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ABSTRACT: Parasitic infections are a major global health issue causing significant
mortality and morbidity. Despite substantial advances in the diagnostics and treatment of
these diseases, the currently available options fall far short of expectations. From diagnosis
and treatment to prevention and control, nanotechnology-based techniques show promise
as an alternative approach. Nanoparticles can be designed with specific properties to target
parasites and deliver antiparasitic medications and vaccines. Nanoparticles such as
liposomes, nanosuspensions, polymer-based nanoparticles, and solid lipid nanoparticles
have been shown to overcome limitations such as limited bioavailability, poor cellular
permeability, nonspecific distribution, and rapid drug elimination from the body. These
nanoparticles also serve as nanobiosensors for the early detection and treatment of these
diseases. This review aims to summarize the potential applications of nanoparticles in the
prevention, diagnosis, and treatment of parasitic diseases such as leishmaniasis, malaria,
and trypanosomiasis. It also discusses the advantages and disadvantages of these
applications and their market values and highlights the need for further research in this
field.

1. INTRODUCTION
Parasitic diseases have a devastating impact on millions of
people, particularly those living in impoverished regions of
Africa, Asia, and Latin America. These diseases result in
significant suffering and death, with malaria being a leading
cause of mortality.1,2 According to the World Malaria Report
2022, there were 619,000 malaria-related deaths worldwide in
2021, with over half of the world’s population at risk of
contracting the disease. 95% percent of malaria cases and 96%
of malaria-related deaths occurred in African countries.
Additionally, 80% of those who died were children under the
age of five.3 Leishmaniasis is a neglected tropical disease
(NTD) and stands next to malaria in terms of morbidity and
mortality. The specific Leishmania species dictates the disease’s
clinical manifestations, spanning from skin-related issues to
potentially fatal visceral conditions. Annually, 700,000 to 1
million new leishmaniasis cases are documented. Cutaneous
leishmaniasis comprises 85 to 95% of these cases, while visceral
leishmaniasis accounts for the remaining 50,000 to 90,000
instances.4 Another Neglected Tropical Disease (NTD),
Human African Trypanosomiasis (HAT), commonly known
as sleeping sickness, jeopardizes the lives of around 70 million
people in sub-Saharan Africa. Without medical intervention,
this illness almost invariably leads to death.5 Chagas disease,
also known as American trypanosomiasis, is another affliction
caused by trypanosomes, affecting an estimated 6−7 million

people globally, predominantly in Latin America.6 Antiparasitic
drugs such as pentamidine and nifurtimox address trypanoso-
miasis, while chloroquine and artemisinin-based therapies
combat malaria. These treatments either eliminate or inhibit
parasite growth. Repurposed drugs like miltefosine and
amphotericin-B, replacing antimonial drugs, significantly
enhance leishmaniasis treatment. However, there are several
concerns associated with conventional management. One
major issue is the potential development of drug resistance
by parasites over time, rendering medications less effective.
Additionally, these drugs can cause various side effects,
including headache, nausea, vomiting, and abdominal pain,
which can reduce patient adherence to treatment.7,8 Moreover,
some antiparasitic drugs may not be effective against all
parasite species, making it challenging to select the appropriate
treatment, especially in regions with multiple parasite
species.9,7,10 Cost is another significant barrier, particularly in
resource-limited settings where access to healthcare is
limited.11
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Nanotechnology offers potential solutions to overcome these
limitations. Nanoparticles, engineered on a nanoscale, can be
designed to target and penetrate parasite-infected cells,
enabling more effective drug delivery and improved
therapeutic efficacy.12,13 By using biodegradable or biocompat-
ible materials, nanoparticles can reduce toxicity compared to
traditional drug delivery methods.14 Moreover, nanoparticles
are under investigation for their potential in various fields
including diagnostics, vector control, theranostics, bioimaging,
and resistance management. They enhance drug effectiveness
by improving the solubility, bioavailability, and sustained
release. Additionally, they can be customized with specific
ligands to detect biomarkers, enabling early diagnosis.
Nanoparticles are also being explored for vector control,
combining therapeutic and diagnostic capabilities, and utilized
in bioimaging and tracking techniques. Another promising
application of nanotechnology is the development of nano-
vaccines. Currently, vaccination appears to be the most
effective means of preventing infectious diseases. Vaccine
efficacy hinges on factors such as the stimulation of specific
adaptive immune responses and the target population.
However, many traditional vaccination approaches for parasitic
infections, involving live-attenuated pathogens, inactivated
pathogens, or subunit vaccines, have faced significant
challenges and safety concerns, falling short of delivering the
desired level of protection.15−18 To address these challenges,
nanoparticle-based formulations offer a promising solution.
They can optimize antigen and adjuvant delivery, enhance
stability, enable targeted delivery, and boost immunogenicity,
potentially paving the way for safe and effective vaccines
against parasitic diseases.19−22

