DM 5000B).

AO staining analysis by flow cytometry : Cells were exposed to etoposide or
acetate for 48 h. Both floating and attached cells were collected, washed with PBS
and resuspended in PBS to a final concentration of 1� 106 cells in 1.5 ml. Cells
were then incubated with 1 mM AO (or without AO to measure autofluorescence)
for 15 min at 37 1C.

Immunoblot detection of cathepsin D

Preparation of cytosolic protein extracts: Cells were exposed to etoposide or
acetate for 48 h. Both floating and attached cells were collected, washed with PBS
and centrifuged at 650� g for 10 min at 4 1C. All subsequent steps were
performed at 4 1C. Cells were resuspended in 1 ml PBS, centrifuged at 1500� g
for 5 min and washed twice in 800ml Isotonic Buffer (200 mM mannitol, 70 mM
sucrose, 1 mM EGTA, 10 mM HEPES) by centrifugation at 3000� g for 5 min. The
cell pellet was then resuspended in 300ml Isotonic Buffer with 20 mM NaF, 20 mM
Na3VO4, 1 mM PMSF and 40ml/ml Protease inhibitor cocktail and homogenized
by passing through a 26-G needle 70 times. Nuclei and unbroken cells were
removed by centrifugation at 1000� g for 5 min, followed by two consecutive
centrifugations, first at 10 000� g for 15 min to remove lysosomes and
mitochondria and then at 100 000� g for 1 h in an ultracentrifuge. Cytosolic
protein extracts were stored at � 80 1C.

Preparation of total protein extracts: Cells were exposed to etoposide or acetate
for 48 h. Both floating and attached cells were collected, washed with PBS and
centrifuged at 650� g for 5 min at 4 1C. The supernatant was discarded and cells
lysed in 80ml Ripa Buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 2 mM EDTA, 1%
NP-40) supplemented with 20 mM NaF, 20 mM Na3VO4, 1 mM PMSF and 40ml/ml
Protease inhibitor cocktail. Supernatants were cleared by centrifugation at
4500� g for 10 min. Total protein extracts were stored at � 80 1C.

Western blot analysis: Protein samples (25mg) were separated by sodium
dodecyl sulfate 12,5% polyacrylamide gel electrophoresis and electroblotted onto
PVDF (polyvinylidene difluoride) membranes. Primary antibodies were anti-
cathepsin D (Calbiochem, San Diego, CA, USA) and anti-actin (Santa Cruz
Biotechnology, Santa Cruz, CA, USA). Secondary antibodies were peroxidase-
conjugated AffiniPure goat anti-rabbit IgG (Jackson ImmunoResearch, West

Grove, PA, USA) and horseradish peroxidase-labeled goat anti-mouse
immunoglobulin IgG (Jackson ImmunoResearch). Subsequent chemiluminescence
detection was performed using the ECL detection system (Amersham,
Biosciences, Buckinghamshire, UK) and a molecular imager (Chemi-Doc XRS
system, Bio-Rad, Laboratories Inc., Hercules, CA, USA).

Statistical analysis: Data are expressed as means±S.E.M. of at least three inde-
pendent experiments. Statistical analysis between negative control and treated
samples was performed by one-way ANOVA followed by Dunnett’s test and the
comparison between PstA- or E64d-treated and untreated cells was performed by
unpaired two-tailed Student’s t-test. Differences were considered significant when
Pr0.05.
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