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IL-32 plays a contradictory role such as tumor proliferation or suppressor in cancer
development depending on the cancer type. In most cancers, it was found that the high
expression of IL-32 was associated with more proliferative and progression of cancer.
However, studying the isoforms of IL-32 cytokine has placed its paradoxical role into a
wide range of functions based on its dominant isoform and surrounding environment.
IL-32b, for example, was found mostly in different types of cancer and associated with
cancer expansion. This observation is legitimate since cancer exhibits some hypoxic
environment and IL-32b was known to be induced under hypoxic conditions. However,
IL-32q interacts directly with protein kinase C-d reducing NF-kB and STAT3 levels to
inhibit epithelial-mesenchymal transition (EMT). This effect could explain the different
functions of IL-32 isoforms in cancer. However, pro- or antitumor activity which is
dependant on obesity, gender, and age as it relates to IL-32 has yet to be studied.
Obesity-related IL-32 regulation indicated the role of IL-32 in cancer metabolism and
inflammation. IL-32-specific direction in cancer therapy is difficult to conclude. In this
review, we address that the paradoxical effect of IL-32 on cancer is attributed to the
dominant isoform, cancer type, tumor microenvironment, and genetic background. IL-32
seems to have a contradictory role in cancer. However, investigating multiple IL-32
isoforms could explain this doubt and bring us closer to using them in therapy.

Keywords: interleukin-32, tumor microenvironment, stromal tumor, hypoxia, metastasis
INTRODUCTION

The human interleukin-32 (IL-32) is a novel cytokine that exerts both pro and anti-inflammatory
roles. IL-32 gene is found in higher primates, and it is located in chromosome 16 at p13.3 encoding
for various isoforms. IL-32 plays an essential role in innate and adaptive immune responses, and it
induces various cytokines such as tumor necrosis factor (TNF)-a, IL-1b, IL-6, and IL-8 (1). After its
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identification, it has been studied in inflammatory disorders
including autoimmune diseases and cancers (2, 3).

In cancer, inflammatory tumor microenvironment such as
cytokines, IL-32 plays a crucial role in its progression (4).
Therefore, IL-32 has been studied for its tumor control
direction in several cancer types. However, paradoxical effects
have been reported regarding IL-32 on cancers, which may be
attributed to the dominant isoform, cancer type, and genetic
background. On the one hand, IL-32 was reported to augment
cancer progression, proliferation, invasion, and metastasis in
many tumors including acute myeloid leukemia (AML),
hepatocellular carcinoma (HCC), and breast, lung, colon,
pancreatic, and gastric cancers (5–12). On the other hand, it
was also reported to have anticancer activity in different cancers
including acute and chronic myeloid leukemia (AML and CML)
and breast, lung, and colon cancers (13–19).

IL-32 gene was found to have several isoforms based on different
alternative splicing sites. It has eight exons inwhich thefirst exondoes
not translate into amino acids.Mainly, seven isoforms were depicted
and were identified separately which are IL-32a, IL-32b, IL-32g, IL-
32d, IL-32e, IL-32z, and IL-32q (3). IL-32a, IL-32b, IL-32g, and IL-
32d were primarily detected in IL-2-stimulated human NK cells.
While IL-32e and IL-32z were observed to be expressed in the
activated T cells (20), and IL-32q was found within dendritic,
Jurkat, human leukemia T cells (21). Structural characteristics of
the seven IL-32 isoforms were reviewed based on the IL-32 eleven
protein domains (3). However, a lot of knowledge is waiting to be
revealed regarding IL-32 isoforms, such as their specific receptors.
These isoforms displayed distinctive roles and consequences in
different conditions although they are deficient in signal peptides.
Therefore, a functional comparison between these isoforms aswell as
specific antibodies to detect IL-32 isoforms is considered necessary.