Nanotechnology-based biosensors can also play a role in the
fight against parasites. Most parasitic disease detection
methods currently rely on microscopy, culture, and molecular
techniques, requiring specialized expertise, being time-
intensive, and incurring high costs, which hinder swift
diagnosis. This position places us on the brink of developing
more affordable technologies suitable for deployment in
resource-constrained settings. Nanomaterials possess unique
physical, chemical, and fluorescence properties that can be
combined with conventional biosensors to increase the
sensitivity and enable early disease diagnosis. This noninvasive
approach provides an alternative to invasive techniques and
holds promise for improved detection. While the application of
nanotechnology in the treatment of parasitic diseases is still in
its early stages, it shows great potential. Further research is
needed to fully understand its capabilities and to develop it
into a common clinical tool.23−26 This review aims to assess
the current state of various nanotechnology-based therapeutic
and diagnostic interventions and prospects they bring in the
fight against parasitic diseases such as leishmaniasis, malaria,
trypanosomiasis, and Chagas disease (Figure 1).

2. NANOTECHNOLOGY: A NEW HORIZON FOR THE
TREATMENT AND DIAGNOSIS

Nanoparticles offer promising prospects for the treatment and
diagnosis of various conditions, including parasitic infections.
Liposomes, polymer nanoparticles, solid lipid nanoparticles
(SLNs), nanosuspensions, and other types of nanoparticles like
carbon, gold, and silver nanoparticles are being extensively
researched for delivering antiparasitic drugs.27−31 These
advancements have led to improved therapeutic outcomes.
Additionally, an early and accurate diagnosis plays a crucial

role in the effective management and treatment of parasitic
infections. While parasitological and immunological tests are
commonly used for diagnosis, they often have limitations such
as cross-reactivity and reduced accuracy. In recent years,
innovative nanotechnology-based techniques have emerged as
potential solutions to enhance diagnostic accuracy.32−34

2.1. Liposomes. Liposomes are spherical structures with a
size range of 0.025−2.5 μm35 and consist of a lipid bilayer that
can serve as a drug delivery vehicle for antiparasitic drugs. The
lipid bilayer acts as a protective barrier, encapsulating the drug
either in the inner aqueous compartment or within the bilayer,
depending on its nature. This encapsulation enhances drug
stability, longevity, and efficacy while reducing toxicity.
Liposomes have demonstrated effectiveness against a wide
range of parasitic diseases, including malaria, leishmaniasis, and
Chagas disease.36,37 They have also been developed as
antifungal drugs for systemic fungal infections caused by
Candida albicans and Aspergillus f umigatus and have shown
superior effectiveness and reduced toxicity compared to
conventional antifungal drugs.38,37 They are capable of
penetrating deep into infected tissues and organs, effectively
targeting the fungal pathogens.39 In addition, liposomes can be
modified in various ways to improve their pharmacokinetic and
pharmacodynamics properties, such as their circulation time,
target specificity, and release rate.40 To improve their
pharmacokinetic and pharmacodynamic properties, liposomes
can be modified in various ways. They can be functionalized
with targeting molecules such as antibodies (immunolipo-

Figure 1. Treating parasitic diseases presents challenges, including
drug resistance, side effects, limited efficacy, and high costs.
Nanotechnology-based treatments, such as liposomes and SLNs,
enhance drug effectiveness and bioavailability. Nanotechnology aids
disease diagnosis and prevention through highly sensitive and specific
diagnostic tools. Nanovaccines offer a superior alternative to
conventional vaccination methods.
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somes)41 or peptides42 that selectively bind to specific cell
types or organs. This enhances the selectivity and effectiveness
of the medicine. Another advantage of liposomes is their
biocompatibility and biodegradability, which minimizes
significant side effects in the body.43 They can be designed
to be long-circulating, remaining in the bloodstream for an
extended period and effectively reaching their target sites.
Liposomes offer versatility in drug delivery, accommodating
various types of drugs including small molecules, proteins, and
RNA for the treatment of parasitic diseases.44 They are capable
of solubilizing hydrophobic drugs that have poor water
solubility and protecting them from degradation in the body.
Liposomes loaded with drugs have demonstrated effective
intracellular activity, allowing them to penetrate macrophages
during phagocytosis.45 The distinctive structure of liposomal
nanoparticles enables controlled drug encapsulation, release,
and functionalization with targeted moieties for drug delivery.
This mechanism of action drives their effectiveness as drug
delivery vehicles in the treatment of parasitic diseases.

