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Statistical learning (SL) involving sensitivity to distributional regularities in the environment
has been suggested to be an important factor in many aspects of cognition, including
language. However, the degree to which statistically-learned information is retained
over time is not well understood. To establish whether or not learners are able to
preserve such regularities over time, we examined performance on an artificial second
language learning task both immediately after training and also at a follow-up session 2
weeks later. Participants were exposed to an artificial language (Brocanto2), half of them
receiving simplified training items in which only 20% of sequences contained complex
structures, whereas the other half were exposed to a training set in which 80% of the
items were composed of complex sequences. Overall, participants showed signs of
learning at the first session and retention at the second, but the degree of learning was
affected by the nature of the training they received. Participants exposed to the simplified
input outperformed those in the more complex training condition. A GLMM was used
to model the relationship between stimulus properties and participants’ endorsement
strategies across both sessions. The results indicate that participants in the complex
training condition relied more on an item’s chunk strength than those in the simple
training condition. Taken together, this set of findings shows that statistically learned
regularities are retained over the course of 2 weeks. The results also demonstrate that
training on input featuring simple items leads to improved learning and retention of
grammatical regularities.

Keywords: statistical learning, artificial language learning, second language learning, retention, memory

INTRODUCTION

Statistical learning (SL) has been identified as a domain-general cognitive ability that is integral to
language processing, acquisition, and evolution (see Armstrong et al., 2017, for an overview). For
the purposes of this study, we can define SL as the process by which learners uncover the structure
of the input from its distributional properties (Frost et al., 2015). However, little is known about
the extent to which statistically learned information is retained over time (see Gomez, 2017, for a
review), particularly in adult learners.

Initial studies of SL focused on the rapidity with which human infants could learn from
predictable, structured sequences of input (e.g., Saffran et al., 1996). As a result, the literature has
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remained quite focused on measuring the ability of participants
to learn these regularities within a single session, usually with a
test-phase following some sort of training. However, there have
been only a handful of studies examining the ability of adult
participants to retain statistically learned information over long
periods of time.

Previous work that has focused on adult SL includes Kim
et al. (2009). This study demonstrated that participants implicitly
learned the statistical relationships governing a sequence of
rapidly presented visual stimuli, and that this learning was
retained over the course of 24 h. Other work has shown that
adults possess the ability to maintain information about the
underlying relationship between visual stimuli in an SL task, with
testing periods at 30 min, 1, 2, 4, and 24 h delays (Arciuli and
Simpson, 2012). Participants showed no difference in their ability
to correctly identify grammatical sequences, suggesting that at
least over the course of a day, the information gleaned within
a(n) SL task is relatively robustly retained. The authors of this
study notably suggest that their findings do not indicate any sort
of enhancement in retention for participants who slept between
training and test.

Additional research, however, has attempted to examine the
role of sleep in the consolidation of associations learned within
a(n) SL paradigm, and a few of these findings have a bearing on
retention and SL more generally. Although the present study does
not seek to examine the effects of sleep on SL, this is perhaps
the most well-studied aspect of long-term retention within
the literature. Napping appears to improve consolidation, as
participants who slept during a 4 h delay period between training
and test outperformed those who did not during an auditory
discrimination task (Durrant et al., 2011). Interestingly, this
enhancement was positively correlated with the amount of slow-
wave sleep obtained by the participant. Similarly, researchers
have shown that participants who slept were more likely to
apply statistically learned constraints in a speech production task
(Gaskell et al., 2014). This study also demonstrated a positive
relationship between slow-wave sleep and learning effects. In
general, it seems that over a relatively brief period of time,
knowledge gained in a(n) SL task can be retained, and that this
retention may even be enhanced by sleep in some instances. More
recently, another sleep study by Frost and Monaghan (2017)
demonstrated that participants who underwent a period of sleep
between training and test within a non-adjacency SL paradigm
outperformed those who stayed awake at both word learning and
generalizing the rules of the grammar to new sequences that had
not been seen during training.

Two studies in particular stand out as examples of
investigations into a more traditional definition of long-
term retention and consolidation of sequence learning abilities.
Romano et al. (2010) demonstrated that participants seemed
to retain sequence-specific learning and general skill effects a
year after training on a serial reaction time task (pressing a key
corresponding to a target circle’s location as targets appeared on
the computer screen). Retention was observed across a variety
of training groups: younger adults, older adults, experienced
musicians, and video game players. In effect, participants recalled
frequent triplets more quickly than they did low-probability

control trials, showing a learning effect over the course of the
tasks at session one that persisted at session two, 1 year later.

Kobor et al. (2017) attempted to extend these findings in
a task designed to test consolidation along with retention, as
they were interested in uncovering the core mechanism(s) that
underlie long-term memory formation in such a task. This study
investigated the role of retroactive interference in forgetting by
training participants on a new set of items with an alternate
statistical structure 1 day after the initial test session. The second
test session in this study, which tested long-term retention of
the initially trained patterns, took place a full year later, similar
to the Romano et al. (2010) study. Again, the researchers found
learning effects for highly frequent items relative to infrequent
items, and also found no effect for the potentially interfering
materials. An additional test demonstrated that the knowledge
gained in this task seemed to be implicit in nature. They took
this to mean that long-term memory for statistically learned
sequences does undergo a process of consolidation that appears to
be robust and resistant to some kinds of interference. Moreover,
learning scores were reported as relatively stable between the first
session, the interference training session the next day, and the
final session a year later.

While the previous two studies demonstrate the persistence of
sequence learning abilities over a long stretch of time, they are still
limited in a few important ways. First, the tasks in both studies
required only visuospatial to motor mappings without any
auditory or verbal component, limiting the degree to which their
findings might generalize to language itself. Second, and relatedly,
the learned sequences did not contain any kind of meaning.
While this is a common practice within the SL literature, it limits
the study’s ecological validity when it comes to addressing the
mechanisms thought to underlie language learning (Morgan-
Short, in press). Third, the statistical structure underlying the
training items was not very complex in either study, again
somewhat undermining the claim that the kinds of relationships
learned between items in a sequence are characteristic of those in
natural language. Finally, neither of these studies demonstrated
a quintessential feature of learning in SL and artificial grammar
learning (AGL), the generalization of learned regularities to new
items. The test sets in each task contained exclusively items on
which participants had already been trained.