Nevertheless, what has been discovered so far still lacks
explicit knowledge about IL-32 function in cancers. It is
known that many factors can affect the disease outcome,
especially in cancer, yet this much contradiction was not
reported to any cytokine other than IL-32. This contradiction
is mainly due to not considering IL-32 isoforms in most of the
studies. In this review, we aim to analyze previous reports to
address the most probable functions of IL-32 on different cancers
to provide recommendations for further studies and unravel
possible therapeutic options.
IL-32 IN CANCER PROLIFERATION
AND APOPTOSIS

IL-32 was found to play two contradictory roles in cancer
development among various cancer types, one role as a critical
proliferation and growth factor and the other as a tumor
suppressor. Higher expression of IL-32 was found to be
associated with more proliferative and progression in the
following cancers, AML, cutaneous T-cell lymphoma (CTCL),
gastric B-cell lymphoma (GBCL), multiple myeloma (MM),
HCC, and breast, lung, colon, pancreatic, gastric, and
esophageal cancers (5–12, 22–25).
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In acute leukemia peripheral blood of patients, IL-32 was
closely related to the disease development (5). Recently, AML-
derived mesenchymal stem cells (AML-MSCs) when cocultured
with K562/K562 ADM cells, showed changes in the expression
of IL-6 and IL-32 cytokines. These data suggested its effect on
proliferation, invasion, metastatic, and drug resistance through
dysregulation of bone morphogenetic protein-4 (BMP4)
pathway as well as increased the connective tissue growth
factor (cTGF) in K562 ADM cells (Figure 1A) (6). BMP
pathways modulate the expression of target genes, and it was
found to inhibit the expression of IL-6, suggesting a similar
effect on IL-32 (26, 27). Therefore, dysregulation of BMP4
seems to have the opposite effect and thus increase the
expression of cytokines. Moreover, a recent study has
revealed a cancer suppressor effect when the BMP4 signaling
pathway is activated (28). On the other hand, cTGF promotes
the spindle shape transformation that is responsible for the
invas ion and metasta t ic thus , contr ibut ing to the
disease progress.

Although studies mentioned above indicated the
enhancement role of IL-32 in AML survival, an inhibitory
effect of this cytokine was also reported, specifically IL-32q
isoform, by regulating TNF-a production in AML (13). In this
study, they divided AML patients into two groups based on the
presence of IL-32q and found that IL-32q inhibits the increment
of TNF-a . They then confirm that IL-32q inhibited
phosphorylation of p38 mitogen-activated protein kinase
(MAPK) and nuclear factor-kB (NF-kB) in vivo. In addition,
IL-32q attenuated TNF-a promoter activity and the binding of
NF-kB with the TNF-a promoter (Figure 1B). Moreover,
another inhibitory effect of IL-32 was reported in CML cells
through enhancing natural killer (NK) cell-mediated killing (14).
Here, the NK killing activity is achieved through stimulation of
both the Fas receptor and UL16-binding protein (ULBP), ligands
of NKG2D in NK. The performance of more IL-32 experiments
in the absence of specific IL-32 isoform characterization may
show vast contradictions. The wide range of activities can be
confusing at this moment, but studying its isoforms in depth may
shed light on this seemingly paradoxical function.

IL-32a induces this stimulation through activation of p38
MAPK. IL-32a also inhibits B-cell CLL lymphoma through
regulation on epigenetic posttranslational modifications. B-cell
lymphoma-6 (Bcl-6) has been associated with progression of
lymphomas and is considered a master regulator of cellular
processes (29). Bcl-6 was found to be inhibited by IL-32a via
the production of IL-6 and PKCϵ-mediated cell adhesion (30).
PKCϵ is known to have two major roles that are inhibition of
apoptosis and promotion of cell survival as one of its regulated
pathways in the activation of STAT3 (31, 32). IL-32 regulates this
activation and induces apoptosis (Figure 2).