2.2. Solid Lipid Nanoparticles (SLNs). Solid lipid
nanoparticles (SLNs) are small, spherical particles composed
of solid lipids at room temperature. SLNs utilize lipids, either
natural or synthetic, as a medium to adsorb, encapsulate, or
disperse drugs.46−48 They have a solid lipid core with
surfactants, with a size typically not exceeding 1000 nm.49

The lipid core’s matrix plays a critical role in controlling the
release pattern and protecting the loaded pharmaceuticals from
enzymatic and chemical degradation.
SLNs possess unique qualities such as compact size, high

drug loading capacity, vast surface area, and interactions of
different phases at interfaces. They are typically nontoxic,
biodegradable, and biocompatible, making them suitable for
various medicinal applications.50 The lipids used in SLN
formation include waxes, monoglycerides, diglycerides, trigly-
cerides, fatty acids, and steroids. SLNs can be used for both
hydrophilic and hydrophobic drugs, depending on the
manufacturing process employed.51 However, there are some
common shortcomings of SLNs. These include lipid particle
development, susceptibility to gelation, kinetics of polymorphic
changes, intrinsically low drug integration rate due to solid
lipid crystallization, and initial burst release of the drug.52

These challenges need to be addressed to optimize the
performance of SLNs as drug delivery systems.
Research indicates the potential of employing SLNs for

treating parasitic diseases, yielding superior outcomes
compared to those of conventional drugs. SLNs enhance
intracellular targeting, optimize drug distribution, reduce
dosage needs, and mitigate toxicity, all without compromising
antiparasitic efficacy.53,54 Unlike traditional oil-in-water
emulsions, polymer nanoparticles, and liposomes, SLNs offer
a unique combination of benefits: easy mass production,
excellent physiological compatibility, and degradability.55 Their
superiority over conventional counterparts positions SLNs as
compelling candidates for exploration and application in
resource-limited settings.

2.3. Nanosuspensions. Nanosuspensions are colloidal
particles on a submicron scale that contain insoluble
compounds, typically in the presence of polymers, surfactants,
or a combination of both. The size of the nanoparticles in a
nanosuspension can vary widely, typically ranging from a few
nanometers to hundreds of nanometers. The choice of
nanoparticle shape and size depends on factors such as the
intended drug delivery mechanism, target site, desired release

profile, and stability considerations.56,57 Nanosuspensions offer
several advantages, including improved drug solubility,58

enhanced bioavailability, controlled release of drugs,59 and
active ingredients.
One of the major issues with existing antiparasitic

medications is their poor solubility and low bioavailability,
which can lead to decreased treatment efficacy and the
development of drug resistance. Nanosuspensions provide a
solution to these problems by improving the solubility and
bioavailability of antiparasitic drugs.60 Nanosuspensions of
several antiparasitic drugs have been tested against animal
models and shown improved solubility and bioavailability.61−63

The increased therapeutic efficacy of nanosuspensions is
attributed to their prolonged release time, which allows for
lower dosages, reduced costs, improved patient compliance,
and increased access to treatment. While nanosuspensions
offer numerous advantages, there are also certain drawbacks
that need to be considered. The assessment of their safety,
targeting capabilities, and potential off-target effects is crucial
to ensure their effective and safe use in medical applications.
Therefore, a multidisciplinary approach is necessary to evaluate
the benefits and potential dangers of nanosuspensions in
different applications.64

2.4. Polymer-Based Nanoparticles. Polymer-based
nanoparticles, with their small size and customizable proper-
ties, have emerged as a versatile platform for various
biomedical applications. These nanoparticles are composed
of synthetic or natural polymers and have dimensions smaller
than 1000 nm.65 These particles have a high surface area to
volume ratio, which makes them attractive for use in a wide
range of biomedical applications, such as drug delivery, gene
therapy, and imaging.66

They offer several advantages such as high stability,
controlled release, and biocompatibility.67 Commonly used
polymers for synthesizing nanoparticles include poly(lactic
acid) and glycolic acid (PLGA), polyethylene glycol (PEG),
and chitosan. The core of the nanoparticles contains the
therapeutic agent, while the polymer shell or coating protects
the drug and controls its release. The release rate can be
modulated through drug−polymer interactions, breakdown of
the polymer coating, or diffusion of the drug through the
polymer matrix. Additionally, the surface of polymer-based
nanoparticles can be modified by attaching ligands or
antibodies to enhance the targeting of specific cells or tissues.
They are also nontoxic, which makes them effective for usage
in a variety of applications like imaging or therapeutics.68−70

Overall, polymer-based nanoparticles hold great potential for
the treatment and diagnosis of parasitic diseases, offering
improved drug delivery, enhanced therapeutic efficacy, and
targeted interventions.