A second set of studies that has focused more directly on
natural and artificial second language learning has also provided
evidence of retention over periods of time. Indeed, the delayed
posttest as a measure of retention is not uncommon in second
language acquisition research as shown in a meta-analysis (Norris
and Ortega, 2000), as nearly half of all studies featured some
kind of follow-up test phase more than a week after training.
This meta-analysis revealed a robust learning effect (Cohen’s
d = 1.02) at delayed testing. Specifically addressing the question of
second language retention, Morgan-Short et al. (2012a) reported
behavioral and neurophysiological evidence of retention over the
course of 3–6 months for the same artificially learned language
used in this study, Brocanto2. Using an artificial, as opposed to
natural, language allowed for control of prior experience and
extra-experimental exposure to the second language. Participants
in Morgan-Short et al. (2012b) achieved high levels of proficiency
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(∼95%) by completing three training and practice sessions,
in which they completed a total of 36 comprehension and
production practice modules comprised of 20 practice items
each. When tested for retention 3–6 months later, there was no
evidence of a decline in their performance (Morgan-Short et al.,
2012a). Because of the extensive practice provided in Morgan-
Short et al. (2012b), it is not possible to determine if exposure
itself led to retention. Thus, the current study aimed to examine
retention of grammatical regularities after shorter periods of
exposure to input but without practice. It also leveraged the
artificial language paradigm Brocanto2 to control exposure to the
second language and to manipulate the input (see below).

Given the frequently described links between SL and language,
it would seem likely that the associations learned in commonly
used SL paradigms should persist over longer periods of time than
we currently have robust evidence for, an issue the current study
seeks to address with the hypothesis that participants will retain
learned information over the course of 2 weeks. In other words,
if statistically learned information truly undergirds our language
learning abilities, it must be retained beyond an immediate post-
test in the lab.

Input Complexity Affects the Learning of
Statistical Regularities
The idea that learners process the co-occurrence statistics of
the input in the service of acquiring more abstract grammatical
regularities is not new (Elman, 1990; Altmann, 2002). This
processing ability has been proposed to develop as we learn
the most basic information available from the input first, as
suggested by the “less is more,” hypothesis: that is, beginning
to learn without fully developed cognitive abilities could convey
an advantage to children (Newport, 1990). This notion has
been applied to the process of language learning and has
been pointed out as a potential reason for the existence of
sensitive periods in language acquisition (Johnson and Newport,
1989; Newport, 1990, 2016). The corresponding idea that
“starting small” may be advantageous for learners shares similar
longevity within the literature (Elman, 1993; Elman et al., 1996),
and emphasizes the possible benefit that reduced complexity
within the learner’s input (e.g., in terms of length or syntactic
complexity) has on learning.

Although the evidence for these hypotheses has subsequently
become somewhat less straightforward (for example, see Rohde
and Plaut, 1999; Siegelman and Arnon, 2015), new research is
emerging that, within the context of artificial language learning,
participant performance may benefit from training that becomes
progressively more challenging (Kersten and Earles, 2001; Lai
and Poletiek, 2011). A recent study has shown that starting
small leads to better learning of recursive structures, with the
primary facilitation coming from a gradual increase in stimuli
complexity rather than simply the effect of reduced length
(Poletiek et al., 2018).

Other work has also shown that artificially biasing the
kinds of chunks that adults form to be more simplified can
lead to improved learning in a Hebb-repetition paradigm
(Smalle et al., 2016). Smalle et al. (2018) expanded upon this idea

by showing that children exhibited better retention of implicitly
learned phonological sequences within a Hebb-repetition task
than adults in a longitudinal design with a year between the
first and last test sessions. This study demonstrated the long-
term retention of input containing probabilistic dependencies,
highlighting the importance of chunking as a potential factor for
both learning and retention within such paradigms. However,
this study left open the relative importance of input complexity
on learning, and did not test for generalization of learned
knowledge to novel test items.

Taken in conjunction with other recent ideas, chunking can
be seen as an integral component of the SL process as it applies
to language (Isbilen and Christiansen, 2018; Christiansen, 2019).
Rapidly recoding and compressing information by chunking may
allow learners to more efficiently process input, and to do so at
higher levels of abstraction. In fact, stronger learners may show
a decreased reliance on surface-level fragment information when
tested due to the fact that they have already used that information
to internalize the higher-order regularities, and no longer rely on
them as a crutch.

The Current Study
The present study seeks to examine the different ways in which
learners retain knowledge about the grammatical regularities
of an artificial language, Brocanto2 (Morgan-Short et al., 2010,
2012b), through the process of SL. To that end, we conducted
original analyses of unpublished data from Brill-Schuetz (2016).
In this study, training conditions differed by the amount of
exposure to complex stimuli presented in the training, where
complexity was related to the cognitive demands needed to
process an item. In the Simple condition, half of the participants
in this study received a more simplified set of training items
generated by the grammar. This manipulation attempted to
mimic the constraints placed on young learners by the simplified
input they tend to receive (Cameron-Faulkner et al., 2003).
Training sets with progressively increasing difficulty have been
used in past AGL and SL studies for similar reasons (e.g.,
Conway et al., 2003; Christiansen et al., 2012; Poletiek et al.,
2018). Those in the simple training condition were eventually
exposed to complex items, but the extensive experience they
received with simple items before moving on to the more
complex ones is expected to boost performance in the test
phase of the experiment. Therefore, our first prediction is that
learners, particularly those who receive simple training, will
retain knowledge from training over the span of 2 weeks.

