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Abstract

Motivation: Several computational and statistical methods have been developed to analyze data generated through the
3C-based methods, especially the Hi-C. Most of the existing methods do not account for dependency in Hi-C data.
Results: Here, we present ZipHiC, a novel statistical method to explore Hi-C data focusing on the detection of
enriched contacts. ZipHiC implements a Bayesian method based on a hidden Markov random field (HMRF) model
and the Approximate Bayesian Computation (ABC) to detect interactions in two-dimensional space based on a Hi-C
contact frequency matrix. ZipHiC uses data on the sources of biases related to the contact frequency matrix, allows
borrowing information from neighbours using the Potts model and improves computation speed using the ABC
model. In addition to outperforming existing tools on both simulated and real data, our model also provides insights
into different sources of biases that affects Hi-C data. We show that some datasets display higher biases from DNA
accessibility or Transposable Elements content. Furthermore, our analysis in Drosophila melanogaster showed that
approximately half of the detected significant interactions connect promoters with other parts of the genome indicat-
ing a functional biological role. Finally, we found that the micro-C datasets display higher biases from DNA accessi-
bility compared to a similar Hi-C experiment, but this can be corrected by ZipHiC.

Availability and implementation: The R scripts are available at https://github.com/igosungithub/HMRFHiC.git.
Contact: nzabet@essex.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Distant regulatory elements and their target genes are often sepa-
rated by large genomic distances. In order for the regulatory element
to activate a target gene, they need to come in 3D proximity (Bonev
and Cavalli, 2016; Hua et al., 2021). This indicates that the spatial
organization of the genome is intimately related to genome regula-
tion and a better understanding of the 3D organization of the gen-
ome is important in disentangling the contribution of different
factors to gene regulation. One of the recently developed genome-
wide proximity ligation assay is the Hi-C technique (Lieberman-
Aiden et al., 2009), which is a chromosome conformation capture
(3C)-based method. Hi-C is able to detect interactions (short-range
and long-range) within and between chromosomes at high resolu-
tions. While in mammalian systems, resolutions of 5 Kb have been
achieved (Rao et al., 2014), in smaller genomes, such as Drosophila,
sub-kilobase pair resolutions were obtained from Hi-C experiments
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(Chathoth and Zabet, 2019; Cubenas-Potts et al., 2017; Eagen
et al., 2017). In addition, datasets generated by Hi-C are highly re-
producible between replicates and often highly conserved between
tissues (Ghavi-Helm et al., 2014). Recent technological advances
have pushed the resolution of conformation capture methods to
base pair resolution in mammalian systems (Hua ez al., 2021).

The data generated by a Hi-C experiment can be represented as
a matrix of contact frequencies between pairs of regions along the
genome. These matrices are associated with biases (Yaffe and
Tanay, 2011), such as the restriction fragment length, GC content
of trimmed ligation junctions and mappability, but many additional
factors may also contribute to the contact counts. Correcting
for these biases is important and there have been several
methods being proposed that take these biases into account (Hu
et al., 2013; Imakaev et al., 2012; Servant et al., 2015; Yaffe and
Tanay, 2011).
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The Iterative Correction and Eigenvector decomposition (ICE)
has been the most widely used method to account for biases associ-
ated with the Hi-C data, due to its simplicity and being parameter-
free by assuming equal visibility across all regions of the genome
(Imakaev et al., 2012). This equal visibility assumption considers
that all regions can be probed by the method with same probability.
However this assumption is not always true, because the visibility of
areas could vary (Imakaev et al., 2012; Servant et al., 2015). In add-
ition, ICE is computationally intensive because the Hi-C interaction
matrix is of size O(N?), where N is the number of genomic regions.

The study of Rao et al. (2014) generated one of the highest-reso-
lution maps of the 3D organization of the human genome using an
in situ Hi-C to probe the 3D architecture of genomes for DNA-
DNA proximity ligation in intact nuclei. This has revealed that the
human genome is organized into sub-compartments globally and
contains about 10 000 chromatin loops (Rao et al., 2014). To ac-
count for biases in Hi-C data, Rao et al. (2014) adopts the matrix-
balancing proposed in Knight and Ruiz (2013). In particular, peaks
are called only when a pair of regions of the genome shows elevated
contact frequency relative to the local background; i.e. peaks are
called when the peak pixel is enriched as compared to other pixels in
its neighbourhood.

Other methods take into account potential dependence among
pairs of regions of the genome (Jin et al., 2013). To accurately iden-
tify the chromatin interactions and loops with high sensitivity and
resolution, they used data filtering techniques based on the strand
orientation of Hi-C paired-end reads. This also allows detection of
short genomic distance interactions between restriction fragments
and their analysis shows the effects of GC content and mappability
on the observed contact frequency. Interestingly, there seems to be a
linear relationship between average trans-contact frequency and
mappability (Jin ez al., 2013).

Loci that are in close 1D proximity to each other often interact
with the same distal regions. This suggests that these loci are part of
a region that make a 3D contact with the distal region. Some of the
existing methods are based on one-dimensional calling approaches,
which do not consider useful information that can be gained using
the two-dimensional approach. The first method to take into ac-
count the spatial dependency of Hi-C is the HMRFBayesHiC algo-
rithm (Xu ez al., 2016b). In particular, HMRFBayesHiC models the
neighbouring regions in the context of a two-dimensional contact
matrix generated from Hi-C. This algorithm assumes that not all
peaks will have similar strength and clustering patterns.
Nevertheless, it also involves having prior information about the
expected count frequency distribution to account for biases, which
is often unknown. One of the biggest shortcomings of this approach
is that it is computationally intensive and chromosome wide compu-
tations, even in smaller genomes, are not feasible.

