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Abstract More than 99% of identified prokaryotes, including many from the marine environment,

cannot be cultured in the laboratory. This lack of capability restricts our knowledge of microbial

genetics and community ecology. Metagenomics, the culture-independent cloning of environmental

DNAs that are isolated directly from an environmental sample, has already provided a wealth of

information about the uncultured microbial world. It has also facilitated the discovery of novel bio-

catalysts by allowing researchers to probe directly into a huge diversity of enzymes within natural

microbial communities. Recent advances in these studies have led to a great interest in recruiting

microbial enzymes for the development of environmentally-friendly industry. Although the metage-

nomics approach has many limitations, it is expected to provide not only scientific insights but also

economic benefits, especially in industry. This review highlights the importance of metagenomics in

mining microbial lipases, as an example, by using high-throughput techniques. In addition, we dis-

cuss challenges in the metagenomics as an important part of bioinformatics analysis in big data.
Introduction

Recent developments in catalysis have led to a renewed interest
in the use of enzymes for the environmentally-friendly indus-
try. Most industrially-relevant enzymes are of microbial origin
[1]. Identification and isolation of microbial enzymes are thus
important steps in improving industrial processes, although
only less than 1% of environmental bacteria can be cultivated

in the laboratory [2–4].
The current challenging questions have arisen regarding the

discovery, identification, and function validation of the uncul-
tured microorganisms. Metagenomics study, which usually

starts from the isolation of environmental DNAs without cul-
ture, has emerged as an excellent means to study biodiversity
and biotechnological applications in certain conditions such

as marine environments (Figure 1) [5–7]. It provides insights
into the genomic pool of microorganisms that are recovered
directly from environmental sources. Thus, metagenomics

can be used for not only exploring ecological and environmen-
tal puzzles, but also finding unique biocatalysts with promising
nces and
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Figure 1 The process of functional metagenomics of marine

microbes from environmental samples

This flowchart illustrates how metagenome is analyzed with the

emphasis on the four important processes. BAC, bacterial artificial

chromosome.

Table 1 Lipase and enzyme classification according to EC number

EC number Enzyme

EC 1.-.-.- Oxidoreductases

EC 2.-.-.- Transferases

EC 3.-.-.- Hydrolases

EC 3.1.-.- Acting on ester bonds

EC 3.1.1.- Carboxylic ester hydrolases

EC 3.1.1.3 Triacylglycerol lipase

(=lipase, in general)

EC 3.2.-.- Glycosylases

EC 3.3.-.- Acting on ether bonds

EC 3.4.-.- Acting on peptide bonds

(peptide hydrolases)

EC 3.5.-.- Acting on carbon–nitrogen

bonds, other than peptide

bonds

EC 3.6.-.- Acting on acid anhydrides

EC 3.7.-.- Acting on carbon–carbon

bonds

EC 3.8.-.- Acting on halide bonds

EC 3.9.-.- Acting on phosphorus–

nitrogen bonds

EC 3.10.-.- Acting on sulfur–nitrogen

bonds

EC 3.11.-.- Acting on

carbon�phosphorus bonds

EC 3.12.-.- Acting on sulfur–sulfur

bonds

EC 3.13.-.- Acting on carbon–sulfur

bonds

EC 4.-.-.- Lyases

EC 5.-.-.- Isomerases

EC 6.-.-.- Ligases

Note: EC numbers and their descriptions are adapted from the

Nomenclature Committee of the International Union of Biochemistry

and Molecular Biology. Lipase is highlighted in bold to show its

position among the EC classification.
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characteristics for biotechnological applications [8–10]. In par-
ticular of the biotechnological applications, metagenome
libraries could be screened based on either protein function

or nucleotide sequences.
Function-based screening is a direct way of identifying

novel enzymes [2]. In this method, enzyme activities are

assayed by harvesting a metagenomic library on agar plates
enriched with substrates. Positive clones may then be recog-
nized by visual screening for a clear zone called a halo [11].

As a result, function-based screening selects clones with func-
tional activities, such as the synthetic and degradation activi-
ties. Unlike sequence-based approaches mentioned later,
functional-based screening does not require identification of

homologies to genes of known functions. It therefore con-
tributes to nucleic acid and protein databases by adding novel
functional annotations. However, this method often suffers

from a number of limitations, such as a low hit rate of positive
clones, low throughput, and time-consuming screening [11].

