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Background. Bacillus anthracis is the bacterium responsible for causing anthrax. The ability of B. anthracis to cause disease is
dependent on a secreted virulence factor, lethal toxin, that promotes survival of the bacteria in the host by impairing the
immune response. A well-studied effect of lethal toxin is the killing of macrophages, although the molecular mechanisms
involved have not been fully characterized. Methodology/Principal Findings. Here, we demonstrate that celastrol, a quinone
methide triterpene derived from a plant extract used in herbal medicine, inhibits lethal toxin-induced death of RAW264.7
murine macrophages. Celastrol did not prevent cleavage of mitogen activated protein kinase kinase 1, a cytosolic target of the
toxin, indicating that it did not inhibit the uptake or catalytic activity of lethal toxin. Surprisingly, celastrol conferred almost
complete protection when it was added up to 1.5 h after intoxication, indicating that it could rescue cells in the late stages of
intoxication. Since the activity of the proteasome has been implicated in intoxication using other pharmacological agents, we
tested whether celastrol blocked proteasome activity. We found that celastrol inhibited the proteasome-dependent
degradation of proteins in RAW264.7 cells, but only slightly inhibited proteasome-mediated cleavage of fluorogenic substrates
in vitro. Furthermore, celastrol blocked stimulation of IL-18 processing, indicating that celastrol acted upstream of
inflammasome activation. Conclusions/Significance. This work identifies celastrol as an inhibitor of lethal toxin-mediated
macrophage lysis and suggests an inhibitory mechanism involving inhibition of the proteasome pathway.
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INTRODUCTION
Anthrax lethal toxin (LeTx) comprises two proteins that are

secreted separately by Bacillus anthracis and that form complexes on

the surface of mammalian cells [1]. The protective antigen (PA)

component of the toxin binds host cellular receptors and is

proteolytically activated by furin-like proteases. The proteolytic

activation of PA causes dissociation of an amino-terminal fragment

of the protein, which allows the homo-oligomerization of the

receptor-bound carboxy-terminal fragment, PA63. Heptamers of

PA63 bind the second toxin component, lethal factor (LF) [2–4].

These toxin complexes are internalized by receptor-mediated

endocytosis and LF is delivered to the cytosol after translocating

through a membrane-spanning pore formed by the heptamer

[5,6]. LF disrupts signaling pathways by cleaving members of the

mitogen activated protein kinase kinase (MAPKK) family, thereby

interfering with normal cellular functions [7].

The contribution of LeTx to anthrax pathogenesis is complex

and is likely mediated through several different mechanisms and

cell types [8]. The relative importance to pathogenesis of each of

the effects of intoxication is unknown and may differ depending on

the site of infection and the infection model. Numerous reports

support the notion that the toxin disrupts the immune system,

which would aid bacterial survival and support disease progres-

sion. LeTx inhibits cytokine expression in T cells, dendritic cells,

macrophages, and endothelial cells [9–13]. LeTx inhibits produc-

tion of Type IIA phospholipase A2 by macrophages [14],

differentiation of monocytes into macrophages [15], production

of immunoglobulin by B cells [16], production of superoxide by

neutrophils [17], and impairs neutrophil motility [18]. In addition,

LeTx causes cytoxicity in macrophages, dendritic cells and certain

types of endothelial cells [19–21].

Macrophages seem to both promote and control anthrax

infections. Phagocytosis of B. anthracis spores by macrophages

promotes their germination [22]; but macrophages reduce

susceptibility of mice to anthrax infections [23], probably through

direct killing of extracellular bacilli. Intoxication of macrophages

influences both of these interactions: first, by facilitating the escape

of bacilli that have germinated from phagocytosed spores [24], and

second, by killing macrophages that can destroy the bacilli.

Macrophages derived from some strains of mice undergo

cytolysis after being exposed to LeTx and it was discovered

recently that susceptibility to LeTx-induced cytolysis is determined

by the allele of the Nalp1b gene [25]. Human NALP1 is a

component of the inflammasome, which is a complex consisting of

NALP1, ASC, caspase-1 and caspase-5 [26]. Assembly of the

inflammasome activates caspase-1 and caspase-5, leading to the

processing of pro-inflammatory cytokines IL-1b and IL-18.