FastHiC is a novel hidden Markov random field (HMRF)-based
peak caller to detect long-range chromosomal interactions from Hi-
C data (Xu et al., 2016a). The FastHiC method is based on the
HMRFBayesHiC (Xu et al., 2016b) and uses simulated field ap-
proximation, which approximates the joint distribution of the hid-
den peak status by a set of independent random variables. In
particular, FastHiC approximates the Ising distribution by a set of
independent random variables, enabling tractable computation of
the normalizing constant in the Ising model. Despite this improve-
ment in computation time, FastHiC is still computationally intensive
and chromosome wide calculations are still computationally
challenging.

FitHiC2 is an extended and improved version of the Fit-Hi-C
(Ay et al., 2014) which incorporates various new computational
modules and pre-/post-processing utilities (Kaul et al., 2020). The
FitHiC2 is designed to compute statistical confidence estimates to
Hi-C counts by fitting a cubic smoothing spline to the average gen-
omic distance and contact probabilities in Hi-C datasets to learn a
continuous function that relates the average genomic distance and
contact probabilities (Kaul et al., 2020). Despite the simplicity of
FitHiC2, it fails to consider the possibility of spatial dependency in
the Hi-C data.

Another recently developed method for the detection of chroma-
tin interactions from Hi-C data is the HiC-ACT which uses the
Cauchy test (Lagler ez al., 2021). HiC-ACT addresses the possible
spatial dependency ignored in the FitHiC2 method, but it is more
computationally intensive compared with the FitHiC2, (Lagler
et al., 2021). However, one of the limitations of the HiC-ACT
method is that it is a post-processing method, which only requires
bin identifiers and probabilities generated from other methods ra-
ther than the raw Hi-C data.

Finally, all these previous methods often classify the observations
into only two classes: non-random contacts (peaks) and random
contacts (noise). Nevertheless, it is possible to have more than two
classes due to the nature of the Hi-C approach. For example, a non-
random contact may have similar bias information to a random con-
tact, which may lead to a misclassification of this pair of regions by
the existing methods.

In this article, we present ZipHiC, a hidden Markov random
field-based Bayesian approach to identify significant interactions in
Hi-C data. This new model addresses several issues with current
models. First, we improve on existing methods by introducing the
dependency of neighbouring regions in the two-dimensional space
and adopt the Approximate Bayesian Approach (ABC) to deal with
the intractable normalizing constant in the Potts model, a Markov
random field-based model (Wu, 1982). Second, our model is compu-
tationally tractable and can be applied chromosome wide. Third,
the number of classes under consideration can be naturally extended
to more than two. We focus our analysis on intra-chromosomal
interactions due to the fact that about 95% of non-random interac-
tions are found within chromosomes (Jin et al., 2013; Xu et al.,
2016b). Most importantly, we use ZipHiC to model Hi-C contact
maps in Drosophila cells and human cells and explore biases intro-
duced by GC content, transposable elements (TEs) and DNA acces-
sibility. Finally, we also model micro-C data in human ES cells and
compare it to a similar Hi-C dataset in terms of the identified signifi-
cant contacts and biases.

2 Materials and methods

2.1 Ziphic

2.1.1 Notations

ZipHiC uses the contact matrix between pairs of bins generated
from Hi-C experiments. Let y;, 0 < i < j < N denote the observed
contact frequency between bin i and bin j in N total bins and D; rep-
resent the genomic distance between bin i and bin j. Let GC;; repre-
sent the average percentage of Guanine and Cytosine, TE;; represent
the average number of transposable elements (TEs) and ACC;; repre-
sent the average DNA accessibility score in bins 7 and j. For simpli-
city, we use s = {i,j} to denote the interaction pair of bins i and j
and use D, GC,, ACC, and TE, to denote the observation value for
interaction s.

2.1.2 Mixture model for data

We use the K-component mixture density to model our data y;,
where the first component is a zero-inflated Poisson (ZIP) distribu-
tion for noise (see below), while the other components follow
Poisson distributions:

K
fi) = ZIP(e, 20 + 3" oy Pois(2) (1)
k=2

where 7 is the probability of extra zeros, /157.“ is the mean of the kth
component. o is unknown percentage of kth component subject to

K
the constraint ) oy, = 1.

k=1
The above mixture model can be interpreted via a latent variable
framework. We introduce the latent variable zjj = k,k =1,2,... K,

where z; = k means that y;; follows the distribution of component
k. Furthermore, /ll(-,- ) represents the mean interaction of bins i and j if
it is from the kth component. The unknown number of mixture
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components K makes the framework more flexible for different
scenarios. Our model accommodates increasing from 2 components
to any number of components. Nevertheless, in this article, we
found that K = 3 is sufficient to model the data and, thus, we did not
use more than three components in our analysis.

Due to the fact that the Hi-C contact map displays excess zero-
counts and that the mean and variance are not the same, we assume
that the noise follows a ZIP distribution rather than a Poisson distri-
bution. In particular, a ZIP distribution has the mean (1 — 1)/ and
variance A(1 — 7)(1 + t4). Furthermore, we assume that the sources
of biases can be corrected by modelling }.gk) with s = {i,j}, k=
1,2,...,Kas

log(i{) = B + B log(Ds) + B39 log(GCy) + B log(TE)

2
+/fff) log(Accs) 2)

2.1.3 Potts model

To introduce the spatial dependency, our method utilizes the HMRF
for the hidden components. The HMRF is a generalization of the
hidden Markov model (HMM). The HMRF has been widely used in
areas such as image analysis (Zhang ef al., 2001), gene expression
data analysis (Wei ez al., 2008) and a population genetics study
(Francois et al., 2006). We adopt the Potts model (Wu, 1982) based
on a Markov random field which provides a flexible way to model
spatially dependent data as our prior for the latent variable z,. The
latent variable z adopting the Potts model is written as

paly) = ﬁeXp (”/ > 5%) (3)