In the Complex condition, the other half of participants
received far less training with simplified items prior to exposure
to the set of complex items yet obtained the same amount of total
experience in terms of number of trials. These participants are
thus predicted to have more trouble learning, and subsequently
retaining, the rules of the artificial language as they would
have insufficient experience processing simple constructions
before encountering the more difficult complex items. This may
lead them to adopt poor learning strategies, disrupting their
extraction of the relevant statistical structure embedded within
the sequence. In short, more exposure to simple items (i.e., the
simple training condition) should confer an advantage to the
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learning of the grammar rules that govern Brocanto2 both in the
short- and long-term (Brill-Schuetz, 2016).

We are also interested in finding out how the different training
groups approach the task of endorsing items as grammatical, by
looking into what features of the test items are most relevant
to such judgments. While the Brocanto2 artificial language
learning paradigm was not designed to test SL, the underlying
distributional information embedded within its dependencies
offers a potential window into the ways that learners use statistical
regularities to learn language. Examining endorsement strategies
is expected to provide insight into what each group of participants
retained from the task across both sessions, and what kinds
of information they are sensitive to. The specific cues that
participants rely on to make grammaticality judgments might
vary between the training groups, and if participants in the
complex training condition show the reduced sensitivity to the
grammatical regularities of the language that we predict, we
hypothesize that they will instead be found to rely more on
fragment information, such as chunk strength. On the other
hand, the simple training group will likely not be as distracted
by surface-level similarities between training and test items
and will rather demonstrate knowledge of the higher-order
grammatical regularities.

MATERIALS AND METHODS

Participants
Participants (N = 47; Male = 10) were young adult students at
a large, Midwestern university, ranging in age from 18 to 24
(M = 19.43, SD = 1.98). Recruitment for the first session was
conducted through a psychology department subject pool where
participation earned class credit. For the second session, some
participants received additional credit through a subject pool and
others received monetary compensation ($5). Selection criteria
limited participants to those who had no hearing, learning,
or speaking impairments, and to native speakers of English.
All participants provided written consent before beginning
the study1.

The second session took place approximately 2 weeks after
the original training session. Although every effort was made
to schedule the delayed post-test exactly 2 weeks from the
original session, the actual range was between 12 and 14
days from the training session. At this second session, some
(N = 33) participants also completed an additional battery of
cognitive tests.

Materials
Artificial Language
The artificial language learned by participants was Brocanto22

(Morgan-Short et al., 2010, 2012b), which was adapted from the
original version, Brocanto (Friederici et al., 2002). Brocanto2
follows basic patterns typical of many natural languages and is

1This research was approved by the University Human Subjects Institutional
Review Board under protocol 2008–0496.
2Brocanto2 is available upon request by email to karams@uic.edu.

TABLE 1 | Complete list of words used within the artificial language learning task.

Word category Brocanto2 word Symbol/meaning

Noun Pleckm

Neepm

Blomf

Vodef

Adjectives Trois(em/of ) Circle

Neim(em/of ) Square

Determiners lim/luf The

Verbs klinintran Move

praztran Switch

nimtran/intran Capture

yabtran/intran Release

Adverbs Noyka Vertically

Zayma Horizontally

Subscripts denote the gender of each noun and determiner along the
corresponding marking for each adjective, and also the transitive nature of
each verb. The adjectives described the shape of the area bordering the game
piece, such as the circle that can be seen in Figure 1. Table adapted from
Morgan-Short (2007).

fully productive; it consists of 14 novel words: four nouns, two
adjectives, two articles, four verbs, and two adverbs (see Table 1
for a list of all words and their meanings). The grammatical
structure of this language follows a syntactic pattern different
from that of English; while English follows a subject-verb-object
order, Brocanto2 follows a subject-object-verb order, which is
found in languages such as Hindi and Japanese. For example, the
Brocanto2 sentence “Blom neimo lu neep troise li praz zayma”
corresponds to “Blom-piece square the neep-piece round the
switch horizontally” and would be translated into English as
“The square blom-piece switches with the round neep-piece
horizontally.” Participants learned this artificial language in order
to play a computer-based game in which the tokens can move
according to dictation in Brocanto2 (see Figure 1).

These sentences could be either simple or complex in nature;
simple stimuli were limited to words from three of the word
categories (noun, article, verb) and could consist of three to five
lexical items. Complex stimuli consisted of words from all five of
the categories allowed in Brocanto2 (noun, adjective, article, verb,
adverb) and a complex sentence could contain five to eight lexical
items (Brill-Schuetz, 2016). For example, the sample sentence
given above would be classified as a complex item due to the
inclusion of the adjectives and the adverb, a difference highlighted
within Table 2. The presentation of each sentence was consistent
in that all the noun phrases were simple or complex and all verb
phrases were either simple or complex; for example, a sentence
would not have a simple noun phrase followed by a complex verb
phrase. See Table 2 for examples of both complex and simple
sentences. During the beginning of training (but not test), the
simple and complex stimuli included noun phrases presented
without a corresponding verb or adverb. The simple phrases
had only a noun and a determiner, while the complex phrases
included noun, adjective, and determiner. Figure 2 illustrates all
possible word class combinations and identifies the two kinds of
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FIGURE 1 | Screenshot of training on the Brocanto2 paradigm. Note that the icons are presented without any outline of a shape around it until it is used as a token
on the board game.

phrases and four kinds of sentences that could be generated by
the Brocanto2 grammar.

Procedure
Brocanto2 Artificial Language Learning Paradigm
Participants were taught the Brocanto2 vocabulary to 100%
accuracy prior to starting any other aspects of the study.
Vocabulary training consisted of a self-paced PowerPoint
presentation that paired Brocanto2 audio with the symbols
for nouns or a general animation to signify that an action
was happening. At no point during the vocabulary training
was explicit information given regarding spelling, translations,
or parts of speech. The vocabulary assessment was a second
PowerPoint presentation that replicated the training PowerPoint
with one important difference: participants had to generate the
correct Brocanto2 word for each slide. Therefore, participants

TABLE 2 | Examples of simple and complex input for klin and praz in Brocanto2.