Activation of caspase-1 by murine Nalp1b mediates macrophage

cytolysis through the mitochondrial proteins Bnip3 and Bnip3L

[25,27], but it is unclear why the inflammasome is activated by the

action of LeTx. LeTx-mediated cytolysis of the susceptible

macrophage cell line J774A.1 is accompanied by a proteasome-

dependent loss of mitochondrial membrane potential and

membrane swelling [28–30]. Subsequent to impairment of
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mitochondria, the plasma membrane is compromised, ATP levels

drop, and cytolysis occurs [29].

Celastrol is a small molecule derived from the plant Triptergium

wilfordii that has been shown to have cytoprotective properties

[31,32], so we sought to determine whether celastrol could protect

macrophages from LeTx-induced cytolysis. In this study, we

demonstrated that celastrol inhibited LeTx-mediated death of the

murine macrophage cell line RAW264.7. Celastrol did not inhibit

cleavage of MAPKK1, indicating that it did not block toxin

internalization or the proteolytic activity of LF. Furthermore,

celastrol was able to protect cells that had been pre-exposed to the

toxin, suggesting that it inhibited a late stage of intoxication. We

found that celastrol blocked proteasome-mediated destruction of

ubiquitylated proteins and prevented LeTx-stimulated processing

of IL-18, suggesting that the cytoprotective effects of celastrol are a

result of its ability to inhibit the proteasome pathway, thereby

preventing inflammasome activation.

MATERIALS AND METHODS

Reagents
Celastrol, rabbit 20S proteasome, and Z-Leu-Leu-Glu-7-amido-4-

methylcoumarin (Z-LLE-AMC) were obtained from Calbiochem.

MG132, lipopolysaccharide (cat. # L2630), 7-amino-4-methyl-

coumarine (AMC), and N-succinyl-Leu-Leu-Val-Tyr-7-amido-4-

methylcoumarin (Suc-LLVY-AMC) were obtained from Sigma.

Glutathione-agarose immobilised GST-S5a, purified 26S protea-

some, ATP (cat. # EW9805), t-butoxycarbonyl-Leu-Arg-Arg-7-

amido-4-methylcoumarin (Boc-LRR-AMC), and acetyl-L-norleu-

cyl-L-prolyl-L-norleucyl-L-aspartyl-methylcoumarylamide (Ac-

nLPnLD-AMC) were obtained from Biomol International. PA

and LF were purified as described previously [15].

Cell culture and cytotoxicity assays
RAW 264.7 cells were maintained in RPMI supplemented with

5% fetal bovine serum and 1% penicillin-streptomycin. For

cytotoxicity assays, cells were seeded into tissue culture-treated

polystyrene 96-well plates (Corning) at a density of 105 viable cells

per well and incubated overnight at 37uC and 5% CO2. Cells

treated with LeTx were exposed to 1028 M PA and 5610210 M

LF. Cell viability was assessed using the CellTiter 96 Aqueous One

Solution Cell Proliferation assay (Promega), as per manufacturer’s

instructions.

Western blot assays
Cells were harvested in 16 Cell Lysis Buffer (Cell Signaling

Technologies) containing 1 mM phenylmethylsulfonyl fluoride

and were sonicated (3615 seconds). Lysates were cleared by

centrifugation; equal amounts of protein were separated on an

SDS-polyacrylamide gel and transferred to nitrocellulose. Mem-

branes were blocked in 0.1% Tween-20 TBS (100 mM Tris-HCl

pH 8.0, 0.9% NaCl) containing 5% skim milk powder, and were

probed with primary antibodies. Antibodies raised against IL-18

(BioVision), IkBa (Santa Cruz Technologies), ubiquitin (Dako), a-

tubulin (Sigma), and the N-terminus of MAPKK1 (Upstate

Technologies) were used according to manufacturer’s instructions.

GST-S5a agarose pulldown
Cell lysates were prepared from RAW264.7 cells that had been

treated with 10 mM MG132 for 1 h. GST or GST-S5a coupled to

sepharose (20 mL of 0.5 mg protein/mL resin) was combined with

50 mg lysate in 250 mL of Cell Lysis Buffer (Cell Signaling

Technologies) containing 5% glycerol. This mixture was rotated at

4uC for 2 h, either in the presence or absence of 10 mM celastrol.

Beads were washed three times with lysis buffer, and proteins were

eluted with SDS loading dye. Western blot analysis was performed

using anti-ubiquitin antibody.