(s~t)

where J,, is the Kronecker symbol which takes the value 1 when z,
=z, and 0 otherwise. Label ¢ defines the neighbouring bin pairs of s,
i.e. s ~ ¢ means s and ¢ are neighbours in the Hi-C matrix. The set of
latent variables z;; are modelled as a 2-dimensional HMREF, so the la-
tent variable z, depends on the status of the neighbours of
s={i,j}, Ne={(i+1,)),(i—=1,/),(i,j + 1), (i,j — 1)}. The neigh-
bouring 37, ) J..;, can be interpreted as the sum of the influence of
neighbours of s. Here, 7 is a non-negative interaction parameter,
with value 0 resulting in an independent uniform distribution on z;;.
Larger values of 7, such as y =1, corresponds to a high level of spa-
tial interaction, and the probability of pairs of neighbours being in
the same component is very high. C(y) is the normalizing constant,
also known as the partition function, which is written as

C) =) exp <7 (Z 5) (4)

z s~t)

where Y , indicates the summation over z; at all interactions s and
it depends on the interaction parameter y. The normalizing constant
is computationally intractable in higher order. To overcome this
complication, methods such as the likelihood-free approach can be
used. Here, we use the Approximate Bayesian Computation model
(ABC) (Beaumont et al., 2002).

2.1.4 Approximate Bayesian Computation model (ABC)

With a given dataset Y = (y1,y2,...,y,) that is associated with the
models in Equations (1), (2) and (3), the ABC algorithm (Beaumont
et al., 2002) used here can be described as follows.

1. Simulate an initial value yo from the prior distribution 7o (y);
Generate a parameter value from the posterior distribution
n(y]Y) o< mo(y)p(217)5

3. A new value of y* and y* is simulated jointly from (1), (2) and
3)

4. Compute the absolute genomic distance or Euclidean distance d

between the simulated data and the observed data;
5. Fix a tolerance € or use an empirical quantile of d(y*,y) which
often corresponds to 1% quantile (Beaumont ez al., 2002)

6. Accept y* if the absolute genomic distance is less than ¢, other-
wise reject and start from step 1 again.

2.1.5 Bayesian inference

To infer parameters, we adopt the Bayesian approach which is based
on the posterior distribution. The posterior distribution is propor-
tional to the product of the prior and likelihood. We make use of the
Empirical Bayes approach, which uses a hierarchical structure to de-
termine the prior, where the prior is determined by a distribution
with parameters called hyper-priors. The hyper-priors are estimated
from the dataset which means that it is less affected by mis-
specification of priors.

We also use the conventional Bayesian approach. For the con-
ventional Bayesian approach, we set the priors of our fs to follow
the normal distribution. For example, we set the prior of
B ~ N(BY;2,1), 7~ B(;10,5) and set my = 0.6. See Section 3
and Supplementary Material for more analysis on the sensitivity of
using different priors.

The noise and signal components are allocated based on the
prior information introduced into our prior distributions. For the
two-component model, we considered that the smallest mean repre-
sents the noise component and the largest mean represents the mean
signal. For the three-component model, we considered that the
smallest mean represents the noise component, the intermediate
mean represents the true signal and the largest mean represents the
false signal. Thus, we labelled the first component as noise, the se-
cond component as true signal and the third component as false
signal.

2.2 Datasets and preprocessing

2.2.1 Drosophila dataset

To test the performance of the model, we used a high-resolution Hi-
C map of Kc167 cell lines in Drosophila from Eagen et al. (2017).
The raw data was downloaded and preprocessed with HiCExplorer
following the set of parameters from Chathoth et al. (2022) and
Chathoth and Zabet (2019). Briefly, we aligned each pair of the PE
reads to Drosophila melanogaster (dm6) genome (dos Santos et al.,
2015) using BWA-mem (Li and Durbin, 2010) (with options -t 20
-A1 -B4 -ES50 -LO). HiCExplorer was used to build and correct the
contact matrices and detect enriched contacts (Ramirez et al., 2018).
The contact matrices were built using 2 Kb bins and then exported
in text format to be loaded into R.

For DNA accessibility in Drosophila Kc167 cells data we used
DNasel-seq data from Kharchenko ez al. (2011), while, for TE anno-
tation in Drosophila, we used FlyBase (dos Santos et al., 2015).

We detected TADs using HiCExplorer at 2 Kb resolution,
similarly as done in Chathoth et al. (2022) and Chathoth and
Zabet (2019). Briefly, TADs had at least 20 Kb width, a P-value
threshold of 0.01, a minimum threshold of the difference between
the TAD-separation score of 0.04, and FDR correction for mul-
tiple testing (—-step 2000 —minBoundaryDistance 20 000 —pvalue
0.01 —delta 0.04—correctForMultipleTesting fdr).

2.2.2 Human datasets
We also used Hi-C and micro-C datasets in H1-hES cells from
Krietenstein et al. (2020). We used the same preprocessing pipeline
as for the Drosophila dataset. Briefly, we aligned each pair to the
human genome hg38 (Schneider et al., 2017) using BWA-mem (Li
and Durbin, 2010). HiCExplorer was used to build and correct the
contact matrices at 10 Kb resolution and detect enriched contacts
(Ramirez et al., 2018).

Furthermore, we used DNasel-seq for DNA accessibility from
ENCODE consortium (Thurman et al., 2012) and TE annotation
from RepeatMasker http://www.repeatmasker.org.

2.3 Comparison to other tools

In this article, we compare our new method ZipHiC to three other
tools: (i) FastHiC (Xu ez al., 2016a), (ii) HiCExplorer (Ramirez
et al., 2018) and (iii) Juicer (Durand et al., 2016). First, we generate
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the enriched interactions using a JAVA implementation of FastHiC
which uses expected counts and, for that, we used the values esti-
mated by the HiCExplorer (Ramirez et al., 2018).

Second, we used the HiCExplorer generated matrices and cor-
rected them using the following values: (i) [-1.8,5.0] for Hi-C in
Kc167 cells, (if) [-2.4,5.0] for Hi-C in H1-hES cells, (iii) [-2.0,5.0]
for micro-C in H1-hES cells, (iv) [-1.7,5.0] for Hi-C biological repli-
cate 1 in Kc167 cells and (v) [-1.7,5.0] for Hi-C biological replicate
2 in Kc167 cells; see Supplementary Figure S1 (Ramirez ez al.,
2018). Then, we generated the enriched contacts from the corrected
matrix using hicFindEnrichedContacts tool with observed
over expected method (-method obs/exp) (Ramirez et al., 2018).