Active PKCϵ crosstalks to multiple signal transduction
pathways result in the following two major cellular effects: (1)
inhibition of apoptosis and (2) promotion of cell survival. PKCϵ-
regulated cell survival pathways include Stat3 activation,
expression of growth-stimulating cytokines (TNF-a, GM-CSF,
and G-CSF), and growth factors (e.g., EGFR). PKCϵ mediates
February 2022 | Volume 13 | Article 837590
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inhibition of apoptosis via inhibition of FADD expression. All
these pathways in fact constitute a network.
THE EFFECT OF CYTOKINE SIGNAL
PATHWAYS IN THE ROLE OF
IL-32 IN CANCER

The influence of IL-32 in tumor growth through the inactivation
of NF-kB and signal transducer and activator of transcription 3
(STAT3) pathways have been mentioned earlier (33). Moreover,
IL-32g downregulates vital cancer progression proteins including
antiapoptotic, cell proliferation, and tumor-promoting genes,
while upregulating the apoptotic genes. On the contrary, IL-32g
isoform is shown to diminish the levels of cytokines that promote
tumor growth such as TNF-a, IL-1b, and IL-6, whereas the levels
of IL-10 cytokine, a tumor growth-inhibiting cytokine, were
elevated. The anticancer activity of IL-32g was found in several
cancer cells but not in melanomas like colon, prostate, liver, and
lung. It also induces the activation of cytotoxic T cells and NK cells
to the tumor site to expand the cancer eradication effect (33, 34) as
well as recently, it showed better immunotherapy response (35).

Later, IL-32b has been found to play an antitumor activity
role as it downregulates vital cancer progression proteins
including antiapoptotic proteins, proliferation, and cell growth
regulatory proteins through the same pathways, NF-kB and
STAT3. In addition, IL-32b was found to induce the
expressions of proapoptotic proteins and regulate the release of
cytokines in colon and prostate cancer cells (15). Nevertheless,
higher expression of IL-32a has been found to activate NF-kB
and STAT3 pathways and induce the production of IL-6, thus
Frontiers in Immunology | www.frontiersin.org 3
supporting the cancer proliferation and progression in MM
patients (25). Therefore, finding the exact function of the IL-32
isoform is still a sensitive consideration and may be influenced
not only by its isoform but also with cancer type as well as the
whole tumor microenvironment.

We have mentioned the anticancer activity of IL-32g in colon
cancers, which is considered through activation of p38 MAPK
pathways (16). Moreover, IL-32a and IL-32q have been found to
suppress the effect on colon cancer, as well (17, 18, 36). In the case of
the expression IL-32a, the expression of TNF receptor 1 and the
production of reactive oxygen species was increased, thus facilitating
apoptosis and prolonged JNK activation. At the same time, several
studies have mentioned the contradictory role of IL-32 in colon
cancer (7, 37, 38) whereas IL-32 was found to be upregulated and
associated with poor survival. In this regard, it is worth mentioning
a finding that provides evidence on the contribution of IL-32a in
the development of obesity-associated colon cancer by favorably
remodeling cytokine for tumor growth (39). According to the
currently available data, we can suppose that in colon cancer, IL-
32a has both pro- and antitumor activity depending on other
factors such as obesity, gender, and/or age-related factors which
have not been studied yet. However, obesity-related IL-32
manipulation indicates that IL-32 could play a role in cancer
metabolism as well as inflammation.
IL-32 IN BREAST CANCER

In breast cancer, its metabolism regulation was found to be
influenced by IL-32b expression. IL-32b was stimulated due to
hypoxia and found to increase glycolysis and Src (proto-oncogene
A B