2.5. Nanotechnology-Based Vaccines. Nanotechnol-
ogy-based vaccines have the potential to improve the efficacy
of existing vaccines and enable the development of new vaccine
formulation strategies for various parasitic diseases.71 By
utilizing nanoparticles, these vaccines enhance antigen delivery,
trigger robust immune responses, and provide opportunities
for targeted and controlled vaccine delivery. Continued
research in this field holds promise for the advancement of
antiparasitic vaccine development. Moreover, merging immune
stimulatory molecules with nanovaccines has demonstrated
favorable outcomes in preclinical investigations. Integration of
immune stimulants, like adjuvants, into nanovaccines augments
the resulting immunogenicity. By fusing immune boosters,
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such as adjuvants, into nanovaccines, the resulting immuno-
genicity is magnified, amplifying immune responses and
elevating vaccine effectiveness.72−74

Nanotechnology-based vaccines have emerged as a promis-
ing approach for the treatment of antiparasitic diseases.75

These vaccines utilize nanoparticles to enhance the effective-
ness of existing vaccines and enable the development of novel
vaccines against various parasitic diseases.76 Nanoparticle-
based vaccines offer several advantages. Adjuvants and
targeting motifs can be incorporated into the nanoparticles
to enhance the delivery of antigens to antigen-presenting cells,
thereby triggering a robust immune response against the
parasite. These nanoparticles can also be designed to facilitate
improved immunogenicity by promoting the trafficking of
antigens to local lymph nodes. Studies in leishmaniasis have
shown promising results with nanoparticle-based delivery of
DNA vaccines against murine disease.77,78

Virus-like particles (VLPs) are another type of nanoparticle
used in the development of vaccines against parasitic diseases.
VLPs are self-assembling nanoparticles that mimic the
structure of viruses but are noninfectious and have been
investigated for a range of parasitic diseases including malaria
and schistosomiasis,79 and VLP-based vaccines have been used
to deliver malaria antigens, stimulating an immune response
against the parasite.80,81 Compared to whole cell or inactivated
vaccines, VLPs do not require inactivation and maintain the
native conformation of B cell epitopes. They also have a well-
defined composition and can be easily scaled up for
production.82

3. EMPLOYMENT OF NANOTECHNOLOGY IN
PARASITIC DISEASES

3.1. Leishmaniasis. Leishmaniasis is a parasitic infection
caused by the Leishmania parasite, and it encompasses different
forms of the disease, including cutaneous leishmaniasis,
mucocutaneous leishmaniasis, and most fatal visceral leishma-
niasis. The currently available treatment options for
leishmaniasis are limited and can be associated with various
side effects.83 Antimonial drugs have been the mainstay of
treatment for many years; however, their efficacy has declined
due to increasing resistance, and they can cause severe side

effects.84 Other drugs like amphotericin B and miltefosine have
their limitations and associated toxicities as well.85,86

Paromomycin, an aminoglycoside antibiotic, is another drug
used for the treatment of visceral leishmaniasis. However, its
efficacy can vary depending on the region and the specific
species of Leishmania involved in the infection. One of the
limitations of paromomycin is that it requires intravenous
infusion for several days, which can be challenging in areas
with poor healthcare infrastructure or where patients cannot
afford hospitalization.87

One of the major challenges in treating leishmaniasis is
delivering drugs to the site of infection, as the parasites reside
within macrophages, which are difficult to target with
conventional drugs.88 Nanoparticles offer a potential solution
to this challenge by enabling targeted drug delivery to infected
cells or macrophages.89 Nanoparticles are increasingly being
investigated as a potential treatment for leishmaniasis. They
have unique physical and chemical properties that make them
suitable for drug delivery applications in leishmaniasis.90

Liposomal amphotericin B (L-AmB) is a nanoparticle-based
drug that has shown high effectiveness against leishmaniasis.
Encapsulating amphotericin B within liposomes, small gel-like
membranes composed of high transition temperature phos-
pholipids like phosphatidylcholine, distearoylphosphatidylgly-
cerol, and cholesterol, reduces its toxicity through slow release
and enhances its specificity for infected cells.91−93 These lipids
interact with amphotericin B, facilitating its temperature-
dependent release primarily at the intended target membrane
containing ergosterol, maintaining a consistent rate,94,93

facilitating extended half-life within the body, minimal renal
and faecal clearance, and superior drug distribution at the
tissue level, thereby necessitating less frequent drug admin-
istrations.95 Global human trials unequivocally highlight the
superiority of L-AmB over standard AmB, demonstrating
virtually no adverse effects, heightened efficacy, elevated cure
rates, and the flexibility to administer it at varying dosage
concentrations across extended time frames.96−98 Owing to its
efficacy and tolerability, L-AmB is now recommended by the
World Health Organization as a first-line treatment for
leishmaniasis.98 Similarly, amphotericin B-loaded nanopar-
ticles, such as those based on PLGA, have demonstrated