Third, we used Juicer to generate enriched contacts by calling
dump tool from Juicer tools. In particular, we used the observed
over expected method (oe) and Knight-Ruiz normalization (KR) at
2 Kb resolution for the Hi-C data in Kc167 cells and at at 10 Kb
resolution for the Hi-C and micro-C data in H1-hES cells (Durand
etal.,2016).

Note that, to capture TE biases, we recommend not to use mask-
ing of the genome or to remove reads with multiple alignments
(using —non-deterministic option if available).

The R scripts used to perform the analysis can be downloaded
from https://github.com/igosungithub/HMRFHiC.git.

3 Results

3.1 Using the two-component model on simulated data
First, we considered the case of a two-component model (signal and
noise) and evaluated whether this model can correctly estimate the
sources of biases associated with Hi-C contact matrix using simu-
lated data. We simulated a dataset of #=2500 observations from
the mixture model (1), with K= 2. The simulation studies are based
on outputs of MCMC algorithms with 20 000 iterations and 10 000
burn-in steps. We considered using either informative prior or
Empirical Bayes method, which has been used previously to analyze
missing data (Carlin and Louis, 2000). Furthermore, there are three
cases under different component proportions: (i) when the propor-
tion of the noise is greater than the signal, (ii) when the proportion
of the noise and the signal is the same, (iii) when the proportion of
noise is less than the signal. Finally, we also used different starting
values to justify the convergence of MCMC algorithms.

We studied the sensitivity of our model to different sets of prior
parameters values using the traditional informative prior and
Empirical Bayes method. The latter, the prior of the Empirical Bayes
method, is based on the hyper-prior determined by the dataset.
Supplementary Table S1 shows that the two-component model is
able to estimate the true value accurately when using either the in-
formative (fixed) or the Empirical Bayes method for the prior distri-
bution. In order to illustrate the effect of using one of the priors
(fixed prior or Empirical Bayes), we included only one covariate, D;;
(genomic distance) from Equation (2). Our results show that the
estimates of the posterior means of the parameters are accurate for
both approaches of inferring the prior distribution. For our down-
stream analysis, we used the Empirical Bayes method.

Next, we evaluated the estimated posterior means of the parame-
ters for our regression model (see Equation 2). We used a fixed in-
formative prior and the component percentages (as) in Equation (1)
are set as oy = 0.7 and o = 0.3, showing a higher percentage of
noise to signal. Supplementary Table S2 shows that our method was
able to estimate the true parameters accurately despite the higher
noise. We also check our estimated posterior means with respect to
their credible intervals, which are usually used in Bayesian analysis
and have similar interpretation to confidence intervals. The main
differences between our estimated posterior means and the true val-
ues we selected for our parameters fall within +0.02, and our esti-
mated posterior means are all significant as they fall within the 95%
credible intervals. In addition, when evaluating Supplementary
Tables S1 and S2 and analyzing the trace plots of all our simula-
tions, we did not observe label switching; i.e. we are able to identify
each components parameters distinctly without any unidentifiability

issues. Furthermore, in Supplementary Tables S3 and S4, we show
that our method is also robust to different proportions of noise and
signal (see Supplementary Material).

3.2 Hi-C data analysis with a two-component model
Following the validation of our model on simulated data, we next
used the two-component ZipHiC model on real Hi-C data. In par-
ticular, we used a dataset from Eagen et al. (2017) in a Kc167 cell
line in Drosophila at 2 Kb resolution and focused our analysis on
chromosome 2L. As mentioned earlier, the aim of our proposed
method is to detect significant interactions, which we called true sig-
nal, by taking into consideration the biases associated with Hi-C
dataset.

First, we considered the 31 375 observations from a 500 Kb re-
gion (2L:1-500 000), resulting in 250 unique pair of bins in order to
compare our method to existing statistical methods. FastHic (Xu
et al., 2016a) is an updated version of the HMRFBayesHiC (Xu
et al., 2016b) as both methods use a hidden Markov random field
(HMRF)-based Bayesian method and Ising model (Ising, 1925),
which accounts for the spatial dependence in peak calling. Note
that, we only used 31 375 observations, because of the high compu-
tation time of the FastHic (Xu et al., 2016a). In contrast to ZipHiC,
FastHic (Xu et al., 2016a) method involves calculating the expected
frequencies, which is computationally intensive and can be done
using the approach in Lieberman-Aiden et al. (2009).

Based on the Monte Carlo draws from the posterior distribution
of our ZipHiC model, we computed whether the estimated values of
our parameters are significant or not (see posterior means values in
Supplementary Tables S5 and S6 in Supplementary Material).
Figure 1 shows the Venn diagram of the biologically significant
interacting pairs of bins using ZipHiC two-component model com-
pared to FastHic (Xu et al., 2016a). ZipHiC recovers 87% (21 061)
of the interactions detected by FastHic (Xu et al., 2016a); see
Figure 1. We noticed that the FastHic (Xu et al., 2016a) method dis-
covered an additional 3106 interactions as being biologically signifi-
cant, suggesting that our model is slightly more conservative in
detecting significant interactions. Interestingly, both methods
detected 7134 interactions as noise (random collision). A further in-
vestigation of the additional significant interactions detected by the
FastHic (Xu et al., 2016a) and not by our method, showed that the
FastHic (Xu et al., 2016a) has a higher false discovery rate than our
method by falsely classifying the interactions with 0 frequency as
being significant.