FIGURE 1 | Schematic illustration showing the effect of IL-32. (A) Schematic illustration showing the effect of IL-32 on the BMP pathway and IL-6 induction. In the
presence of BMP4, it feeds the loop and binds to the BMP receptor, activating SMAD and thus regulating gene expression. IL-6 is inhibited by this regulation. On the
other hand, in the presence of IL-32, IL-6 is induced and activates several pathways. One of these pathways is ERK, which in turn inhibits SMAD. Therefore, IL-6
induced by IL-32 acts as negative feedback for the BMP pathway, as results of cell proliferation increased. IL-32 was found to increase the expression (either directly
or indirectly) of the connective tissue growth factor (cTGF), as results of spindle-shape transformation increased, and thus invasion and metastasis occurred.
(B) Schematic illustration showing the different effects of IL-32 isoform in AML. IL-32g was shown to induce TNF-a production and activate NF-kB and MAPK
signaling pathways and therefore, increased proliferation and survival. Whereas, IL-32q was shown to inhibit TNF-a and phosphorylated p38 MAPK and NF-kB,
thus, reducing cancer progression. This makes IL-32q to be considered a potent inhibitor of TNF-a in patients with AML. Figure created by BioRender App.
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tyrosine-protein kinase) activation by activating lactate
dehydrogenase and inhibiting Src dephosphorylation, respectively
(40). This metabolic change is achieved through lactate
dehydrogenase activation when IL-32b translocated into
mitochondria due to its accumulation. Moreover, the inhibition of
hypoxia-induced IL-32b impairs tumor cell growth, making it a
potential drug target (8, 40). Interestingly, when both mRNA and
protein levels were evaluated, IL-32 demonstrated isoform switching
and self-regulation, as at mRNA levels IL-32b and IL-32g were
detected. However, at the protein level, through Western blot, only
IL-32b was detected (41). Another study has also reported that
elevated IL-32 promoted growth, stemness, and progression in
breast cancer (42). In addition, because IL-32 was found to be
highly expressed in cancer tissue of triple-negative breast cancer
patients, it was suggested as a probable therapeutic target (9).

Moreover, the elevation of IL-32b expression under hypoxic
conditions was also found in ovarian cancer cells by reducing its
degradation. They found that IL-32b interacts with protein kinase
Cd (PKCd) thus promoting antiapoptotic function under
oxidative stress, which is almost the case in breast cancer.
However, more recently, IL-32q isoform was found to utilize
antiproliferative effects in breast cancer cells and initiate
senescence (43, 44). Intriguingly, it was revealed that IL-32q
interacts directly with PKCd and subsequently reduces NF-kB
and STAT3 levels and thus inhibits epithelial-mesenchymal
transition (EMT). This effect could provide a clue regarding the
different functions of IL-32 reported in cancer. Although PKCd is
known for its proapoptotic function in cancer cells (45), it seems
that PKCd when interacting with a different isoform of IL-32
exhibits different signal therefore different effect (Figure 3).
Frontiers in Immunology | www.frontiersin.org 4
Also, when IL-32 has been reviewed, the difference between
these two isoforms (IL-32b and IL-32q) was revealed to be only
one motif consisting of 20 amino acids (DDFKEGH
LETVAAYYEEQHP) (3). In another word, both isoforms
shared the binding site for PKC, but this motif is mainly
responsible for its furthered role. Therefore, it can be suggested
that this motif found within isoform b but not q
(DDFKEGHLETVAAYYEEQHP) can activate PKC function
and therefore enhance cancer progression. Extended physical
interaction and functional studies are required to prove this
conclusion. IL-32 altered the same pathway among several types
of cancer; when the isoform is changed, the final effect is also
changed. Therefore, it is very crucial to introduce some
regulations when studying this IL-32 cytokine. It is necessary
to detect the isoforms and their levels in the same study case.
Isoforms should be determined in both mRNA and protein levels
and recognize their specific cellular localization such as
cytoplasm, extracellular, or nucleus.
IL-32 IN GI, ESOPHAGEAL, GASTRIC,
LIVER, AND PANCREATIC CANCERS