Brocanto2 sentence Word categories

Simple input

Klin∧ Blom lu klin N Det + V

Praz+ Blom lu neep li praz N Det + N Det + V

Complex input

Klin∧ Blom neimo lu klin noyka N Adj Det + V Adv

Praz+ Blom neimo lu neep troise li
praz noyka

N Adj Det + N Adj Det + V Adv

Example sentences from both complexity conditions containing the two verbs
that could not be both transitive and intransitive. Noun, N; determiner, Det;
verb, V; adjective, Adj; adverb, Adv; ∧denotes intransitive verb and + denotes
transitive verb.

had to self-generate 100% of the vocabulary before progressing
to the next phase of the training.

The participants were then presented with game training
that consisted of an introduction to the computerized board
game they would be playing at a later point, thus providing
a meaningful context for the artificial language on which they
were subsequently trained3. Participants read the rules of the
game and viewed the four possible types of game moves (move,
switch, capture, or release). They were then asked to practice
making each move on the game board by selecting game tokens
with a mouse and repeating the move that had just been
visually presented, as illustrated by Figure 3. At no point were
explicit translations of the symbols or movements provided.
After becoming familiar with the rules of the game, participants
continued on to language training. Note that all participants
received the same vocabulary and game training – it was not part
of the manipulation.

Before beginning the task, participants were instructed
that they would receive training on an artificial language
and would be presented with words, phrases, and sentences
that would correspond to still and moving images on the
game board. Participants were told they would complete
a short quiz to test their memory and they would not
be able to review this information again. They were also
informed that they would then use the artificial language to
play a board game at a later point. No other instructions
were given; therefore, training can be viewed as implicit
or uninstructed (not incidental) due to the lack of explicit
information or explanation of the Brocanto2 language rules.
Note, however, that the implicit, uninstructed format of

3Participants played the computerized board game as part of a comprehension
assessment that followed the GJT, the results of which are not reported here.
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FIGURE 2 | Chart depicting the possible word class combinations of items generated by the Brocanto2 grammar. The superscript at each output classifies the
category of phrase or sentence that such a sequence produces; 1 denotes a simple phrase (noun + determiner), 2 denotes a complex phrase (noun + adjective +
determiner), 3 denotes a simple sentence (noun + determiner + verb; noun + determiner + noun + determiner + verb), and 4 denotes a complex sentence (noun +
adjective + determiner + verb + adverb; noun + adjective + determiner + noun + adjective + determiner + verb + adverb.

the training does not entail that learning is necessarily
implicit in nature.

Participants were pseudorandomly assigned to either simple
(N = 24) or complex (N = 23) input conditions, with every
other learner assigned to the simple condition. All participants
received training phrases and sentences featuring identical nouns
and verbs, presented either in a simple or complex format
(100 items). Thirty-six of the training items were phrases, while
64 were sentences.

In the “simple” training condition, 80% of the sentences
that participants received were simple while the other 20%
were complex; in the “complex” training condition, 80% of the
sentences were complex while 20% were simple. This particular
ratio of stimuli was utilized so that participants would be exposed
to every word category in Brocanto2 and its function in a
sentence while still presenting a vast majority of one particular
type of stimuli. Furthermore, a 1:4 ratio has also been used

FIGURE 3 | Example of progressive screen shots for an animated movement.
The corresponding audio was neep li vode lu yab for the simple version of the
sentence that represented the move or neep neime li vode neimo lu yab noyka
for the complex version.

in previous cognitive linguistics studies examining the learning
and generalization of grammatical regularities for novel verbs
(e.g., Casenhiser and Goldberg, 2005).

Participants were presented with the Brocanto2 stimuli aurally
and always received simple stimuli before complex stimuli
regardless of the training condition. Each training condition
began with the visual presentation of the 36 individual symbols
that corresponded to Brocanto2 noun phrases (simple and
complex) and progressed to 64 fully animated moves with
corresponding sentences (simple and complex). That is, all
participants received the training items in the following order:
simple phrases, complex phrases, simple sentences, complex
sentences. This ordering of phrases being presented before full
sentences follows the structure of previous Brocanto2 studies
(e.g., Morgan-Short et al., 2012b, 2014) and that of studies
exploring the starting small hypothesis (e.g., Kersten and Earles,
2001; Conway et al., 2003; Poletiek et al., 2018). Presentations for
each noun phrase consisted of a single, static game piece while
the audio was played. An animated movement involving one or
more pieces on the game board accompanied the presentation
of sentences, and in this case, the audio was played before the
animated movement occurred. At the conclusion of each noun
phrase or animation, there was a 1 s break before the next item
appeared on screen. The game pieces and animations presented
to participants were identical across the two conditions—the
training only varied in terms of the audio. More specifically,
participants in the simple training condition were presented with
twenty-nine simple noun phrases followed by seven complex
noun phrases, and then fifty-one simple sentences followed by
thirteen complex sentences. In the complex condition, the overall
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order of sentence types would remain the same, but participants
would instead be trained on seven simple noun phrases followed
by twenty-nine complex noun phrases, and then thirteen simple
sentences followed by fifty-one complex sentences.

The primary language assessment in this study consisted of
a grammaticality judgment task (GJT). The GJT requires the
participant to make a judgment regarding the grammaticality
(yes or no) of a sentence and is commonly used across second-
language learning literature (cf. Loewen, 2009; Plonsky et al.,
2019). The GJT consisted of 72 novel sentences, half (36) of the
stimuli were simple sentences and half were complex. Of the 36
simple sentences, half were correct and half contained a violation;
this was also the case for the complex sentences. The same set of
GJT items was used at each session.