3.3 Hi-C data analysis with a three-component model

One limitation of previous studies was the restriction to two compo-
nents (noise and signal). Here, we further increased the number of
components from K=2 to K=3 by adding a new component and
we applied this model to the same 500 Kb region of chromosome 2L
(2L:1-500 000). This new component accounts for interactions that

3,106 74

Fig. 1. Comparison between ZipHiC and FastHiC Venn Diagram showing true sig-
nal comparison between our proposed method (ZipHiC) and FastHiC on sub region
of chromosome 2L in Drosophila Kc167 cells. We considered that two interactions
detected by the different tools are common if both anchors overlap fully, that is, the
start and end of an anchor in one pair matches the start and end of corresponding
anchor in the other pair. The parameters for detecting the significant interactions
can be found in the Section 2
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ZipHiC has misclassified as signal due to conflicting information
both in the contact frequencies and sources of bias and, thus, we call
this new component false signal. For example, if a pair of interacting
bins have high contact frequency (i.e. Hi-C retrieves a high number
of interactions between the two regions of the genome), but their
sources of bias closely exhibit that of the noise component, this pair
of bins can be classified to the false signal component.

First, we compared the detected significant interactions in the
three-component ZipHiC model with the ones in the two-
component one and from FastHic. Figure 2 shows that by adding an
additional component, we detect less than 1% of additional interac-
tions (231) overlapping with the FastHic (Xu et al., 2016a) method.

To evaluate whether the new component in our method (false
signal) results in better performance of our method, we conducted
model selection analysis using the Deviance Information Criterion
(Spiegelhalter et al., 2002) and in particular, we used a modified
DIC method (Li et al., 2020) for latent variable models. The value
of the DIC for the two-component model is -331 334 746 and for
the three-component model is -401 662 547. These results show that
the best model to analyze this particular Hi-C dataset is the three-
component model (thus, including the false signal).

To better understand the contributions of the different compo-
nents, we investigated the posterior means of our estimated fs for
the noise, signal and false signal components (see Table 1). The val-
ues of fs correspond to the coefficients of the intercept and the log
of genomic distance, GC content, TEs content and DNA accessibil-
ity. The posterior means of noise levels of the interaction for all
components, except GC content, had f values with negative signs,
indicating that the noise and signal were negatively correlated. The
negative sign of f; parameter (genomic distance) indicates that
when genomic distance between two bins increases, then the average
of their interaction noise decreases. Similarly, for 3 (TEs) and f4
(DNA accessibility), our results indicate that the higher the TEs con-
tent or the level of DNA accessibility is, then the lower the inter-
action noise will be, but only for DNA accessibility the effect is
large. In other words, noise levels in the Hi-C signals are higher in
dense chromatin and will have a higher impact on the observed
enriched interactions, unless correctly accounted for. Nevertheless,
for B, (GC content), we found that higher GC content corresponds
to a higher interaction noise. While this is significant, the contribu-
tion of GC content is relatively small to the noise levels in Hi-C
data. Interestingly, we noticed in Supplementary Table S5 and
Table 1 that our estimated posterior means for the noise compo-
nents are similar if we use a two-component or a three-component
model. This can be explained by the fact that most of the third com-
ponent (false signal) in our model is influenced by the second com-
ponent (true signal).

For the false signal component, we noticed that the posterior
mean and credible intervals for the genomic distance (f;) parameter
of the false signal component is significant. Furthermore, the nega-
tive value indicates that the increase in genomic distance of two bins
results in a decrease in the false signal interaction. The effect size of

FastHiC ZipHiC(false)

o

ZipHiC

Fig. 2. Venn Diagram showing comparison between the HMRF (Xu et al., 2016b),
ZipHiC-2 (our true signal) and ZipHiC-3 (our false signal) of the sub region of
Chromosome 2L of Drosophila Melanogaster. We considered that two interactions
detected by the different tools are common if both anchors overlap fully

genomic distance on false signal is higher than compared to noise
and was previously unaccounted for. For DNA accessibility (B4), the
negative value of the posterior mean and the credible intervals
means that an increase in DNA accessibility leads to a decrease in
the false signal interaction, but this is relatively small. Similarly for
the posterior mean of the GC content (f5,), the value is positive and
indicates that higher GC content corresponds to an increase in the
false signal. However for TEs (f3) the credible intervals of false sig-
nal component covers 0, which means the result is not significant.

Furthermore, we noticed that the posterior mean of true signal
for GC content (f§;) decreased when the third component (false sig-
nal) was added (compare from Tables 1 and Supplementary Table
S5). This means that the influence of GC content was reduced when
taking into account false signal. In addition, we noticed that the esti-
mated posterior mean of (TEs) 83 for the signal component is signifi-
cant and the false signal component is insignificant when the third
component was added. This indicates that in order to properly esti-
mate the true signal over TEs a three-component model might be
required and previous models that did not include a false signal
might have obtained inaccurate enriched contacts over TEs.

When we removed all the sources of bias (modelled as covariates
in the regression model, equation 2), our method failed to detect any
significant interactions in all possible 31 375 interactions from a
500 Kb region of the 2L chromosome (2L:1-500 000). The result
clearly shows that the biases in the Hi-C data does affect the detec-
tion of significant interactions.

3.4 Whole chromosome analysis using the three-

component ZipHiC model

Given that our model performs best with three components on this
particular Hi-C dataset in Drosophila Kc167 cells, we analyzed the
whole chromosome 2L (2L:1-23 513 700) using the three-
component ZipHiC model and identified 12.82M significant inter-
actions (see Supplementary Table S7 for the posterior means of the
model). We observe that most of the detected significant interactions
are found closer to the diagonal and that the significant interactions
formed triangular shapes along the diagonal which sometimes over-
lap each others; see Figure 3.