Most GI cancers include esophageal, gastric, liver (e.g., HCC), and
pancreatic cancers, were found to express higher levels of IL-32, and
mostly exhibit a facilitating cancer progression role. IL-32 was
highly expressed in tissue and serum of patients with HCC and
was associated with disease progression (46–48). The only isoform
studied in this cancer type was IL-32a, and its expression was
correlated with antiapoptotic signals, mainly Bcl-2 regulator protein,
FIGURE 2 | Schematic illustration showing cancer cell death by IL-32a in CML and lymphoma. Cancer cell death was reported when the IL-32a isoform is expressed
in CML or lymphoma. This cancer inhibitory effect occurs through enhancing natural killer (NK) cell-mediated killing. PKCℇ inhibits apoptosis and the promotion of cell
survival, by regulating several pathways, one of PKCℇ regulations is the activation of STAT3. IL-32a binds to PKCℇ and inhibits its functions and regulations. As a
result, transcriptional modifications occurred including the downregulation of Bcl-6 and the upregulation of death receptors (ULBP2 and Fas receptor) resulting in NK
cell-mediated killing by the stimulation of both Fas receptor and ULBP. ULBP is a ligand of NKG2D in NK. Figure created by BioRender App.
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p38-MAPK, andNF-kB pathways. Moreover, similar activity for IL-
32 in promoting cancer growth and survival was reported in
pancreatic cancer (11, 49). Furthermore, its induction was
facilitated through phosphatidylinositol 3−kinase/protein kinase B
(PI3K/Akt) pathway-dependent NF-kB/AP-1 activation.

As IL-32 is highly expressed in serum and tissues of GI cancers,
it was found with 99.5% accuracy in detected gastroesophageal
cancers as a biomarker (12, 22, 37, 50–57). In both cancers, gastric
and esophagus, IL-32 upregulation was coupregulated with
proinflammatory cytokines such as TNF-a, IL-1b, and IL-6,
suggesting its induction via NF-kB and STAT3 signaling
pathways was linked to poor-prognosis cases. It was found that
IL-32b was the dominant isoform expressed in gastric tissues with
90%, and the remaining 10% was IL-32ϵ with no detection for any
other isoforms. However, their total sample was only 20, which
signifies the need for further investigation into a wider cohort. The
recent publication evaluated the expression of IL-32 in different
immune cells from esophageal squamous cell carcinoma (ESCC) by
single-cell RNA sequencing found that IL-32 may have a
paradoxical effect (22). They found that IL-32 stimulates the
expression of IFN-g in CD8+ T cells which is responsible for the
antitumor role, while in CD4+ T cells it induces Foxp3 expression,
which accounts for the suppressor role.
IL-32 IN CANCER ANGIOGENESIS,
INVASION, AND METASTASIS

IL-32 numerous roles in angiogenesis, EMT, and metastasis are
summarized in Figure 4. Angiogenesis invasion and metastatic
both are features established in more aggressive tumors.
Frontiers in Immunology | www.frontiersin.org 5
Therefore, IL-32 involvement in these two processes was
evaluated in several studies. Angiogenesis occurs as a response
due to diminishing oxygen and nutrients, the new vessels formed
provide a crucial pathway for metastasis. IL-32 was found to
influence angiogenesis in glioblastoma, yet the underlying
mechanism remains to be defined (58). In this study, it was
found that IL-32 controls angiogenesis through integrin aVb3,
that usually expressed in new vessels and is considered the most
important integrin for angiogenesis (59, 60). The expression of
IL-32 was significantly increased and colocalized with integrin
aVb3. Vascular endothelial growth factor (VEGF) is a well-
known critical factor for metastatic and angiogenesis and is the
most expressed in advanced cancers (61). The tube formation
was found to be increased in a dose-dependent manner as well.
Besides, aVb3 inhibitor reduced IL-32, and induced IL-8 (one of
the advocates of angiogenesis), therefore blocking the
angiogenetic effect.

Interestingly, they found that the reduction of IL-32 affects
IL-8, nitric oxide, and matrix metalloproteinases 9 (MMP9),
whereas levels of VEGF and TGFb were not affected. Thus, it was
concluded that the angiogenetic activity conducted by IL-32,
specifically IL-32g, was not mediated by VEGF. Since IL-32
induced IL-8, which could be the indirect way of promoting
angiogenesis. IL-8 plays a role in invasion, metastasis, and
angiogenesis (62). VEGF expression was found to be correlated
with the expression of IL-32 in cancers with invasion and
migration ability such as lung, breast, and gastric cancers
although it was indicated that IL-32g pro angiogenetic activity
was not mediated by VEGF (8, 10, 50).