Figure 2. Nanovaccines impregnated with antigens and/or adjuvants show enhanced uptake upon immunization (1,2). Processing and presentation
of antigenic molecules to T cells by MHC-TCR interaction takes place in draining lymph nodes (3), resulting in cytokine secretion that modulates
the immune microenvironment (4). All the primary exposers prime the immune system for quick and robust effector response on a secondary
exposer (5). After activation, antigen-primed T helper cells interact with B cells (6), assisting their differentiation into antibody-producing plasma
cells (7).
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Table 1. Information about the Common Nanocarriers of Drugs, Their Characteristics, and Their Applications in Parasitic
Diseases
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efficacy in treating cutaneous leishmaniasis in animal models
reducing lesions on intralesional administration.99 In a
different study, amphotericin B was encapsulated in chitosan-
based particles, improving the stability of the formulation and
mannose-mediated targeting of sugar moieties on macrophages
enhancing uptake and in vitro antileishmanial activity.100 The
chitosan nanoparticles acted as carriers for the drug, facilitating
its delivery to parasites and increasing its effectiveness. The
different variants of carbon-based nanoparticles like graphene
sheets, carbon nanotubes (CNTs), and a hybrid of graphene
and CNTs have shown excellent efficacy against visceral
leishmaniasis with minimum toxicity.29

Nanoparticles have also been explored for the development
of vaccines against leishmaniasis. Nanovaccine formulations
have shown promising results by inducing both humoral and
cell-mediated immune responses (Figure 2).101 For instance,
polyprotein complexes of parasites with PLGA nanoparticles
have been used to generate peptide-specific CD8+ T-cell
responses and induce dendritic cell maturation, offering
protection against experimental leishmaniasis in animal
models. After C57BL/6 mice were infected with L. infantum,
the introduction of a peptide-based PLGA nanoformulation
containing MPLA as an adjuvant wielded remarkable results.
At one month postinfection, a substantial decrease in parasitic
load was observed, notably in the liver (72.81% reduction) and
spleen (61.98% reduction). This promising trend persisted into
the second month, with parasitic loads in the liver and spleen
showing impressive declines of 64.4% and 73.64%, respec-
tively.102 In another study using BALB/c mice, a polyprotein
complex of L. infantum with PLGA (poly(lactic-co-glycolic
acid)) nanoparticles promoted the protective immune
response.103 When the vaccinated mice were challenged with
L. infantum, they exhibited splenic lymphoproliferation and
elevated levels of interferon-gamma (IFN-γ), interleukin-2 (IL-
2), and tumor necrosis factor-alpha (TNF-α).
In addition to treatment and vaccines, nanotechnology has

also been applied to improve the diagnostics for leishmaniasis.
The accurate diagnosis of leishmaniasis can be challenging due
to the limitations of current diagnostic techniques, especially in
cases where the infection is asymptomatic or the symptoms are
not specific. However, in recent years, nanotechnology-based
methods and devices have been explored to improve the
detection of Leishmania parasites, related toxins, antigens, and
other biomarkers for the diagnosis of the disease.104 For
example, Maki et al. developed biosensors that measured the
agglutination response as an electric signal and amplified it for
easier detection of antileishmanial antibodies.105 Other
advancements include the use of immobilized Leishmania
antigens on platforms such as chitosan nanofibers for antibody
detection.106 The plasmonic ELISA approach, employing gold
nanoparticles (AuNPs) as a reporter, has been used to detect
Leishmania-specific IgG antibodies with high sensitivity and
specificity.107 Furthermore, researchers have utilized AuNP-
based techniques and antibodies for the detection of
Leishmania parasites. A novel approach, the triple line lateral-
flow assay, harnesses the extraordinary attributes of gold
nanoparticles and precise antibody interactions to amplify the
sensitivity of Leishmania infantum DNA detection in canine VL
blood samples. Employing this pioneering approach, the assay
not only showcased its remarkable ability to identify a mere
0.038 spiked Leishmania parasite per DNA amplification
reaction but also translated to detecting a single parasite
within a 100 μL DNA sample. This leap in diagnostic

capability holds immense promise for enhancing the precision
of canine VL diagnosis, facilitating earlier interventions, and
vastly improving disease management.108

These nanotechnology-based diagnostic methods hold
promise for improving the identification and tracking of
leishmaniasis. They offer enhanced sensitivity, specificity, and
potential for detecting various biomarkers associated with the
disease. However, it is important to address challenges related
to the accessibility, usability, and cost-effectiveness of these
technologies to ensure their practical implementation in
resource-limited settings.