In contrast, in sequence-based screening, which involves

metagenomic DNA sequencing using next-generation sequenc-
ing (NGS) technology, microbial enzymes and bioactive com-
pounds can be explored from niches of interest [10]. However,

sequence-based screening requires the detection of gene vari-
ants with conserved domain or motif of the known functions
for enzymes identifications. This approach does not necessarily
identify the novel genes.
In light of an increasing demand for enzymes such as carbo-
hydrases, proteases, polymerases, nucleases, and lipases, it is
becoming extremely difficult to ignore the importance of

hydrolytic enzymes as potential biocatalysts in a wide variety
of industries, including chemical processing, dairy, agrochem-
icals, paper, cosmetics, pharmaceuticals, surfactants, deter-

gents, polymers, and biofuel synthesis [12,13]. For example,
a lipase is often used at the consumable detergent, as it can
hydrolyze fat from clothes and thus enhance its cleaning effi-

ciency. Therefore, the hydrolytic enzymes have been used as
promising environmentally-friendly biocatalysts in various
industries.

According to the Nomenclature Committee of the Interna-

tional Union of Biochemistry and Molecular Biology, enzymes
are classified into six main classes (Table 1). One of the most
important classes is hydrolases (E.C.3.-.-.-), which catalyze

the hydrolytic cleavage of different types of chemical bonds.
Many commercially-critical enzymes belong to this class,
e.g., proteases, amylases, acylases, lipases, and esterases [14].

Lipases are simply hydrolytic enzymes that catalyze hydrolysis
and synthesis reactions by breaking down triacylglycerides into
free fatty acids and glycerols, which act under aqueous condi-

tions on the carboxyl ester bonds present in triacylglycerols to
liberate fatty acids and glycerol [15–17]. Hydrolysis of glycerol
esters carrying an acyl chain, which comprises less than 10
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carbon atoms in length, with tributyrylglycerol (tributyrin) as
the standard substrate, usually indicates the presence of an
esterase. Most lipases are able to hydrolyze esterase substrates

[18]. These reactions usually continue with high regio- and/or
enantio-selectivity, making lipases a valuable group of biocat-
alysts in organic chemistry [19–21].

Two criteria are used to determine if a lipolytic enzyme is a
genuine lipase (EC.3.1.1.3) (Table 1). The first criterion is the
occurrence of an ‘‘interfacial activation” state, which means

an increased activity of lipase during emulsion by the triglyc-
erides [18]. The second criterion is an active site of the enzymes
consisting of a surface loop ‘‘lid” that moves together with the
interface [17,22,23]. These two criteria are important, particu-

larly for the function-based approach.
Various prior studies [24–26] have noted the importance of

lipase in the industry, the growing demand for lipases encour-

ages more exploring for novel lipases and innovative properties
of the known lipases.

Novel lipases found in the environmental samples

In recent years, there has been growing interest in finding
microbial lipases, principally from bacteria and fungi (Table 2)

[27–35]. Interestingly, these microorganisms are very attractive
as biocatalysts due to their unique properties of adapting to
extreme environmental conditions such as hypersaline habi-

tats, high pressure, and extreme temperature. In particular,
some microorganisms are able to live in marine environments
characterized by high levels of pollutants (e.g. the Norwegian

Sea and the Red Sea), high pressures, high temperatures rang-
ing 50–70 �C, little to no light or oxygen, and high concentra-
tions of salt and heavy metals [36]. As an example of the

extreme environmental conditions that are expected to
enhance the activities of microbial lipases, we focus on the
Red Sea and the microorganisms living there in the present
review.

Origin and history of the Red Sea

The Red Sea rift initiated the separation of the African and
Arabian (Asian) continent masses about 70 million years ago
[37], and the rifting took place multiple times afterward, lead-

ing to the eventual formation of the Red Sea. Moreover, fre-
quent episodes of volcanic activities gave rise to the creation
of volcanic islands in the Red Sea [37].
Table 2 List of representative bacterial lipases

Species Refs.

Bacillus sp. [24]

Brevibacterium sp. [24]

Geobacillus thermodenitrificans [25]

Gracilibacillus sp. [26]

Mycobacterium tuberculosis [27]

Nectria haematococca [28]

Oceanobacillus sp. [29]

Pseudomonas sp. [30,31]

Staphylococcus sp. [24]

Virgibacillus sp. [29]

Yarrowia lipolytica [32]
The Red Sea’s essential properties make it very unique in
the tropics such as no river inflow to the Red Sea. Rainfall is
limited between October and May. It is characterized by high

salinity, which is estimated in the northern Red Sea to be
approximately 40.0 practical salinity unit (psu) [38]. The tem-
perature of surface seawater varies from 20 �C in spring to

35 �C in summer. Since one of the effects by the global warm-
ing is the increase in the seawater temperature, thus the Red
Sea is attractive to researchers working on climate change.

Moreover, a high amount of radiant energy exists throughout
the year, reaching its peak in June [39].