Grammatical sentences for the GJT were novel, i.e., correct
sentences that were not presented during training. In general,
ungrammatical items were generated by introducing violations
in the novel, correct sentences. However, four ungrammatical
simple sentences had to be created using violations of sentences
that appeared in training due to the limited number of such
sentences that could be generated by the grammar. There were
an equal number of word order (6), verb argument (6), and
gender (6) violations in both the simple and complex GJT stimuli.
Word order violations were created by replacing a word from
one of the five word categories (e.g., noun) with a word from
a different category (e.g., adjective, article, verb, adverb). Verb
argument violations were created by replacing a transitive verb
with an intransitive verb and vice versa, therefore these violations
were constrained to the verbs klin and praz. Grammatical gender
violations were created by replacing a feminine adjective or
article with a masculine adjective or article, and vice versa.
Violations never occurred on the first or final word, and violation
position among words was distributed as evenly as possible.
Word frequency within each grammatical category was also as
equally distributed as possible across all sentences. Examples of
each type of violation sentence can be found in Table 3.

The GJT was programmed in SuperLab 5 and the stimuli
(the Brocanto2 sentences) were randomized. The GJT began by
guiding participants through the instructions; all directions were
presented in white font (size 30) on a black background. The
initial screen informed participants that the task was to make
a series of judgments regarding new sentences in the artificial
language. These judgments were, in order: grammaticality
(good or bad), confidence rating (confident or not confident),
and source attribution (rule, memory, intuition, or guess).
Participants were asked to make each judgment as quickly and
accurately as possible. Although the confidence rating and source
attribution data is not analyzed for the current study, the full
methodology is presented so that the reader fully understands
the task demands and to acknowledge that this could have
influenced other results (see Brill-Schuetz, 2016, for analyses of
the confidence ratings and source attributions).

Hypotheses and Planned Analyses
This experimental design enables us to examine three separate
main hypotheses. The first, that participants will exhibit retention
of statistically learned sequences within an artificial language over

TABLE 3 | Example correct Brocanto2 sentences and violations thereof.

Sentence type Brocanto2 sentence

Correct sentence Blom neimo lu neep neime li praz

Blom-piece square the neep-piece square the switch

“The square blom-piece switches with the square neep-piece.”

Word Order Blom ∗nim lu neep neime li praz

(Syntactic) Blom-piece ∗capture the neep-piece square the switch

Violation sentence “The ∗capture blom-piece switches with the square

neep-piece.”

Verb Argument Blom neimo lu ∗praz

Violation sentence Blom-piece square the ∗switches

“The square blom switches ∗(missing object)”

Morphosyntactic Blom neimo lu neep ∗neimo li praz

(Gender Blom square the neep-piece (fem)
∗square(masc)

Agreement) the switches

Violation sentence The square blom switches with the square(m) neep(f)

∗Denotes the location of the violation.

the course of 2 weeks, will be tested by examining whether or not
participants’ accuracy is above chance on the GJT at the second
session. In addition, we will examine the degree to which this
performance is maintained across sessions, as perfect retention
is not expected. As a reminder, participants were trained under
what can be considered implicit training conditions, meaning
they received repeated exposure to the language without any
explicit instruction on the rules of the grammar. The second
hypothesis, derived from the “starting-small” literature, is that
participants trained on the simpler set of items will outperform
their peers in the complex condition overall. Better learning due
to the reduced input complexity received in training will lead to
better memory both in the short- and long-term for those in the
simple training condition. This will be evaluated by looking at the
relative performance (accuracy) on the GJT of each group on the
GJT at both the first and second sessions. Specifically, participants
in the simple training condition should show stronger learning
at session one, and this advantage will be carried forward to
session two as well.

The third hypothesis consists of multiple parts; the first part
of hypothesis three is that the complex training group will
rely more on chunk strength when judging the grammaticality
of test items than the simple training group; thus, there may
be an interaction effect between chunk strength and group.
Hypothesis three will be assessed by modeling the relationship
between the properties of each test item (e.g., chunk strength)
and the likelihood that participants from each group would
choose to endorse that item as grammatical. For these analyses
we will rely on measures of endorsement rather than accuracy in
order to better isolate the aspects of the knowledge participants
used to discern between grammatical and ungrammatical test
items. Given our interest in better understanding the retention
of the grammar embedded within the artificial language, we
also wanted to examine how the hypothesized effect of chunk
strength on participants’ grammaticality judgments manifested
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itself across sessions, expecting that its influence might diminish
over time. Therefore, the second part of hypothesis three predicts
that there will be an interaction between chunk strength and
time. We planned to model this interaction using a GLMM,
following them up with a series of correlational analyses.
Overall, we hope to show that participants in the complex
training group rely to a greater extent on chunk strength
when endorsing items, and that this reliance changes to some
degree over time.

RESULTS

Participant Performance and Retention
Before presenting analyses related directly to our hypotheses
and research questions, t-tests were conducted to validate that
participants exhibited evidence of learning from the two training
conditions. As shown in Table 4, those in the simple training
condition demonstrated above chance performance at both the
first [t(23) = 4.018, p = 0.001, d = 0.83] and second [t(23) = 3.835,
p = 0.001, d = 0.75] sessions. Those in the complex condition
showed above chance accuracy at session one [t(22) = 2.907,
p = 0.008, d = 0.60], but not at session two [t(22) = –0.172,
p = 0.865, d = 0.03]. These results are taken to support that
learning had taken place in both the simple and complex
training condition.

Related to the first hypothesis about retention, overall
participant accuracy was above chance (i.e., 50%) when judging
items as grammatical or ungrammatical at both sessions one
[t(46) = 4.774, p < 0.001, d = 0.69; mean: 56.9% correct; standard
deviation: 0.10; 95% CI: 54.1–60.0%] and two [t(46) = 2.452,
p = 0.018, d = 0.36; mean: 53.6% correct; standard deviation:
0.10; 95% CI: 50.7–56.6%]. A paired t-test to examine how
GJT accuracy degraded between sessions showed that while
participants did show above chance performance at session two,
it was significantly lower than their performance at session one
[t(46) = –3.0, p = 0.004, d = 0.33]. This demonstrates that
participants retained knowledge of the pattern of the artificial
language’s grammatical regularities over the course of 2 weeks,
although this retention was not perfect.

