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The visual computations underlying human gloss
perception remain poorly understood, and to date there
is no image-computable model that reproduces human
gloss judgments independent of shape and viewing
conditions. Such a model could provide a powerful
platform for testing hypotheses about the detailed
workings of surface perception. Here, we made use of
recent developments in artificial neural networks to test
how well we could recreate human responses in a
high-gloss versus low-gloss discrimination task. We
rendered >70,000 scenes depicting familiar objects
made of either mirror-like or near-matte textured
materials. We trained numerous classifiers to distinguish
the two materials in our images—ranging from linear
classifiers using simple pixel statistics to convolutional
neural networks (CNNs) with up to 12 layers—and
compared their classifications with human judgments.
To determine which classifiers made the same kinds of
errors as humans, we painstakingly identified a set of 60
images in which human judgments are consistently
decoupled from ground truth. We then conducted a
Bayesian hyperparameter search to identify which out of
several thousand CNNs most resembled humans. We
found that, although architecture has only a relatively
weak effect, high correlations with humans are
somewhat more typical in networks of shallower to
intermediate depths (three to five layers). We also
trained deep convolutional generative adversarial
networks (DCGANs) of different depths to recreate
images based on our high- and low-gloss database.

Responses from human observers show that two layers
in a DCGAN can recreate gloss recognizably for human
observers. Together, our results indicate that human
gloss classification can best be explained by
computations resembling early to mid-level vision.

Introduction

Recognizing materials from their visual appearance
is an important task for the human visual system
(Adelson, 2001; Anderson, 2011; Fleming, 2014;
Fleming, 2017; Komatsu & Goda, 2018). One
particularly interesting aspect of material perception
is the perception of gloss (Chadwick & Kentridge,
2015; Marlow, Kim, & Anderson, 2012; Nishida &
Shinya, 1998). From judging the freshness of food to
recognizing a wet and slippery spot on the ground,
gloss perception is an important daily task. Yet,
despite its importance, the computations underlying
human perception of gloss remain poorly understood
(Anderson, 2020).

The appearance of an object results from an
interaction between the shape of the object, the
illumination, and the optical properties of the object.
Material perception poses the visual system with the
task of separating the contributions of these factors so
that it can recognize the characteristic optical properties
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of a material among differently shaped objects and
in a large range of environments. This is not a trivial
task, as any given object can cause a wide range of
retinal images depending on its viewing conditions,
while objects made of different materials can yield very
similar images.

Previous models of gloss perception range from
very simple summary statistics—such as histogram
skewness (Motoyoshi, Nishida, Sharan, & Adelson,
2007; Sawayama & Nishida, 2018) and contrast in
particular frequency subbands (Boyadzhiev, Bala,
Paris, & Adelson, 2015)—to the idea that sophisticated
photogeometric computations determine the causal
origin of features (e.g., in distinguishing highlights
from texture markings) (Anderson & Kim, 2009; Kim,
Marlow, & Anderson, 2011). Claims that statistics of
the luminance distributions in an image can explain
human gloss perception have been contradicted by
several studies showing the importance of spatial
information and the congruence of specular highlights
with shading patterns (Anderson & Kim, 2009; Beck
& Prazdny, 1981; Kim & Anderson, 2010; Kim et al.,
2011; Marlow, Kim, & Anderson, 2011; Todd, Norman,
& Mingolla, 2004). Indeed, identical image gradients
can be interpreted as glossy or matte, depending on
the apparent three-dimensional (3D) surface structure
(Marlow & Anderson, 2015; Marlow, Todorović,
& Anderson, 2015), reiterating in the field of gloss
perception what has been suggested for several decades
in the field of lightness perception (Gilchrist, 1977).
Like lightness perception, several authors place material
perception—or, more specifically, gloss perception—as
a task of mid-level vision (Fleming, 2014; Kim,
Marlow, & Anderson, 2012; Liu, Sharan, & Rosenholtz,
2010; Sharan, Liu, Rosenholtz, & Adelson, 2013).
Mid-level vision concerns the pooling and comparison
of low-level image features such as orientation,
color, brightness, or scale with intermediate-level
representations of surface structure, such as local
surface geometry, usually with the assumption that
the output of such processes disentangles physical
causes that are comingled in the input. In using
mid-level features, the human visual system makes
use of heuristics for gloss perception and becomes
susceptible to misperceptions (see also Fleming, 2012).
Marlow et al. (2012) have shown that perceived gloss
varies with perceived contrast, coverage, and sharpness
of highlights. It has also been shown that shape and
illumination can influence perceived gloss (Fleming,
Dror, & Adelson, 2003; Ho, Landy, & Maloney, 2008;
Olkkonen & Brainard, 2011). It is important for a good
candidate model of human gloss perception to capture
not just the broad successes of the visual system but
also the misperceptions specific to humans.

Arguably, the most fundamental gloss perception
task is to distinguish categorically whether or not a
given surface is glossy. Given the enormous diversity of

images that can be created by glossy and non-glossy
surfaces, this is a non-trivial inference. While previous
studies have generally investigated gloss perception
within relatively constrained stimulus sets, here we took
a “big data” approach to the gloss classification task,
using machine learning techniques to train different
classifiers on a large set of images. This way, we fit our
models to a dataset that encompasses large variations
in the appearance that high- or low-gloss materials can
take, allowing our models to identify features that are
diagnostic over a wide range of appearances. Using
computer graphics, we rendered a large dataset of high-
and low-gloss (near matte) textured materials under
the same viewing conditions. We then compared model
classifications to human judgments. We tested a range
of different model classes to determine which ones best
predict human responses. While research in machine
learning typically focuses on achieving the best possible
performance at a task, here our focus is on identifying
which models reproduce the specific characteristics of
human gloss judgments, spanning both their errors and
successes of gloss classification.