3.2. Malaria. Malaria is a severe illness caused by the
Plasmodium parasite and can lead to severe complications,
including potential cerebral involvement. Although several
drugs exist for malaria treatment, their effectiveness is
hampered by various challenges. One significant issue is the
development of drug resistance by the Plasmodium parasite,
rendering certain medications less effective.109 Additionally,
some antimalarial drugs can be toxic, and ensuring patient
compliance with the treatment regimen can be difficult.
To address these challenges, nanoparticles have emerged as

a promising approach. Nanoparticles offer targeted drug
delivery, allowing medications to be delivered specifically to
infected red blood cells, where the parasites reside. This
targeted delivery reduces exposure to healthy cells, increases
drug concentration at the infection site, and enhances efficacy
while minimizing toxicity.110 Various nanoparticle platforms,
including liposomes, immunoliposomes, chitosan-based nano-
particles, peptide-associated liposomes, and solid lipid nano-
particles, have been explored for their ability to deliver drugs to
infected red blood cells, enhancing drug efficacy and
combating drug resistance. These nanoparticles not only
were able to deliver drug at a specific site which reduces the
required doses but also can help fight efflux-associated drug
resistance.111,112,111,113,114 An ingenious chloroquine formula-
tion, rooted in chitosan and infused with dehydroascorbic acid
(DHA), exhibited a remarkable surge in the level of drug
uptake by infected red blood cells (iRBCs). DHA’s strategic
competition for glucose uptake facilitated drug delivery to the
cells, leading to a profound inhibition of parasite growth at an
astonishingly low 1 nM concentration, dwarfing the effects of
free chloroquine, which required a far higher 100 nM
concentration to produce similar results.111 Liposomal
formulations, including PEGylated liposomes, have been
investigated for delivering antimalarial drugs such as
maduramicin, chloroquine, artemisinin, and dihydroartemisi-
nin.115−118 In an in vivo study, a comparison between
PEGylated and liposome-encapsulated artemisinin, adminis-
tered both alone and in combination with curcumin, yielded
remarkable results. A 100% cure rate was achieved, coupled
with a sustained release of the drug, as evidenced by plasma
concentration levels compared with conventional artemisinin
treatment.119 Similarly, polymeric microparticles, such as
primaquine polymeric microparticles, have demonstrated
efficacy and protection against parasite development in mice,
showing potential as a delivery strategy for malaria treatment
(Table 1).120 While the study conducted by de Brossa et al.
demonstrated enhanced drug delivery efficacy at lower dosages
and sustained drug retention in the liver, they fell short of
achieving results on par with the administration of free, pure
primaquine.
Metal nanoparticles have also been investigated as

therapeutic tools for malaria. Mesoporous ferrite nanoparticles
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provide a novel approach and utilize the magnetic property of
the nanocarrier to be adsorbed at hemozoin-rich iRBCs,
releasing artemisinin in close proximity and enhancing
antiplasmodial activity.121 Gold nanoparticles have also been
employed in target therapy, binding to cysteine-rich proteins in
membranes and parasites to improve drug delivery.28 To
combat both the blood and erythrocytic phases of the parasite
effectively, this study underscores the significance of targeting
parasite membrane proteins.
Polyethylenimine (PEI) nanoparticles, known for their

ability to bind DNA and enhance cellular absorption, have
been studied for gene delivery applications in malaria.122

Chitosan nanoparticles have been used to deliver long dsRNA
molecules, targeting essential genes of Plasmodium parasites,
resulting in a significant reduction in parasite burden in culture
medium.123

Nanoparticles have also been explored as carriers for malaria
vaccine antigens as a versatile self-assembly polypeptide.124

Gold nanoparticles have also been used as a carrier to deliver
nanoparticles loaded with a malaria antigen, P. falciparum
Circumsporozoite protein (CSP), which have shown stability
and the ability to induce a strong immune response in CSP
antigens to test the transmission blocking vaccine (TBV) in
animal models. The results of the study demonstrated that the
TBV formulation induced a strong immune response, leading
to the production of antibodies that effectively blocked the
transmission of the malaria parasite from infected individuals
to mosquitoes.125 This approach shows promise in reducing
the spread of malaria by targeting the sexual stages of the
parasite and interrupting its life cycle.
In addition to targeted drug delivery, nanoparticles have also

been investigated for their potential as diagnostic tools for
malaria. Gold nanoparticles functionalized with antibodies
specific to malaria biomarkers, such as histidine-rich protein 2
(HRP2), have been used for the early detection and diagnosis
of malaria.126 Overall, nanoparticles offer potential benefits in
targeted drug delivery, gene therapy, vaccine delivery, and
diagnostic applications for malaria. Further research and
development in this field hold promise for improving the
treatment, prevention, and diagnosis of malaria.