Matrix metalloproteinases family (MMPs) of endopeptidases
having proteolytic activity play a critical role in the invasion and
FIGURE 3 | Schematic illustration showing the different effects of IL-32 isoform in cancer cells under hypoxic conditions. The elevated IL-32b interacts with PKCd in
tumor-promoting antiapoptotic signaling that increased cancer progression. On the contrary, IL-32q interacts with PKCd inhibiting its antiapoptotic effect and reduces
NF-kB and STAT3, thus inhibiting epithelial-mesenchymal transition (EMT). Figure created by BioRender App.
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metastasis of tumors through their function of extracellular
matrix degradation (63–65). In gastric and lung cancer, not
only VEGF and IL-8 were found to be coexpressed with IL-32
but also MMP2 andMMP9 (10, 50). IL-32 significantly increased
in metastatic patients of both cancer types (10, 51, 66). As
mentioned above, IL-32 was highly associated with gastric
cancer progression mainly due to its stimulation of cell
elongation and in turn enhanced invasion and migration. This
effect occurs through activation of AKT, b-catenin, and hypoxia-
inducible factor 1a (HIF1- a) signaling pathways.

It was noted that the expressed IL-32 isoforms were a, b, and
g in gastric cancer samples, while the dominant isoform was IL-
32b. Since IL-32g was found to be spliced into IL-32 a and b,
they evaluate the effect of IL-32g on the gastric carcinoma cell
line (TSGH9201). As a result, they found that cells
overexpressing IL-32 show elongated spindle-like morphology
compared to the control cells (50). Invasion stimulation in
cancer cells via the Akt pathway was also reported within
osteosarcoma cells mediated by the expression and secretion of
MMP13 (67). On the other hand, in lung cancer cells MMP 2 and
9 were also found to be induced by IL-32 but via NF-kB (10).

The overexpression of IL-32 was found to be correlated with
metastasis in ESCC and colorectal cancer (37, 38). However, one
Frontiers in Immunology | www.frontiersin.org 6
study revealed that IL-32 isoform could play an opposite
migratory role in colon cancer cells (18). It was found that
isoform IL-32q represses the invasion and migration of colon
cancer cells by preventing EMT. This was achieved by the
interaction of IL-32q with STAT3 to suppress ZEB1 and Bmi1
transcription which in turn avoids stemness and EMT.

Moreover, this inhibitory effect of IL-32q was addressed in
breast cancer as well, as it suppresses the binding of CCL18, a
chemotactic cytokine involved in the several cancer pathogenesis
and progression and associated with poor prognosis (68–70), to
its receptor and therefore inhibited the further cascade of
activation/phosphorylation of STAT3 (44). Phosphorylation of
STAT3, regardless of its upstream activation, leads to
dimerization and translocation into the nucleus. Following
that, STAT3 binds to its target gene promoters and regulates
their expression (71–73). MMPs are among its target genes,
which in this way STAT3 is involved in regulating cancer cell
migration (74, 75). In addition, STAT3 regulates VEGF and
HIF1-a that are well known for their role in angiogenesis
(76–78).