In regard to the second hypothesis about what whether the
type of training affected accuracy and retention, we examined
how each group of participants performed on the GJT across both
sessions. Looking deeper to see what aspects of training affected
accuracy and retention, a 2 (session) × 2 (training condition)
mixed ANOVA analyzing accuracy showed significant main

TABLE 4 | GJT accuracy performance by training condition across sessions.

Simple training Complex training

Session 1 Session 2 Session 1 Session 2

Correct (SD) 59.9% (0.12) 57.5% (0.09) 54.2% (0.07) 49.7% (0.09)

95% CI 54.8–65.0% 53.4–61.5% 51.2–57.1% 45.6–53.7%

Mean percent correct on the GJT for participants in each training condition at both
sessions, along with standard deviations in parentheses. 95% Confidence Intervals
are reported beneath each mean. These statistics were calculated by-subject.

effects for both session [F(1, 45) = 9.058, p = 0.004, ηp
2 = 0.168]

and training group [F(1, 45) = 6.872, p = 0.012, ηp
2 = 0.132],

while the interaction effect did not reach significance [F(1,
45) = 0.796, p = 0.377, ηp

2 = 0.017]. In spite of the non-significant
interaction term, a follow-up on group differences was performed
in order to clarify the different pattern of results found between
groups, which should not be over-interpreted. A set of paired
t-tests showed that participants in the simple training condition
did not exhibit a statistically significant change in performance
between sessions [t(23) = 1.46, p = 0.158, d = 0.23], while
those in the complex training condition performed significantly
better at session one than they did at session two [t(22) = 2.84,
p = 0.009, d = 0.55].

While this set of results indicates that those in the complex
training condition did not exhibit learning or retention as
well as those in the simple training condition, it is also
possible that they were sensitive to other aspects of the items
besides their grammaticality. That is, it is possible that they
learned some features of the training set besides the grammar
and used those as cues when accepting or rejecting items.
Other analyses that are specific to performance related to
test items, complexity (simple vs. complex) and grammatical
structure (syntax, morphosyntax, and verb argument), are
reported in Brill-Schuetz (2016).

Modeling Predictors of Item
Endorsement
In relation to hypothesis three, in order to get a clearer picture
of the type(s) of information to which participants in either
group showed sensitivity, we used the dependent variable of
endorsement rates rather than accuracy. Endorsement rates
were calculated by looking at the proportion of “yes” responses
when participants were asked if they thought a GJT test item
was grammatical, even when it was not. More specifically,
when a participant responded “yes” to either a grammatical
or ungrammatical item, they would receive a score of “1”
whereas when they responded “no” to either a grammatical
or ungrammatical item, they would receive a “0” instead.
Endorsement rates for each group at both sessions can be found
in Table 5. Using endorsement rates for particular items will allow
us to figure out how each group may have used the information
they statistically learned when performing the GJT in a way that
just looking at the group’s mean performance (percent correct)
cannot. For each item, we can connect the chunk strength of that
item to the likelihood that it was endorsed by the participants;
thus we will be able to determine the sub-features of the items
that most strongly led participants to say “yes” and “no” to them
when making grammaticality judgments at test.

After calculating these endorsement rates, we investigated
what fixed factors were the strongest predictors of item
endorsement. To do this we used a series of generalized
linear mixed effect models (GLMMs) to examine the effects
of training condition, chunk strength, and time (session)
on item endorsement using the LME4 package in R (Bates
et al., 2014). The model included as fixed effects: training
group (complex vs. simple), chunk strength of GJT item
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TABLE 5 | GJT response patterns by training condition for item endorsement
across sessions.

Simple training Complex training

Session 1 Session 2 Session 1 Session 2

Grammatical (SD) 64.4% (0.13) 64.4% (0.14) 55.6% (0.28) 58.0% (0.17)

95% CI 60.3–69.0% 59.6–69.1% 46.1–65.1% 52.2–63.9%

Ungrammatical (SD) 45.5% (0.15) 49.5% (0.17) 48.2% (0.20) 58.5% (0.17)

95% CI 40.4–50.5% 43.8–55.2% 41.6–54.9% 52.7–64.4%

Endorsement rates on the GJT for participants in each training condition at both
sessions for both grammatical and ungrammatical items, along with standard
deviations in parentheses. 95% Confidence Intervals are reported beneath each
mean. These statistics were calculated by-item.

(continuous), and time (session one vs. session two). We
included as a random effect the intercepts for GJT endorsement
by subject. This controlled for individual differences in
response bias, making it easier to detect fixed effects of our
variables of interest.

The chunk strength of each item was calculated in order to
determine the extent to which the participants used this kind of
fragment information when endorsing items. The chunk strength
referenced here was measured as the sum of the frequency of
occurrence in the training items of each of the fragments in a
test item, weighted by the number of fragments in that item
(Knowlton and Squire, 1994). For example, the associative chunk
strength of the item ZVX would be calculated as the sum of
the frequencies of the fragments ZV, VX, and ZVX divided by
3. A higher number indicates that a test item is well supported
by chunk information in the training items. Chunk strength
thus captures the repeated use of 2- and 3-element chunks in a
sequence, allowing for generalization from known sequences to
novel ones. So, just because a test item did not occur in training
that does not mean that some portion of it did not appear as
part of a training item. If “the brown cat” is a training item while
“the brown cow” is a test item, the chunk “the brown” appeared
in both, and therefore would contribute to the chunk strength
of the test item.