3.3. Human African Trypanosomiasis. Human African
Trypanosomiasis (HAT), also known a African sleeping
sickness, is a parasitic neglected tropical disease caused by
the protozoan Trypanosoma brucei and transmitted by the
tsetse fly, mostly in sub-Saharan Africa.127 In the early stage of
disease, also known as the hemolymphatic stage, individuals
may experience nonspecific symptoms that include fever,
headache, joint pain, and general malaise. These symptoms can
be mistaken for other common illnesses, leading to a delayed
diagnosis. If left untreated, the infection progresses to the late
or neurological stage of HAT, which is characterized by the
invasion of the central nervous system. At this stage, the
parasites can be found in the cerebrospinal fluid. The
symptoms become more severe and can include neurological
manifestations such as behavioral changes, disorientation,
confusion, sleep disturbances, and seizures and also can be
fatal if left untreated. The current treatments for HAT, such as
pentamidine, melarsoprol, and nifurtimox-eflornithine combi-
nation therapy (NECT) have limitations and adverse effects,
making the development of novel approaches necessary.128−131

Nanoengineered particles have emerged as a potential
strategy for improving the treatment of African trypanoso-
miasis. One approach involves the use of nanoscale metal−

organic frameworks (NMOFs) loaded with antitrypanosomal
medications. NMOFs are porous structures composed of metal
ions or clusters connected by organic ligands, allowing for the
controlled release of medications. Studies have shown that
pentamidine-loaded NMOFs can inhibit the reproduction of T.
brucei both in vitro and in vivo. Coating the NMOFs with
polyethylene glycol (PEG) enhances their stability and
biocompatibility, leading to reduced parasitaemia and
increased survival in a mouse model of African trypanoso-
miasis.132 Another approach involves the use of nanoparticles
coated with antibodies to specifically target trypanosomes. By
recognizing the variable surface glycoprotein (VSG) present on
the trypanosomes, these nanoparticles can enter the parasites
through endocytosis, releasing the drug (e.g., pentamidine)
and improving its delivery while minimizing harm to host
cells.133 The studies focus on surface glycoproteins and the
nanocarrier’s ability to be readily internalized through
endocytosis, effectively bypassing resistance caused by surface
glycoprotein mutations common in Trypanosoma, which adds
an even greater level of importance to its findings. Lipid-based
nanoparticles, such as liposomes and SLNs, have also shown
promise in the treatment of Trypanosoma infections. Studies
have demonstrated that liposomes and SLNs loaded with drugs
such as pentamidine can effectively reduce parasitaemia in
animal models of African trypanosomiasis with improved drug
delivery efficacy.31 For example, when using liposomes to
assess drug delivery across the blood−brain barrier, it was
observed that 87% of the encapsulated pentamidine reached its
target, surpassing the delivery rate of the free drug.31 This work
illustrates how liposomal drug formulations represent a more
efficient approach for delivering hydrophilic drugs, such as
pentamidine, across biological membranes.

3.4. Chagas Disease. Chagas disease is caused by the
parasitic protozoan Trypanosoma cruzi and is characterized by
acute and chronic phases, with symptoms ranging from fever
and fatigue to heart failure and neurological damage.134 There
is currently no effective vaccine for Chagas disease, and the
available drugs have limited efficacy and can cause severe side
effects.135 It can exist in two forms: the extracellular
bloodstream form and the intracellular amastigote form that
reside within the host cells. The intracellular amastigote form is
responsible for the chronic phase of the disease and is the
target of treatment with trypanocidal agents, such as nifurtimox
and benznidazole. However, the plasma membrane of host
cells can create a barrier that hinders the entry of drugs into
the cell and prevents the drugs from reaching the site of the
amastigote nests. In addition, the microenvironment within
host cells can be quite rigid, making it difficult for drugs to
penetrate the cells and reach the parasites.136 Nifurtimox and
benznidazole are both hydrophilic drugs that have a low lipid
solubility, which can limit their ability to penetrate the plasma
membrane of host cells. This can lead to poor bioavailability of
the drugs and reduced efficacy against the intracellular
amastigote form of the parasite.
Nanoengineered particles, such as liposomes, nanoparticles,

polyalkyl cyanoacrylate (PACA) nanoparticles, and chitosan-
coated nanoparticles, have been investigated for their ability to
encapsulate drugs like nifurtimox and benznidazole, the
standard medications used for Chagas disease treatment.
These particles can improve the drugs’ pharmacokinetics,
biodistribution, and cellular penetration, enhancing their
effectiveness against the intracellular form of the parasite.137

Nanoformulations of traditional trypanocidal drugs, such as
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benznidazole, have showcased heightened trypanocidal po-
tency in in vitro assays, outperforming free drugs. This
underscores the potential of nanocarrier-based drug delivery
as an avenue for combating drug resistance, warranting further
exploration.138 Studies have also shown that nifurtimox-loaded
PACA nanoparticles can provide sustained drug release and
significantly reduce parasitaemia in infected cells compared to
the free drug alone.139 In another study, nifurtimox-loaded
PACA nanoparticles have shown sustained release over 24 h
and significant reduction of parasitaemia in T. cruzi-infected
cells compared to the free drug alone.140−142 Similarly,
chitosan-coated nanoparticles loaded with benznidazole have
demonstrated increased stability and improved drug deliv-
ery.143 S-Benzyl dithiocarbazate, a potential alternative
therapeutic option for Chagas disease, has exhibited excep-
tional trypanocidal efficacy in both in vivo and in vitro settings
when encapsulated in SLNs, surpassing conventional benzni-
dazole.54