Taken together, STAT3 signaling pathways play a key role in
cancer metastasis (73) and are found to be regulated by IL-32. The
upregulation of MMPs (MMP2, MMP9, and MMP13) was also
FIGURE 4 | Schematic illustration showing the range of signaling pathways that are activated by IL-32 and promoting cancer progression. In terms of angiogenesis,
EMT, and metastasis. In brief, IL-32 promotes the Akt, NF-kB, STAT3 (which can be activated by PKC/CCL8), and integrin aVb3 signaling cascades, each having
different transcription modifications. Therefore, regulating the activity of several transcription factors play a role in cancer such as angiogenesis, EMT, and metastasis
as well as aVb3, VEGF, and HIF-a enhance angiogenesis. The ZEB1 or B-catenin enhances EMT. VEGF is also associated with EMT and metastasis. Additionally,
the transcription of MMPs (like MMP2 and MMP9), Vimentin, Slug, and Snail promotes metastasis. Figure created by BioRender App.
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reported in cancers overexpressing IL-32 along with other EMT
markers including vimentin, Slug, Snail, and ZEB1, as well as they
are well known for their contribution to cancer metastatic.
IL-32 IN THE TUMOR
MICROENVIRONMENT AND
STROMAL TUMOR

The tumor microenvironment refers to the surrounding ecosystem
that includes extracellular matrix, blood vessels, and an array of cells
such as fibroblasts, immune cells, and heterogeneous tumor cells.
These components influence one another and thus, contribute to
tumor progression and metastasis in either a positive or negative
way. Therefore, a better understanding of the tumor
microenvironment offers new insights for improving cancer
therapies (79, 80). Cytokines are one of the key mediators for
interactions between immune and nonimmune cells in the tumor
microenvironment (TME) (81). It has been shown to have a
different role that is isoform dependent since many cells express
IL-32. However, it is not clear yet how IL-32 contributes to the
different tumor types including stromal tumor microenvironment.

In a study investigating the IL-32 effect in the pathogenesis of
endometriosis as an example of stromal cancer, IL-32 showed a
correlation in cancer progression. This study revealed that the
IL-32 concentration in the peritoneal fluid was drastically greater
in patients of advanced-stage endometriosis as compared with
the controls. Moreover, they showed that IL-32a and IL-32g
significantly increased cellular viability, proliferating cell nuclear
antigen expression, and invasive ability (82).

Several studies showed that the overexpression of IL-32,
specifically a, b, and g were able to reduce tumor growth
through inducing apoptosis in tumor cells, which led to CD8+

T-cell responses (15, 17, 33). Nevertheless, other than the
antitumor effect, IL-32 demonstrates a monocyte differentiation
stimulator as well as cytokine production. Moreover, it has been
reported for its ability to activate T cells and therefore stimulate
antigen presentation utilizing dendritic cells (DCs). On the
contrary, functional studies demonstrated that IL-32g induced
PD-L1 expression on monocytes but not tumor cells, which
may contribute to local immunosuppression and therefore
are candidates for cotargeting in combination treatment
regimens. IL-32g expression correlates with a treatment-resistant
dedifferentiated genetic signature and genes related to
Frontiers in Immunology | www.frontiersin.org 7
T-cell infiltration. This was reported in melanoma cells,
suggesting it influences nonmelanoma cells in the tumor
microenvironment, such as myeloid cells (83).

More recently, IL-32g potentiates antitumor immunity in
melanoma as the antitumor microenvironment. This result is
shown to be enriched in mature DC and M1 macrophages
resulting in enhancing the recurrence of activated tumor-
specific CD8+ T cells to generate antitumor immunity.
Therefore, IL-32 resulted in reducing tumor growth and
rendering immune checkpoint blockade resistance (35). On the
other hand, IL-32b stimulates the activation-induced apoptosis
of T cells, NK cell cytotoxicity toward tumor cells like IL-32g in
the activation of monocyte differentiation. In addition, IL-32a is
shown to be a stimulator of NK cell cytotoxicity, whereas IL-32q
has been shown as an inhibitory effect on monocyte
differentiation and cytokine production (36, 84–88). However,
better characterization of the tumor microenvironment is needed
to understand how different cell types in the tumor
microenvironment are influenced by IL-32.