With the sets of training and test items used in this study,
chunk strength actually was significantly greater for grammatical
vs. ungrammatical over all test items, meaning that it was a
potentially useful cue for performing accurately on this task for
both the simple [t(70) = 2.268, p = 0.026, d = 0.53] and complex
[t(70) = 2.396, p = 0.019, d = 0.56] training groups; this was
coincidental, as chunk strength was not factored in when creating
the stimuli for this experiment. Note that these comparisons were
computed separately given that the two groups had different
training sets, even though the test sets were exactly the same.
Descriptive statistics for the chunk strength of both grammatical
and ungrammatical test items for each training group can be
found in Table 6.

The initial model (Model 1) with separate fixed effects
is reported in Table 7. However, due to the nature of the
manipulation and the variables of interest, another model with
three two-way interaction terms was built. This model (Model
2) was primarily built in order to appropriately control for the

two-way interactions’ inclusion in the final model containing the
key three-way interaction term. Additionally, we hypothesized
that the effect of chunk strength on item endorsement may
potentially degrade with time due to the nature of memory, thus
we included an interaction term between these variables. The
results for Model 2, which include these interaction terms, are
also reported in Table 7. To test if the inclusion of interaction
terms improved upon Model 1, a deviance test was conducted
(Singer and Willett, 2003). The interaction terms improved
model fit, χ2(3) = 76.681, p < 0.0001.

A further desire to also include a potential three-way
interaction between training condition, session, and chunk
strength led to the creation of Model 3. This model outperformed
Model 2 [χ2(1) = 13.716, p = 0.0002], supporting the hypothesis
that the effect of training on retention would differ between
groups. Importantly, we know that the three-way interaction

TABLE 6 | Average chunk strength of test items for each training group.

Simple training Complex training

Grammatical Ungrammatical Grammatical Ungrammatical

CS (SD) 6.93 (3.74) 5.02 (3.40) 7.34 (3.79) 5.36 (3.20)

95% CI 5.67–8.20 3.87–6.17 6.05–8.62 4.27–6.44

Mean chunk strength of grammatical and ungrammatical test items for each training
condition, along with standard deviations in parentheses. 95% Confidence Intervals
are reported beneath each mean. CS, chunk strength.

TABLE 7 | Summaries of the two generalized linear mixed effects models.

Fixed Effects Model 1 Model 2 Model 3

Intercept −0.847∗∗∗ −1.961∗∗∗ −2.527∗∗∗

(0.134) (0.217) (0.268)

Group 0.095 1.093∗∗∗ 2.100∗∗∗

(0.137) (0.229) (0.357)

Chunk 0.126∗∗∗ 0.281∗∗∗ 0.374∗∗∗

(0.007) (0.025) (0.036)

Time 0.180∗∗∗ 0.682∗∗∗ 1.05∗∗∗

(0.052) (0.118) (0.155)

Group∗Chunk −0.110∗∗∗ −0.279∗∗∗

(0.015) (0.048)

Group∗Time −0.227∗ −0.887∗∗∗

(0.105) (0.207)

Chunk∗Time −0.064∗∗∗ −0.125∗∗∗

(0.015) (0.022)

Group∗Chunk∗Time 0.111∗∗∗

(0.030)

Random Effects

Subject (Intercept) 0.189 0.192 0.193

(0.435) (0.438) (0.439)

Goodness Of Fit

Log likelihood −4231.2 −4192.9 −4186.0

AIC 8472.5 8401.8 8390.1

BIC 8506.4 8456.0 8451.1

Estimated coefficients are listed while standard errors are reported in parentheses.
∗p < 0.05, ∗∗∗p < 0.001.
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FIGURE 4 | Endorsement rates correlated with chunk strength across sessions for each training group, illustrating the three-way interaction effect in Model 3. Trend
lines represents linear lines of best fit.

term is solely responsible for the improvement in the model’s
fit due to the inclusion of all three two-way interaction terms
in Model 2. Visual inspection of Figure 4 demonstrates this
interaction nicely, showing that the effect of chunk strength on
item endorsement decreases over time and illustrating the greater
impact of chunk strength on endorsement for participants in
the complex training condition; additional correlational analyses
will attempt to verify the directionality of the interaction. Note
that including Item as a random effect resulted in a model
that failed to converge when also including the critical three-
way interaction.

With the aim of extending the GLMM’s findings, we also
chose to examine the ways in which accuracy and endorsement
varied depending on the surface-level features of each test item
at both sessions within either training group. In order to do
so, we conducted subsequent analyses on by-items data rather
than collapsing across participants. As described in the methods,
this meant that the twenty-three participants in the complex
training condition and 24 in the simple training condition
constituted the number of observations across the seventy-two

test items, and due to the differing fragment statistics for
each training condition, all subsequent analyses treated these
groups separately.

To further explore the results of the GLMMs, traditional,
frequentist analyses were conducted. Both training groups
exhibited a correlation between an item’s chunk strength and
their endorsement rate. Notably, while the simple training group
showed small to moderate correlations at both sessions one
(r = 0.409, p < 0.001) and two (r = 0.342, p = 0.003), the
complex training group showed an extremely strong correlation
at session one (r = 0.819, p < 0.001), as well as a moderately
strong correlation at session two (r = 0.598, p < 0.001), suggesting
that this pattern drove the three-way interaction above. A Fisher’s
r to z comparison of these correlation coefficients shows that
the two groups’ correlations are significantly different from one
another at both sessions one (z = –4.23, p < 0.001) and two
(z = –1.96, p = 0.05).