20S proteasome proteolytic acitivity
Reactions were carried out in 50 mM Tris-HCl pH 8.0 containing

0.03% SDS in a volume of 200 mL. Suc-LLVY-AMC was used at

a final concentration of 30 mM, and 0.4 mg of 20S proteasome was

used per reaction. A constant concentration of 0.4% DMSO was

maintained in all wells. Fluorescence (excitation 380 nm, emission

460 nm) was measured every 30 s for 40 min. The slope of the

initial linear portion of the curve (over a 15 min interval) was

determined using Prism 3.0 (GraphPad Software Inc.). Standard

curves were generated using AMC in the presence of the

compounds tested, and the amount of AMC liberated per unit

time was calculated.

26S proteasome proteolytic activity
Reactions were carried out in 50 mM Tris-HCl pH 7.5 containing

40 mM KCl, 5 mM magnesium chloride, 0.5 mM ATP, 1 mM

DTT, and 0.5 mg/mL BSA in a volume of 200 mL. Suc-LLVY-

AMC, Ac-nLPnLD-AMC, and Boc-LRR-AMC were used at a

final concentration of 100 mM. To measure cleavage of Suc-

LLVY-AMC, 0.2 mg of 26S proteasome was used per reaction.

For the other substrates, 0.75 mg of 26S proteasome was used. A

constant concentration of 1% DMSO was maintained in all wells.

Fluorescence (excitation 380 nm, emission 460 nm) was measured

every 30 s for 2 h. The slope of the initial linear portion of the

curve (over a 15 min interval) was determined using Prism 3.0

(GraphPad Software Inc.). Standard curves were generated using

AMC in the presence of the compounds tested, and the amount of

AMC liberated per unit time was calculated.

Proteasome proteolytic acitivity of RAW264.7 cell

lysates
RAW264.7 cells were washed twice with PBS and suspended in

reaction buffer (50 mM Tris-HCl pH 7.5 containing 250 mM

sucrose, 5 mM magnesium chloride, 2 mM ATP, 1 mM DTT,

and 0.5 mM EDTA). Cells were sonicated for 15 s and lysates

were cleared by centrifugation. Reactions were performed in a

volume of 200 mL, using a final concentration of 100 mM Suc-

LLVY-AMC and 25 mg protein lysate per reaction. A constant

concentration of 1% DMSO was maintained in all wells.

Fluorescence was measured and data was analyzed as described

above for the 26S proteasome assay.

RESULTS AND DISCUSSION
To determine whether celastrol can protect RAW264.7 cells from

LeTx-induced death, we treated cells for 4 h with LeTx in the

absence or presence of celastrol. Cell viability was estimated using

the MTS assay, which measures the reduction of a tetrazolium salt

to formazan by metabolically active cells. Treatment of cells with

LeTx (1028 M PA and 5610210 M LF) alone reduced metabolic

activity, whereas treatment with 3 mM celastrol alone had little

effect (Fig. 1A). Cells that were co-treated with LeTx and celastrol

exhibited metabolic activity similar to untreated cells. Celastrol

also protected the J774A.1 murine macrophage cell line from

intoxication (data not shown), demonstrating that this activity is

not restricted to RAW264.7 cells.

We next sought to determine whether celastrol inhibited either

toxin internalization or the enzymatic activity of LF by monitoring
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cleavage of MAPKK1, a cytosolic target of LF. Cells were treated

with LeTx, celastrol, or both for 1 h. Cellular extracts were

prepared and examined by Western blotting using an antibody

that recognizes the amino terminus of MAPKK1; LF cleaves an

amino-terminal segment from MAPKK1, so this antibody does

not detect the cleaved protein. A reduced amount of full-length

MAPKK1 was observed in cells treated with LeTx compared to

untreated cells (Fig. 1B). Celastrol did not prevent cleavage of

MAPPK1 by LeTx, however, indicating that celastrol did not

inhibit the delivery of LF to the cytosol or the proteolytic activity of

this enzyme.