These triangular shapes resemble Topologically Associated
Domains (TADs) (Dixon et al., 2012; Hansen et al., 2018; Nora
et al., 2012; Sexton et al., 2012) and are one of the main features of
Hi-C data. However, we found that the majority of significant inter-
actions connect regions of the genome that are very far apart (be-
tween 1 Mb and 10 Mb) (see Fig. 4A), which are genomic distances
larger than the usual size of TADs in Drosophila (Chathoth et al.,
2022; Chathoth and Zabet, 2019; Ramirez et al., 2018) and suggests
that they connect bins located in different TADs. Indeed, this is the
case and approximately 98% of significant interactions are outside
TADs (see Fig. 4B). Interestingly, we found that almost half of the
significant interactions connect promoters with other parts of the
genome or with other promoters, which indicates they have a func-
tional role (see Fig. 4C). The majority of the significant interactions
connect genes with either themselves or other genes, promoters or
other regions of the genome (potentially enhancers). Note that we
also performed a genome wide analysis and these results are true for
all chromosomes (see Supplementary Fig. S2).

Finally, we compared the significant interaction detected by
ZipHiC with significant interactions detected by two popular tools:
HiCExplorer (Ramirez et al., 2018) and Juicer (Durand et al.,
2016). Figure SA shows that high proportions of significant interac-
tions detected by ZipHiC are common with both HiCExplorer and
Juicer (12.1M). In addition, ZipHiC detects 625K interactions
detected only by HiCExplorer and missed by Juicer and 41K signifi-
cant interactions detected only by Juicer and missed by
HiCExplorer. ZipHiC uniquely identifies 58K significant interac-
tions, which are missed by the other tools. Overall, we found that
ZipHiC recovers almost all HiCExplorer (12.75M) significant inter-
actions (99.2% overlap), but also an additional 99K significant
interactions missed by HiCExplorer. Significant interactions
detected by Juicer have a smaller overlap with the ones identified by
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Table 1. Posterior means of our estimated fis as shown in Equation 2 for noise, signal and false signal components

Posterior mean (signal), k=2

Posterior mean (false signal), k=3

Parameters Posterior mean (noise), k=1
Po (intercept) —84.00 (-84.90, -83.64)

B1 (genomic distance) —10.05 (—10.16, —10.03)
p2 (GC content) 0.34 (0.34, 0.35)

B3 (TEs —0.76 (—0.79, —0.68)

N (Access1b1hty) —3.54 (—3.57, -3.44)

13.06 (12.80, 13.35) 499.34 (498.39, 500.21)

( (
~0.90 (—0.92, —0.89) —64.16 (—64.45, —63.97)
0.36 (0.35,0.37) 0.30 (0.09, 0.57)
~0.10 (—0.16, —0.03) 0.54 (—0.40, 1.03)
0.15 (0.11, 0.20) ~0.70 (—1.04, —0.15)

Note: The 95% credible intervals are shown inside the brackets. The first component (k = 1) represents the noise component, the second component (k =2) rep-

resents the signal component while the third component (k = 3) represents the false signal component.

Significant interactions detected by ZipHiC in Kc167

- 0.83

t0.67

0.5

0.33

017

T
26 52 7.8 105 13.1 157 18.3 23.5Mb

2L

Fig. 3. Significant interactions on chromosome 2L in Drosophila Kc167 cells.
Heatmap showing significant interactions on chromosome 2L of Drosophila Kc167
cell line using ZipHiC three-component model. The intensity of the colour indicates
the probability, with darker colours representing higher probability

ZipHiC (94.6%), but Juicer also retrieves approximately 723K
unique significant interactions. Also in Figure 5A, we noticed that
15 significant interactions detected both by Juicer and HiCExplorer
were missed by the ZipHiC.

Figure 5B shows the overlap between the interactions classified
as false signal by ZipHiC and the significant interactions detected by
the other methods (HiCExplorer and Juicer). ZipHiC detected 1263
significant interactions on chromosome 2L as false signal. 885 of
these were detected as significant interactions by both Juicer and
HiCExplorer, further supporting the fact that these tools are
affected by false signal. Nevertheless, 375 interactions that were
detected as false signal by ZipHiC were correctly not identified by
HiCExplorer and Juicer as significant interactions, indicating that
these tools can correctly remove some artefacts from the Hi-C data.

Finally, we evaluated the robustness of the identified significant
interactions by running ZipHiC on chromosome 2L for two inde-
pendent biological replicates. We identified approximately 8.3M
significant interactions and observed an overlap between the two
biological replicates of approximately 47% (see Supplementary Fig.
S3). We further investigated the posterior means of the models of
the two replicates and found that there are negligible differences be-
tween the two replicates except for two components (Supplementary
Table S8). In particular, replicate 1 shows a high posterior mean for
false signal for the TEs component (4.4), which indicates that higher
TE content results in higher false signal interactions. In addition, we
also found that replicate 1 displays a high negative posterior mean
for false signal for the accessibility component (-5.1) indicating that
dense chromatin leads to higher false signal interactions. Altogether,
our results indicate that replicate 1 might be affected by a higher

level of false positive significant interactions at regions with high TE
content and dense chromatin.

This overlap between the two biological replicates is consistent
with the overlap of significant interactions between the two repli-
cates when using HiCExplorer and Juicer (see Supplementary Fig.
S3) and can be explained by the lower library sizes. After pre-
processing, replicate 1 had 239M valid interactions and replicate 2
had 247M valid interactions. That is approximately half of the
merged library, which had 474M valid interactions. Lower library
sizes result in more zeros in the interaction matrix and lead to less
reliable detection of significant interactions. Instead of merging bio-
logical replicates, one alternative approach consists of selecting the
overlap of significant interactions between biological replicates,
similar to ENCODE recommendations for ChIP-seq data analysis
(Landt et al., 2012). This will ensure selection of a high confidence
set of significant interactions, but at the same time would result in
missing some significant interactions.