The Red Sea has long been considered one of the most
diverse and the warmest regions in the world [38,40]. It is a

geologically young sea basin that has experienced a conversion
from a continental rift to a true oceanic seafloor, producing the
high temperature seawater with high concentration of the

minerals. Thus, the Red Sea is thought to be an interesting
environment to study critical problems such as the
microorganism adaptation to the semi-extreme environments

as above [41]. In addition, these diverse environments with
the adaptation can provide a quite different spectrum of
microbial diversity in the Red Sea. Thus, the Red Sea can be

regarded as a potential source for finding out novel enzymes
of lipases.

Challenges in conducting functional screening of marine

metagenomics libraries

Recently, a considerable amount of literature has emerged on

isolating lipase enzymes of microbial origin as shown in
Table 2. As shown in Figure 1, DNA extracted from environ-
mental samples can be cloned into plasmids, fosmids, bacterial

artificial chromosomes, or cosmids for proliferation in a suit-
able heterologous host organism, such as Escherichia coli,
and then be screened for catalytic activities. The rapid develop-

ment of functional screening on metagenomic libraries to find
a new enzymatic activity has indicated the importance of
microbial diversity in the novel enzyme detection [42–45].

However, the DNA quality of the environmental samples
remains a challenge, because of the low copy number of clones
and the different insert sizes of metagenomic libraries [46].
DNA purity from marine samples has also been a problem

because of the complicated and multifarious nature of the mar-
ine environments and the role of co-extracted substances, such
as humic acids that inhibits biochemical reactions [47].

Currently, choosing the best host system for the construc-
tion of heterologous protein and for screening in metagenomic
libraries is difficult, because it depends on the nature of target

protein, such as a thermo tolerance [48]. The gram-negative
bacterium, E. coli, is the most used organism for heterologous
protein construction as a well-studied model organism. Thus,
the E. coli system is the mostly-used host for industrial protein

construction, e.g., E. coli BL21 and K12 [49]. However, several
types of proteins could not be expressed in E. coli due to the
difference of the genetic system in E. coli [50]. Thus using alter-

native bacterial hosts like Bacillus brevis, B. megaterium, and
B. subtilis may complement the unachievable goal in E. coli
expressing system. B. subtilis and other Bacillus strains were

suggested to be the most well-known microbes for the metage-
nomic libraries screening and heterologous protein construc-
tion [50]. Gram-positive Bacillus strains have more benefits
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in the field of protein production and screening in metage-
nomic libraries for industrial applications because of absence
of lipopolysaccharides in their outer membrane, since

lipopolysaccharides in gram-negative bacteria are well-known
endotoxin prompting macrophages [51–53].

There are other crucial challenges to be resolved before the

full potential of metagenomics can be utilized. First, a huge
number of clones are required to be screened as a result of
the great biodiversity in the microbial ecosystem. Establish-

ment of high-throughput screening is crucial to identify mil-
lions of positive clones in a metagenomic library in a short
time. Second, the insert size is a key issue in conducting effec-
tive metagenomic screening. For example, a plasmid vector

can have a short insert size (less than 10 kb). Therefore, if
we use a plasmid as a vector for the library construction, the
library harbors only the short length of the target fragments.

For this reason, more clones are subsequently required for suc-
cessful identification of positive clones, particularly when com-
pared with metagenomic libraries constructed from fosmid

vectors (the insert size is about 40 kb) [7]. Furthermore, large
clusters of genes cannot be recovered with short inserts.

To overcome the limitations of a cultivation approach, sev-

eral DNA-based molecular methods have been established,
including the capillary-based system of cell culturing on por-
ous hollow-fiber membranes. An analysis of 16S rRNA genes
generally supplies considerable information about the species

present in an environment [45,54]. In particular, various meth-
ods can be used to screen novel lipases, including Fourier
transform infrared spectroscopy (FTIR). Interestingly, this

method has already been used to examine the lipolysis of dif-
ferent substrates (tri octanoyl glycerol and vegetable oils)
[55]. Hosokawa et al introduced a high-throughput technique

for functional screening of a metagenomic library, in which
unique enzymes were extracted by droplet-based microfluidics
[11]. In their method, a microfluidic gel micro-droplet tech-

nique was used for co-encapsulation of metagenomic clones
to screen a metagenomic library based on a lipolytic activity
assay [11]. Moreover, they used droplet technology coupled
with fluorescent-activated cell sorting to assist the high-

throughput screening of enzyme libraries with fluorogenic sub-
strates [56]. Thus, powerful techniques such as microfluidics
have become a promising tool for screening in metagenomic

libraries, especially in selecting novel catalysts.
Metagenomics can be conducted easily to identify genomic

segments. However, it is a tough question on how we can

obtain a microorganism itself from genomic segments. When
a function-based analysis is conducted, it is ideal to have indi-
vidual samples of the microorganism. This is a serious prob-
lem, because most of those microorganisms are uncultivable

as mentioned before. To avoid this problem, we may identify
a particular coding region in nucleotide sequences that corre-
sponds to a given functional domain of an enzyme such as

lipase. Then, using genetic engineering, this functional domain
can be expressed to obtain a sufficient amount of proteins in
E. coli or yeast for biochemical assay. If we can invoke a single

cell technology; however, isolation of an individual sample of
the microorganism of interest is still necessary. This remains
one of the biggest challenges.