Gold nanoparticles have also been utilized due to their
unique physical and chemical properties. They can be easily
synthesized and functionalized with various ligands to improve
their targeting and therapeutic properties.144 The gold
nanoparticles were able to penetrate the parasite’s membrane
and deliver the drug directly.145

The development of an effective vaccine against Chagas
disease remains a challenging task, but various strategies have
been explored and have contributed to our understanding of
how to induce a protective immune response against the
disease.146 In recent years, nanocarriers have been investigated
as antigen delivery systems in the development of Chagas
disease vaccines. Studies in animal models have demonstrated
that nanocarriers can enhance antigen delivery and improve
the effectiveness of the immune response against Chagas
disease.147−149 Nanotechnology-based approaches have also
shown promise in the diagnosis of Chagas disease, addressing
the limitations of conventional diagnostic methods in terms of
sensitivity and time consumption. For example, nanoparticles
have been employed in a well-known diagnostic method that
detects antigens in urine.150 Additionally, innovative nano-
technology-based devices like the electrochemical immune
sensing device Nanopoc151 and others that detect serum
antibodies152,153 have demonstrated effectiveness in the
diagnosis of Chagas disease. These advancements in nano-
technology offer promising avenues for both vaccine develop-
ment and diagnostics in the fight against Chagas disease.
Continued research and development in these areas hold the
potential to improve prevention, treatment, and detection of
the disease.

4. FUTURE PERSPECTIVES AND CONCLUDING
REMARKS

The use of nanoparticles in the treatment and diagnosis of
parasitic diseases, such as Leishmaniasis, Malaria, and Chagas
disease, holds great promise. Nanoparticles have shown the
ability to improve drug delivery, increase efficacy, reduce
toxicity, and enhance the bioavailability of drugs. They can be
engineered to specifically target parasites and deliver drugs
directly to the intracellular amastigote form, which is often
challenging to reach with conventional drug treatments.
Nanoparticle-based vaccines and nanosensors also offer
potential advancements in the field of parasitic disease control.
While numerous established methodologies exist for nano-
particle synthesis, their applicability in biomedical contexts

remains constrained by prevalent issues of cellular and
environmental toxicity.154 The utilization of plant-derived
products or ethnobotanical remedies holds potential for
parasite disease treatment. Nevertheless, a significant limitation
of ethnobotanical treatments lies in their inefficacy, attributed
to unequal drug distribution at the target site. To address this
challenge, nanoparticles offer a promising solution, as
evidenced by several studies employing diverse techniques
and yielding encouraging results.155−158 Nanoparticle-based
therapeutics are now widely used by patients and have
successfully entered the market. These products, offered by
various global companies, demonstrate the current and future
potential of nanoparticles in medicine. Notable nanoformula-
tions include liposomes, pegylated biologics, gels, emulsions,
nanocrystals, and metallic nanoparticles. The global distribu-
tion of nanopharmaceuticals is expected to expand in the
future. Compared to conventional medications, nanopharma-
ceuticals have a higher added value. The market for
nanoparticle-based tools in parasitic disease treatment is
substantial, driven by the increasing number of parasitic
infections, the demand for more effective therapies, and the
benefits of nanotechnology. In 2022, the parasitic disease
treatment market was valued at USD 1.7 billion. Factors such
as rising disposable incomes, population growth, and parasite
prevalence are fueling the market growth. According to reports
by Grand View Research, Inc., the market is projected to grow
at a 5% CAGR and reach USD 2.6 billion by 2031 (source:
https://www.expertmarketresearch.com/reports/parasitic-
diseases-therapeutics-market). With ongoing research advance-
ments, the market for nanoparticle-based tools in parasitic
disease treatment is expected to expand significantly in the
coming years. Before nanoparticles can be considered to be a
commercially viable alternative to current treatment methods,
several challenges must be effectively addressed. Further
research is needed to optimize nanoparticle design, improve
targeting strategies, and evaluate long-term safety and efficacy.
Clinical trials and animal studies will play crucial roles in
assessing the effectiveness of nanoparticle-based therapies.
Despite these challenges, the future of nanoparticle-based

therapies for parasitic diseases looks promising. Continued
advancements in nanotechnology, along with collaborative
efforts among researchers, clinicians, and policymakers, will
contribute to the development of safer and more effective
treatments and diagnostic methods for parasitic infections.
These innovations have the potential to make a significant
impact on global health by improving patient outcomes and
reducing the burden of parasitic diseases.
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