3.5 Analysis of micro-C data in human ES cells

Micro-C is a new and improved variation of Hi-C that can generate
sub-kilobasepair 3D contacts map in mammalian systems (Hsieh
et al., 2015; Krietenstein et al., 2020). To evaluate the capacity of
ZipHiC to analyze micro-C data, we consider a small region on
human chromosome 8 (60-70 Mb) for which both micro-C and Hi-
C data is available in human ES cells (Krietenstein et al., 2020). As
we did previously, we consider both a two-component and a three-
component model (K=2 and K=3) and use the DIC to select the
best performing model (for the 3 components models of Hi-C and
micro-C data see Supplementary Tables S9 and S10, respectively).
Interestingly, in the case of this specific region on the human
chromosome 8, the two-component model has the lowest DIC
(DIC; = 194721.1 and DIC; = 469 950.5) and, thus, was selected
for the analysis. This indicates that the human ES cell Hi-C and
micro-C data in this region of the genome is not affected by false
positive signals as it was the case with the Drosophila whole genome
analysis in Kc167 cells.

Figure 6 shows that 96% (18 498) of significant interactions
identified by ZipHiC in the Hi-C dataset are recovered as significant
interactions in the micro-C dataset for this particular region of the
human genome (60-70 Mb) and only a negligible number of interac-
tions are missed (4%). Similarly, only 3% of the micro-C interac-
tions are novel and previously missed by Hi-C. Our results confirm
that micro-C can reproduce accurately the results of Hi-C despite a
significantly lower library size.

We also investigated the overlap between the significant interac-
tions identified by ZipHiC, Juicer and HiCExplorer and found that
the three methods agree well (see Supplementary Fig. S3).
Nevertheless, ZipHiC was also able to analyze the models and
extract the sources of bias in the Hi-C and micro-C datasets. In
micro-C, the chromatin is fragmented to mononucleosomes using
micrococcal nuclease (MNase), which increases fragment density.
The digestion with MNase raises the possibility that micro-C data is
affected by DNA accessibility biases, which would not be the case
with Hi-C data.

Table 2 shows the model parameters for the two-component
model for both micro-C and Hi-C data. Interestingly, we observe
that the effect of DNA accessibility on the mean signal is higher
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Fig. 4. Characterization of significant interactions on chromosome 2L in Drosophila Kc167 cells. (A) Distribution of the genomic distance between the two bins for all signifi-
cant interactions. (B) Classification of significant interactions as either outside TADs when the two bins are located in different TADs or inside TADs when the two bins are
located in the same TAD. (C) Percentage of significant interactions that have promoters at one of the bins. We consider the cases of: (P) promoters (200 bp upstream and 50 bp
downstream of TSS), (G) genes (including exons, introns, 5’UTRs and 3’ UTRs and excluding promoters) and (O) other regions (excluding promoters and genes)
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Fig. 5. Comparison with other tools. (A) Venn Diagram showing the comparison be-
tween significant interactions detected by ZipHiC, HiCExplorer and Juicer. We ana-
lyzed chromosome 2L in Drosophila Kc167 cells. We considered that two
interactions detected by the different tools are common if both anchors overlap
fully. (B) The number of false signals identified by ZipHiC detected as true signals
by HiCExplorer and Juicer

Fig. 6. Venn Diagram showing significant interactions (signal) comparison identified
by ZipHiC on micro-C and Hi-C data in human ES cells within 60-70 Mb region of
human chromosome 8. We considered that two interactions detected by the differ-
ent tools are common if both anchors overlap fully. The parameters for detecting
the significant interactions can be found in the Section 2

even compared to the effect of the genomic distance between the
bins on the mean signal. A similar effect in the mean signal was also
observed in the case of Hi-C data, but that was approximately half
compared to the level observed in the micro-C data. In the case of
the whole genome Hi-C analysis in Drosophila, we identified limited
effects of accessibility on the mean signal but strong effects on the
noise component. For this particular region in the human genome,
we observed the opposite, strong biases introduced by accessibility
in the mean signal (especially in the micro-C data), but significantly

reduced biases on the noise component. The beta values have a posi-
tive sign indicating that more accessible regions of the genome dis-
play a higher signal, but only modest biases in the noise levels.

Furthermore, we also identified a strong contribution to the
noise of the signal from the TE content. This was particularly in the
micro-C dataset, but also present in the Hi-C data despite being ten
times lower. This means that a higher TE content leads to a higher
noise, specifically in the micro-C data. In addition, micro-C data
also display low bias of TE content in the mean signal, indicating
that higher TE content leads to a slightly lower signal in micro-C,
but not in Hi-C. Note that in the case of whole genome analysis in
Drosophila, there was only a relatively medium bias from TE con-
tent in the noise and false signal components, but not in the true sig-
nal component.

4 Discussion

In this manuscript, we introduce a new method called ZipHiC to
analyze Hi-C and micro-C data. ZipHiC models the contact fre-
quencies as a Zero-Inflated Poisson distribution due to the fact that
this enables modelling the presence of the overdispersion which
affects Hi-C data (Varoquaux et al., 2021). In addition, ZipHiC
also uses a hidden Markov Random Field (HMRF)-based Bayesian
method, the Potts model, to help account for dependency in Hi-C
dataset. Most importantly, the Potts model allows an increase in the
number of components (k =2,3,...K) and, thus, to account for
additional components such as false signal. Finally, our method uses
a likelihood free approach, ABC, to account for the limitation in the
normalizing constant in the Potts model. Through our extensive sim-
ulations on simulated and real data, we show that our method out-
performs existing methods in distinguishing between noise and
signal.

First, we found that a three-component model (specifically con-
sidering the false signal) performed better on a very high resolution
dataset in Drosophila Kc167 cells (Eagen et al., 2017). However, a
two-component model (considering only the noise and the signal)
performed best for the Hi-C and micro-C datasets in human ES cells
(Krietenstein et al., 2020) on a region on chromosome 8. This
indicates that the choice of whether to use a two-component or a
three-component model needs to be driven by the data, since not all
datasets will be affected by a false signal(s) component. In addition,
we identified different biases between different organisms
(Drosophila and humans) that are affected by different TE compos-
ition or DNA accessibility, but also between different techniques on
the same material. This indicates that there are sample specific
biases that can affect the identification of significant interactions.