In short, while metagenomics may help improve our under-
standing of microbial physiology, genetics, and community
ecology [42–44], it can be an advanced and powerful tool for
finding out a novel enzyme that is useful for biotechnology
application and industrialization.

Challenges related to DNA sequencing and

bioinformatics

Over the last few decades, metagenomics has become a funda-
mental tool in microbial ecology, and a revolution in metage-
nomic studies is poised to begin, with the support of recent

developments in NGS technology. Despite these facts, metage-
nomics still has computational challenges that need to be
addressed.

In the studies of metagenomics, environmental DNA is, in
the most cases, fragmented into small segments [57]. Therefore,
production of millions of small reads must be reassembled
de novo utilizing bioinformatics tools and software. However,

the reassembly of these reads into contigs is still a serious com-
putational challenge. The reconstruction of the entire genomes
of microorganisms in the environmental sample remains virtu-

ally impossible at present, although continuous advances in the
development of bioinformatics software and tools will have
been made.

In fact, depending on the platform used, the read lengths
generated from NGS platforms mostly range 75–1000 bp
[58]. Short read lengths and low depth of coverage lead to

the introduction of large gaps in the assembled contigs. Hence,
due to the length and number of these gaps, accurate assembly
of the contigs is now difficult. Therefore, regeneration of the
entire gene sequences becomes extremely difficult and even

impossible [59]. These challenges can be overcome through a
continuous progression of high-throughput gene sequencing
technologies and the establishment of methodologies used to

sequence longer reads with maximal depth and efficiency.
For instance, single molecule real-time sequencing (SMRT)
technology, the third-generation sequencing platform, is the

latest system developed by Pacific Biosciences [60]. This system
has the ability to resolve such problems in current gene
sequencing platforms by producing longer reads, up to 60 kb

with the PacBio RS II platform (http://www.pacificbio-
sciences.com). Increased depth coverage and long overlapping
reads allow reconstruction of a genome with fewer obstacles, in
our prediction.

Instead, there is an approach to annotate the metagenome
data without reassembly, i.e., by classifying the NGS read
directly. Functional and taxonomical classifications are the

most important processes to reveal the feature of the microbial
community and to find the useful enzymes. However, like the
assembly of the short reads, the shortness of the NGS reads

also prevents the accurate and fast classification. Several soft-
ware and algorithms to solve this issue such as MetaCV [61]
and CVTree3 [62] have been developed and main web
resources for metagenomics studies are reviewed in this issue

as well [63].
Gene prediction is also a challenge in the sequencing of

metagenomics data. Many current gene finder systems require

long stretches of the sequence to differentiate coding from
non-coding sequences. They usually need to train sequences
from a single species that is afterward utilized to generate a

species-specific gene prediction model [64]. Unfortunately, this
is inadequate for metagenomes that are constructed from a

http://www.pacificbiosciences.com
http://www.pacificbiosciences.com


294 Genomics Proteomics Bioinformatics 13 (2015) 290–295
variety of sequences from distinct microorganisms and fre-
quently constitute not only a limited number of long contigs
but also short assemblies and unassembled reads [64].

Moreover, metagenomes are usually permeated with frame-
shifts that make gene prediction in metagenomes an ambitious
task [65]. To overcome these issues, the bioinformatics tools to

predict genes from metagenome data are actively developed
such as MetaGeneMark [66], FragGeneScan [67], and
MetaGeneAnnotator [68].

Conclusion

Marine metagenomics is a fast-developing and promising area

of genomic studies, by which we can investigate the microbial
communities in marine environments. Marine metagenomics
has already opened new avenues of research by uncovering a

remarkable diversity of marine microorganisms and providing
a chance of access to this microbial diversity in laboratory.
Marine metagenomics can be used alternatively without cul-

turing microorganisms to discover unique biocatalysts for
new functions applied in biotechnological applications, such
as lipase enzymes [4,69]. In fact, the development of metage-
nomics has increased the discovery of biocatalysts as many

demonstrating novel characteristics. To date, however, most
biocatalysts remain uncharacterized. Biocatalysts discovery
remains a challenge even with the increased functional screen-

ing capabilities.
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