Moreover, how IL-32 isoforms implicated each other is
another key factor in overall response to cancer. As we
mentioned above, the possibility of IL-32 in exhibiting an
isoform switching and self-regulation between IL-32b and IL-
32g was reported (41). Likewise, isoform d of IL-32 was found to
modulate another isoform, IL-32b, by interacting with it and
thus inhibiting its production of IL-10 (89). Both observations
suggest that IL-32 performs its feedback regulation through
its isoforms.
IMPLICATIONS OF IL-32
POLYMORPHISMS IN CANCER

Changes in the genetic material provide different effects within
individuals and populations. Recently, several studies have
demonstrated the impact of IL-32 polymorphisms on cancer
progression. Moreover, IL-32 SNPs were studied and reviewed
with their association to disease outcome (90–95), and by 2021,
one review performed a meta-analysis to evaluate the SNPs in
malignancy (96). Up to now, three polymorphisms of IL-32 were
found to be associated with the progression of several cancers
that are rs28372698, rs12934561, and rs2015620 (Table 1).

SNP rs28372698 was found in many cancers including thyroid
carcinoma and lung, endometrial, ovarian, gastric, bladder, and
TABLE 1 | IL-32 polymorphisms and their associated cancers.

IL-32 SNP Chromosome
locationa

Type Associated cancer/s SNP interaction Ref

Rs28372698 3,065,110 Noncoding/
upstream variant

Thyroid carcinoma, lung, endometrial, ovarian, gastric cancer,
bladder cancer, and colorectal cancer

rs4073 (IL-8)–gastric
cancer

(97–103)

Rs12934561 3,068,864 Noncoding/lntron
variant

Squamous carcinoma, and bladder cancer (98, 102)

Rs2015620 3,063,897 Noncoding Gastric cancer rs917997 (IL-18RAP),
rs1179251 (IL-22)

(103)
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colorectal cancers that are related to the higher expression of IL-32
resulting in cancer progression (96–104). In thyroid carcinoma,
this polymorphism revealed higher expression of isoform IL−32g
that increased the risk of tumor development (104). In a study to
evaluate cytokine polymorphisms and their association with
gastric cancer, this SNP (rs28372698) of IL-32 has shown no
association. However, when the patient has another SNP, IL-8
rs4073, there was an interaction between both SNPs and thus
suggested increased gastric cancer risk (103).

Interestingly, another study on the Chinese population
revealed that IL-32 SNP rs2015620 is highly associated with
the risk of gastric cancer by interacting with two more SNPs, IL-
18RAP rs917997 and IL-22 rs1179251 (101). However, these
studies were subjected to two different populations, Chinese and
Chilean; the reason why IL-32 SNP has a different effect.
Although studies on IL-32 SNPs are not dispersed in the
world, yet according to the published data, SNP rs28372698
showed high cancer influence on the Chinese population.

Moreover, this SNP was linked to colorectal cancer in the
Swedish cohort but not reported in the Chinese colorectal cancer
patients (99). Both IL-32 SNPs of rs28372698 and rs12934561
have been correlated with bladder cancer processes (102).
However, only rs12934561 was related to poor survival status
in squamous carcinoma (98). Overall, these association studies
were subjected to some limitations due to the limited population
and selected population. A large-scale study must include more
than one kind of population and ethnicity to discover the role of
IL-32 SNPs in cancers.
CONCLUSION

It conflicts in targeting therapy for IL-32 in cancer because IL-32
roles remain unclear, thus there is no specific direction for IL-32
in cancer therapy. However, some isoforms showed an inhibitory
Frontiers in Immunology | www.frontiersin.org 8
effect that can be administered exogenously to stop or reverse
cancer progression such as IL-32q for cytokine-based
immunotherapy. Moreover, it was found that patients with
higher expression of IL-32 demonstrated more aggressive
cancers. In these cases, IL-32 can be targeted precisely to stop
its progression role. There is a great gap in this matter even after
selecting the IL-32 isoform for cancer therapy. A lot more studies
are needed before this knowledge can be used clinically. This
difficulty regarding IL-32 was addressed in a recent review
considering interleukins in improving cancer therapies (4).
Again, this is due to IL-32 showing no clear effect on cancer
which differs based on IL-32 isoforms, cancer type, and
genetic background.
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