In Drosophila, we found that the genomic distance between bins
has the highest contribution to both the noise and the false signal,
where interactions further from the diagonal display less noise and
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Table 2. Posterior means of our estimated fis as shown in Equatio

n 2 for noise and signal components of human Chromosome 8, region

60 000 000:70 000 000 for data generated using the Hi-C and micro-C method

Parameters (Hi-C) Posterior mean (noise), k=1 Posterior mean (signal), k=2
Po (intercept) 0.88 (0.53, 1.36) 11.13 (10.92, 11.36)

B1 (genomic distance) 0.13 (-0.02, 0.25) —-0.79 (-0.81, —0.77)

B2 (GC content) 0.33(0.32,0.33) 0.32(0.32, 0.34)

B3 (TEs) 1.01 (0.99, 1.15) 0.02 (0.01, 0.03)

Ba (Accessibility) 0.50 (0.43, 0.59) 1.00 (0.99, 1.03)
Parameters (micro-C) Posterior mean (noise), k = Posterior mean (signal), k=2

Po (intercept)

1.05(0.81, 1.30

8.08 (7.65, 8.39)

( ( ) (
B1 (genomic distance) 0.14 (0.12, 0.17) —1.41 (-1.42, —1.38)
B2 (GC content) 0.33(0.32, 0.34) 1.02 (0.12, 1.80)
B3 (TEs) 10.00 (9.99, 10.02) —0.37 (—0.41, —0.33)
Ba (Accessibility) 0.40 (0.35, 0.41) 1.83(1.70, 1.92)

Note: The 95% credible intervals are shown inside the brackets. The first component (k = 1) represents the noise component, the second component (k =2) rep-

resents the signal component.

fewer false signals compared to interactions closer to the diagonal.
DNA accessibility contributed strongly to the noise component and
partially to the false signal in Drosopbila. In particular, less access-
ible regions of the genome displayed higher noise and more false sig-
nals. We also observed a moderate effect of TEs on the noise
component and false signal in Drosophila, where regions with
higher content of TEs displayed lower noise, but higher false signals.

The majority of these significant interactions connect regions of
the genome that are located in different TADs and this is explained
by the larger genomic distance between the two bins detected by
ZipHiC in this dataset. The genomic distance between bins is larger
than previously reported in Drosophila cells (Chathoth and Zabet,
2019), due to the fact that in this study we used a 2 Kb resolution
and in the previous study a higher resolution was used (DpnlI re-
striction sites, on average every 529 bp).

Most importantly, we identified that approximately half of these
significant interactions in Drosophila connect promoters with either
other promoters, genes or other regions of the genome. This raises
the possibility that these significant interactions connect promoters
with regulatory regions. Nevertheless, the large number of detected
significant interactions and the number of enhancers identified in
Drosophila cells (Arnold et al., 2013; Wolfe et al., 2021; Yanez-
Cuna et al., 2014), indicate that most of them would not connect
promoters with enhancers. This is likely the case and one possibility
is that a large part of the significant interactions account for gene
domains being formed at actively transcribed genes, where the pro-
moter of the gene makes 3D contacts with different parts of the gene
(exons, introns or 3°UTRs) (Rowley et al., 2019). Indeed, we found
that the majority of significant interactions involve genes, further
supporting this model.

Furthermore, we found that micro-C data reproduces the major-
ity of the significant interactions (96%) detected on a much larger
Hi-C library. However, the micro-C data displays a higher bias in
the signal to DNA accessibility (more accessible regions of the gen-
ome will display higher signals) even compared to genomic distance
between the bins and this needs to be accounted for. Interestingly, in
this particular region, the noise component was particularly affected
by the TE content, where more TEs lead to a higher noise in the
micro-C data. The stronger effect of TEs on micro-C data in human
cells is not surprising given the fact that human genome has a higher
percentage of TEs compared to Drosophila.

Our model uses the DNA accessibility, TE content and GC con-
tent as external inputs to compute the biases introduced by these fac-
tors when detecting significant interactions from HiC data. One
question that arises is whether accessibility, TE content and GC con-
tent are truly experimental biases or factors contributing to the 3D
genome organization. One would expect that if these factors (TE
content, accessibility and GC content) would impact the 3D genome
architecture and are not introducing biases in the experiments, then

their relative contribution would be the same in different experi-
ments on the same material. For example, when performing the Hi-
C and micro-C on the same material, we expect that accessibility
has the same posterior mean of the true signal for both experiments.
However, what our results show is that in the case of micro-C the
value is almost double as in the case of Hi-C. This suggests that it is
not the underlying biology driving this, but, most likely, these are
experimental biases. Nevertheless, our work cannot exclude that ac-
cessibility, TE content and GC content have some contribution to
the 3D genome organization. For example, TEs have the possibility
to move binding sites for architectural proteins throughout the gen-
ome (Schmidt ef al., 2012) and, in this scenario, presence of TEs
would contribute to the observed 3D chromatin organization.
However, aligning reads from genomics libraries (including Hi-C) to
regions of the genome containing TEs is often challenging and, thus,
high TE content would correspond to higher biases in the HiC data
(Taylor et al., 2022).

A limitation of ZipHiC compared to tools such as HiCExplorer
and Juicer is the computation time when analyzing whole genomes.
In the case of a standard computer with 4 cores, ZipHiC takes ap-
proximately 72hours to analyze a whole genome dataset in
Drosophila at 2 Kb resolution. This is slower compared to
HiCExplorer and Juicer, which can detect the significant interac-
tions for the same dataset in approximately 4 hours on a similar
computer system. Note however that, ZipHiC models additional
features compared to HiCExplorer and Juicer, namely it models spa-
tial information and allows multiple components. Compared to an-
other tool that models spatial information and only two
components (FastHiC), ZipHiC is faster; i.e. we were not able to
run FastHiC on whole chromosome 2L in Drosophila at 2 Kb reso-
lution within a feasible time.
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