Since celastrol did not inhibit substrate cleavage by LF, this

result indicated that this compound might block a late step in

intoxication. To address this possibility, we performed a time-

course assay to determine how late during intoxication celastrol

could confer protection (Figs. 1C, D). Celastrol was added to cells

at different times after toxin addition and the MTS assay was

performed 4 h after the toxin was added. In parallel, cells were

treated for different amounts of time with LeTx alone to assess the

metabolic activity of cells at the times of celastrol addition. A slight

reduction in metabolic activity was observed after 1 h of toxin

treatment, which became more pronounced at 1.5 h and 2 h

(Fig. 1C). By 3 h of toxin treatment, an almost maximal reduction

in metabolic activity was observed. Remarkably, 10 mM celastrol

was able to completely protect cells that had been exposed to LeTx

for 1.5 h and stopped further loss in metabolic activity in cells

exposed to toxin for 2 h (Figs. 1C, D). These results indicate that

celastrol protects cells by inhibiting a process that occurs late in

intoxication.

Since celastrol has been reported to inhibit proteasome activity

in prostate cancer cell lines [33], we assessed whether celastrol

might inhibit the proteasome-dependent degradation of proteins in

RAW264.7 cells. To test this idea, we treated RAW264.7 cells

with lipopolysaccharide (LPS) and probed cell lysates for IkB-a,

which is degraded by the proteasome in cells that have been

stimulated by LPS. Western blotting indicated that LPS treatment

Figure 1. Celastrol blocks LeTx-mediated cytolysis of RAW264.7 cells subsequent to MAPKK1 cleavage. (A) RAW264.7 cells were treated with 3 mM
celastrol and/or LeTx (1028 M PA and 5610210 M LF) as indicated for 4 h. Cell viability was assessed using the MTS assay. The means of three
experiments6SEM are reported. (B) RAW264.7 cells were treated with LeTx and/or 10 mM celastrol as indicated for 1 h. Cell lysates were subjected to
Western blotting using antibodies that detect MAPKK1 or a-tubulin. A representative result of three independent experiments is shown. (C)
RAW264.7 cells were exposed to LeTx for indicated amounts of time and viability was assessed using the MTS assay. The means of three
experiments6SEM are reported. (D) Celastrol (10 mM) was added to RAW264.7 cells at the indicated times after cells were treated with LeTx (black
bars) at t = 0 h or were not treated with toxin (white bars). Cell viability was assessed 4 h after LeTx addition by the MTS assay. The means of three
experiments6SEM are reported.
doi:10.1371/journal.pone.0001421.g001
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led to the degradation of IkB-a and that this could be inhibited by

the proteasome inhibitor, MG132 (Fig. 2A). Celastrol was also able

to inhibit the degradation of IkB-a at a concentration that

protected RAW264.7 cells from LeTx. As an additional test of

whether celastrol inhibited the degradation of ubiquitylated

proteins, we treated cells with either MG132 or celastrol and

examined cell lysates for ubiquitylated proteins by Western

blotting with an anti-ubiquitin antibody (Fig. 2B). We observed

that treatment of cells with either MG132 or celastrol led to the

accumulation of ubiquitylated proteins, suggesting that celastrol

inhibits a step in the proteasome pathway. Interestingly, celastrol

treatment resulted in the accumulation of more ubiquitylated

proteins than did MG132. Because MG132 is a potent inhibitor of

the proteasome, we speculated that the ability of celastrol to cause

a greater accumulation of ubiquitylated proteins than MG132

might be a result of an additional activity of celastrol that induces

the accumulation of misfolded proteins. Indeed, celastrol has been

reported to inhibit HSP90 [34]; inhibition of HSP90 would cause

an accumulation of misfolded proteins that would subsequently be

ubiquitylated. To test this hypothesis, we treated cells with either

celastrol or MG132 in the presence or absence of the HSP90

inhibitor geldanamycin (Fig. 2C). The combination of geldana-

mycin and celastrol resulted in a level of ubiquitylated proteins

similar to that in cells treated with celastrol alone. In contrast,

geldanamycin increased the level of ubiquitylated proteins in cells

treated with MG132. These results indicate that the higher level of

ubiquitylated proteins in celastrol-treated cells compared to

MG132-treated cells results from the ability of celastrol to induce

protein misfolding (through the inhibition of HSP90) in addition to

inhibiting proteasome-mediated degradation of proteins.