To verify the validity of these contrasts, we examined
whether there was inherently a stronger relationship between
the test items’ chunk strength and their grammaticality for
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the complex group than for the simple group. If that were
the case, then the meaningfulness of the difference between
the groups’ correlations would be reduced – it would have
just been the case that for one group these two variables
tracked one another more closely and was not driven by the
differential effects of their training. However, this was not the
case, as the mean chunk strength of grammatical items was
not significantly different between the simple and complex
training conditions [t(70) = –0.456, p = 0.649, d = 0.11], a
pattern that also held true for ungrammatical items [t(70 = –
0.429, p = 0.670, d = 0.10]. Refer back to Table 6 to find the
relevant means, standard deviations, and confidence intervals.
This shows that chunk strength was not a stronger cue
for either group of participants, suggesting that the complex
group’s reliance on it was not merely because it was more
useful for them in terms of differentiating grammatical and
ungrammatical items at test.

A key difference between training groups also emerged when
looking at how the chunk strength of each item correlated with
participants’ accuracy when judging the grammaticality of that
item. Only participants in the complex training condition showed
a statistically significant relationship between accuracy and chunk
strength, and they did so at session one (r = 0.300, p = 0.010),
as well as at session two (r = 0.248, p = 0.035), whereas those
in the simple training condition did not at either session one
(r = 0.187, p = 0.116) or session two (r = 0.139, p = 0.244). This
underscores the complex training group’s reliance on the surface
level properties of the test stimuli when engaged in the GJT.

DISCUSSION

The set of results described above demonstrates that first, learners
overall seem to be able to retain the regularities of an artificial
language over the span of 2 weeks. While retention was not
perfect, as performance degraded over time, a sufficient degree of
knowledge was maintained to show a learning effect at the second
test session. This is a longer time interval than what is typically
found in the extant literature on SL, which typically only looks at
retention after a period of hours or days. Extensive research on
other types of learning and memory has found that participants
can recall learned items at rather long intervals (Tulving et al.,
1982; Schacter, 1987; Roediger, 1990; Mitchell, 2006). Note that
the test items in this study were not present during training and
were only seen once previously during a test session using a
randomized presentation, where half of the trials were foils. This
suggests that instead of recalling previous answers, participants
were able to use learned knowledge to respond to test items.

The ability of participants to retain their knowledge of
statistically learned dependencies over time is crucial to
understanding the way in which experience with linguistic
constructions affects later processing (Reali and Christiansen,
2007; Wells et al., 2009). In order for SL to impact language
processing in the way it has long been hypothesized (Saffran,
2001), the learned statistical patterns must be retained in
memory. Our findings demonstrate that such retention is possible
and adds support for such theories. Determining the limits of

retention for statistically learned regularities should be a priority
for future research, as the SL literature has long rested on the
assumption that such associations form a key foundation for
language learning.

There is an interesting pattern of results that speak to
both the SL literature (directly above) and the “starting small”
theories. Firstly, the fact that those trained extensively on simple
items exhibited above-chance accuracy performance at both
sessions provides evidence that “starting small” with extensively
scaffolded, staged training leads to more accurate learning and
retention of grammatical regularities – their performance did
not show a statistically significant decline between sessions.
Whereas both training conditions within the present study
started small, participants in the simple training condition
were given significantly more time to learn from the simpler
items. Intentionally reducing the problem space for learners
during the early phases of acquisition seemed to improve
learning outcomes in this study (see also Conway et al., 2003).
Poletiek et al. (2018) have recently demonstrated that participants
are able to use their memory of previously encoded, simple
structures to facilitate their learning of newer, more complex
ones. They also point out the importance of incrementally
exposing learners to increasingly complex items, rather than
simply longer ones.

The present research also shows a similar trend to other
studies that demonstrate how overrepresenting simplified input
early on during training can lead to improved learning (Pine,
1994; Perfors et al., 2011). Scaffolding reflects the way in
which young learners typically acquire language, however, the
results here suggest that forcing adults to adopt more immature
strategies when learning a novel language may confer benefits.
Future research into the relationship between second language
learning in adults and intentionally constrained input could
be important to shaping adult pedagogical strategies and our
understanding of language acquisition more generally.

Conversely, participants in the complex training condition
showed above-chance accuracy on grammaticality judgments
in session one, yet they did not match the performance of
the simple training group. However, what is interesting is that
participants in the complex training condition showed evidence
of relying more heavily on chunk strength, which captures basic
frequency information. While this suggests that the complex
training condition promoted simple learning of frequency
patterns, it may not have been enough exposure for participants
to induce the more complex probabilistic patterns underlying
grammatical regularities. Future research may increase the length
of exposure to complex stimuli to investigate if this does improve
overall performance.

The overall set of findings fits in well with recent proposals
about how the constraints placed on learning by our cognitive
abilities shape the way in which we process, and thereby learn,
language (Christiansen and Chater, 2008, 2016). The proposed
“Now-or-Never bottleneck” refers to the process by which
language users must continuously recode and compress linguistic
input in order to keep up with comprehension. In this framework,
language processing is language learning; during comprehension,
we must effectively process the input as quickly and accurately
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as possible before it is overwritten or interfered with by new
incoming information. Learners take the information that makes
it through the bottleneck as far as they can – in the simple training
condition of the present study, more exposure to simple items
may have allowed them to process subregularities more efficiently
and thereby better deal with similar patterns in the more complex
items, whereas those in the complex condition were only able to
rely on the more surface-level information contained within the
chunks that they learned and retained.

In sum, participants in this study showed the ability to
retain information learned within an artificial language learning
paradigm over the course of 2 weeks. It also appears that
increasing exposure to simplified grammatical structures in
beginning stages of learning confers benefits to adult learners.
Importantly, some of the grammatical regularities of this artificial
language are retained in long-term memory in a way that
has not been shown previously in SL research. This falls
in line with theories about both first- and second-language
acquisition, and also with new ideas concerning the role of
processing constraints on language learning. Overly challenging
and complex input seems to derail learners and affects the kind
of information they are sensitive to, leading them to rely more on
simple fragment frequency rather than higher-order associations
between them. This pattern of results contrasts with learners
who were provided scaffolded input, as they demonstrated better
acquisition of the higher-order regularities and relied less on basic
frequency cues when choosing to endorse items as grammatical
or ungrammatical.
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