We next assessed whether a threshold of total cellular

ubiquitylated proteins was required to protect RAW264.7 cells

from LeTx. Cells were treated with LeTx in the presence of

various concentrations of either celastrol or MG132 and the cells

were assessed for viability. Celastrol protected cells at a

concentration of 3 mM, but not at 1 mM; MG132 protected cells

at 1 mM, but not at 0.3 mM (Fig. 2D). Because there are slightly

more ubiquitylated proteins in cells treated with 1 mM celastrol

than in cells treated with 1 mM MG132 (Fig. 2B), we conclude that

there is not a direct correlation between the bulk accumulation of

ubiquitylated proteins and the protection of cells from intoxica-

tion. It is possible that inhibiting the degradation of only one or a

few ubiquitylated proteins prevents LeTx-mediated cytolysis.

Ubistatins are compounds that block proteasome-mediated

protein degradation by binding ubiquitin chains, thereby inhib-

iting the interaction between ubiquitylated proteins and the

proteasome [35]. To determine if celastrol functions similarly, we

assessed whether celastrol blocked the ability of the ubiquitin

receptor S5a to bind ubiquitylated proteins. Glutathione-S-

transferase (GST) or a GST-S5a fusion protein was attached to

glutathione-sepharose beads and the beads were mixed with

RAW264.7 cellular lysates and then centrifuged to isolate

associated proteins. The associated proteins were electrophoresed

on denaturing polyacrylamide gels and then probed with anti-

ubiquitin antibody (Fig. 3). GST-S5a precipitated ubiquitylated

Figure 2. Celastrol inhibits the proteasome-dependent degradation
of proteins. (A) RAW264.7 cells were treated with 3 mM celastrol or
10 mM MG132 (or DMSO vehicle) for 30 min, followed by a 10 min
treatment with 1 mg/mL LPS. Cellular lysates were prepared and probed
for IkB-a or a-tubulin by Western blotting. A representative result of
three independent experiments is shown. (B) RAW264.7 cells were
treated with indicated concentrations of celastrol or MG132 for 1 h.
Cellular lysates were prepared and probed with anti-ubiquitin or anti-a-
tubulin. A representative result of three independent experiments is

shown. (C) RAW264.7 cells were treated with 10 mM celastrol, 10 mM
MG132 and/or 10 mM geldanamycin for 1 h. Cellular lysates were
prepared and probed with anti-ubiquitin or anti-a-tubulin. A represen-
tative result of three independent experiments is shown. (D) RAW264.7
cells were treated with various concentrations of celastrol or MG132 in
the presence (black bars) or absence (white bars) of LeTx for 4 h. Cell
viability was assessed using the MTS assay. The means of three
experiments6SEM are reported.
doi:10.1371/journal.pone.0001421.g002
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proteins, whereas GST did not. Celastrol did not prevent GST-

S5a from binding ubiquitylated proteins, suggesting that celastrol

does not interfere with the binding of ubiquitin chains to the

proteasome.

We next assessed whether celastrol inhibited the proteolytic

activity of the proteasome. The 26S proteasome is a large multi-

subunit complex consisting of a 20S barrel-shaped core complex

and two 19S regulatory complexes [36]. The regulatory complexes

ensure that only ubiquitylated proteins access the inside of the

barrel where the proteolytic sites reside. The proteasome exhibits

three distinct proteolytic activities, chymotrypsin-like, trypsin-like,

and caspase-like, which can be assayed individually using

fluorogenic substrates [37]. The chymotrypsin-like site is thought

to be the most important of the three, although the trypsin-like and

caspase-like activities must also be inhibited to reduce the

degradation of most proteins by 50% [37]. We mixed purified

26S proteosome with the fluorogenic substrate N-succinyl-Leu-

Leu-Val-Tyr-7-amido-4-methylcoumarin (Suc-LLVY-AMC) to

measure chymotrypsin-like activity; t-butoxycarbonyl-Leu-Arg-

Arg-7-amido-4-methylcoumarin (Boc-LRR-AMC) to measure

trypsin-like activity; or acetyl-L-norleucyl-L-prolyl-L-norleucyl-L-

aspartyl-methylcoumarylamide (Ac-nLPnLD-AMC) to measure

caspase-like activity. Whereas MG132 inhibited cleavage of the

three substrates, neither 3 mM nor 10 mM celastrol was able to

inhibit cleavage of the substrates by the 26S proteasome (Fig. 4A).

Celastrol showed some inhibitory activity against the chymotryptic

acivity of the 20S proteasome at 10 mM, but not at 3 mM (Fig. 4B),

a concentration that was sufficient to cause the accumulation of

ubiquitylated proteins in vivo (Fig. 2B). To test further whether

celastrol inhibited proteasome activity, we incubated RAW264.7

cell lysates with Suc-LLVY-AMC. MG132 reduced the rate of

cleavage of this substrate, but celastrol exhibited little inhibitory

activity (Fig. 4C).

Since it has been reported previously that inhibition of

proteasome activity prevents activation of the Nalp1b inflamma-

some [38,39], we sought to determine whether celastrol inhibits

processing of IL-18 by the Nalp1b inflammasome. RAW264.7

cells were incubated with LeTx in the absence or presence of

celastrol for 2 h and cellular lysates and supernatants were

Figure 4. Celastrol is not a potent inhibitor of the proteasome in
vitro. (A) The chymotrypsin-like (black bars), caspase-like (white bars),
and trypsin-like (grey bars) activities of purified 26S proteasome were
assessed in the presence or absence of celastrol or MG132. (B) The
chymotrypsin-like activity of purified 20S proteasome was assessed in
the presence or absence of celastrol or MG132. (C) The chymotrypsin-
like activity of the proteasome in RAW264.7 cell lysate was assessed in
the presence or absence of celastrol or MG132. Values represent the
means of three experiments6SEM.
doi:10.1371/journal.pone.0001421.g004

Figure 3. Celastrol does not inhibit the interaction between
ubiquitylated proteins and S5a. Cellular lysates were incubated with
either GST or GST-S5a coupled to glutathione-sepharose in the
presence or absence of celastrol, as indicated. Associated proteins
were precipitated, subjected to SDS-PAGE and probed for ubiquitin by
Western blotting. A representative result of three independent
experiments is shown.
doi:10.1371/journal.pone.0001421.g003

Celastrol Blocks Lethal Toxin

PLoS ONE | www.plosone.org 5 January 2008 | Issue 1 | e1421



subjected to Western blotting using an antibody raised against IL-

18. The 18 kDa mature form of IL-18 was observed in lysates

derived from cells treated with LeTx and a reduced amount was

present in lysates derived from cells treated with both LeTx and

celastrol; no IL-18 was detected in the cell supernatants in these

conditions (Fig. 5). J774A.1 cells that were treated with LeTx had

a reduced amount of the 24 kDa form of IL-18 in cell lysates; the

processed form was observed in the supernatants. The stimulation

of IL-18 processing by LeTx was reduced in cells that were co-

treated with celastrol (Fig. 5). These results are consistent with

celastrol inhibiting an intoxication step upstream of Nalp1b

inflammasome activation.

In summary, we have demonstrated that celastrol inhibits LeTx-

induced cytolysis of RAW264.7 murine macrophage cells. The

concentrations required to protect cells (Fig. 2D) were similar to

the concentrations that led to the accumulation of ubiquitylated

proteins (Fig. 2B). Comparison of celastrol with MG132, however,

suggested that protection from cytolysis did not correlate with a

threshold level of total ubiquitylated proteins – this suggests that

the degradation of a relatively small subset of ubiquitylated

proteins may be required for cytolysis. The spectrum of

ubiquitylated proteins likely differs between celastrol-treated and

MG132-treated cells because celastrol inhibits HSP90, which

helps to fold a variety of proteins, in addition to inhibiting

proteasome-mediated degradation of proteins. Inhibition of

HSP90 by geldanamycin did not protect cells from LeTx (data

not shown).

Proteasome activity has previously been implicated in LeTx-

mediated cytolysis by structurally unrelated proteasome inhibitors

[28]. Recently, a report suggested that celastrol inhibits 20S

proteasome activity [33]. Using a fluorogenic substrate, we did

detect a slight decrease in 20S proteasome activity in vitro, but not

in 26S proteasome activity – although 20S proteasome does exist

in cells, it is thought that the 26S proteasome is responsible for the

degradation of ubiquitylated proteins [37]. Thus, we believe that

celastrol either inhibits the proteolytic activity of the 26S

proteasome only in intact cells, or it inhibits another step in the

ubiquitin-proteasome pathway. Inhibition of the ubiquitin-protea-

some pathway is a potential therapeutic strategy for the treatment

of cancer and neurodegenerative diseases [40], so it will be of

interest to characterize further how celastrol inhibits this pathway

and to determine whether it could be used to treat anthrax.
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