To test how much of human gloss discrimination
can be explained by simple image features we created
two hand-engineered models based on summary pixel
statistics and texture statistics. The first of these was a
support vector machine (SVM) trained on eight simple
pixel summary statistics (mean, variance, skewness, and
kurtosis of pixel luminance and saturation histograms).
The other was a logistic regression classifier trained on
texture statistics from Portilla and Simoncelli (2000).
These mid-level visual features capture color and higher
order wavelet coefficient statistics, which have been used
to model human perception of texture and aspects of
peripheral vision (Freeman & Simoncelli, 2011).

We also look at feedforward convolutional neural
networks (CNNs). CNNs have dominated computer
vision benchmark tests for object recognition for
nearly a decade (Kietzmann, McClure, & Kriegeskorte,
2019) and have achieved approximately human level
performance (VanRullen, 2017). There have been
links drawn between CNNs and the human visual
system—from models that are architecturally inspired
by our knowledge of the ventral stream (Kubilius
et al., 2019; Simonyan & Zisserman, 2015; Spoerer,
McClure, & Kriegeskorte, 2017) to analyses that
compare responses of CNNs or representations within
networks to human behavioral data (e.g., Cichy, Khosla,
Pantazis, Torralba, & Oliva, 2016; Kriegeskorte, Mur,
& Bandettini, 2008; Rajalingham, Issa, Bashivan,
Kar, Schmidt, & DiCarlo, 2018; Tripp, 2017; Yamins
& DiCarlo, 2016). While there are many observed
similarities—such as networks replicating some human
visual illusions (Gomez-Villa, Martin, Vazquez-Corral,
& Bertalmio, 2019; Ward, 2019; Watanabe, Kitaoka,
Sakamoto, Yasugi, & Tanaka, 2018), there are also
many striking dissimilarities, such as cases in which
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CNNs fail to replicate human behavior in simple
tasks (Stabinger, Rodríguez-Sánchez, & Piater, 2016),
react very differently from humans to slight changes
in stimuli (Kurakin, Goodfellow, & Bengio, 2017;
Nguyen, Yosinski, & Clune, 2015; Sharif, Bhagavatula,
Bauer, & Reiter, 2016; Szegedy, Zaremba, Sutskever,
Bruna, Erhan, Goodfellow, & Fergus, 2014), and show
weaker performance than humans in generalizing across
different forms of image degradation (Geirhos, Janssen,
Schütt, Rauber, Bethge, & Wichmann, 2017; Geirhos,
Schütt, Medina Temme, Bethge, Rauber, & Wichmann,
2018). It is important to note that merely finding
comparable overall performance to humans in a given
task is a weak basis for claiming equivalence, as there is
a potentially infinite number of different models, with
different architectures and internal representations, that
could yield equivalent performance. Even comparisons
based on correlations in responses across randomly
chosen test images will tend to overestimate similarities
between humans and models. This is because, if both
humans and models perform well at the task, they will
tend to give similar responses to most stimuli. Because
they get the answer correct in most cases, they will
necessarily correlate strongly. Yet, these correlations
would simply indicate that both systems perform the
task well. The shared variance would be driven by the
ground truth, not necessarily by inherent similarities
in the way they arrive at their responses. As a result,
comparisons based on random stimuli generally do not
distinguish between different computations that achieve
equivalently good performance.

In order to reveal the computations that are specific
to the human visual system, it is therefore necessary
to decouple (i.e., decorrelate) human perception from
the ground truth. We need images for which humans
make mistakes to provide a source of variation in
performance that is independent from the ground
truth, which can indicate human-specific computations.
This is challenging as human perceptual errors are
relatively rare. Nevertheless, here, we identified a
set of images that consistently yield misperceptions,
allowing us to test which models predict the specific
patterns in human perception. Using these images,
we then varied the architecture of the CNNs to gain
insights into which levels of computation are necessary
and sufficient for reproducing human judgments. We
systematically varied the depth (number of layers) of
the networks and, for each depth, searched architectural
and learning hyperparameters to identify networks that
best matched humans. We reasoned that, if human
gloss judgments are driven by sophisticated high-level
representations, then deep (i.e., many-layered) networks
would be required to reproduce human performance.
In contrast, if human judgments are based on
relatively simple image cues, shallow networks might be
sufficient.

Broadly speaking, there are two ways we use the term
“complexity.” One refers to stimulus characteristics.
This could in principle be quantified in terms of
information theoretic ideas, such as entropy. However,
here we use the term more loosely, in the sense of an
everyday intuition about highly structured images.
For example, an image of glossy surface in a natural
environment containing varied and structured patterns
of specular highlights, shading gradients, and shadows
is intuitively “more complex” than one that contains
only smooth gradients or uniform random noise (even
if the entropy of the latter is actually higher than in
the natural image). Our other usage of the term refers
to the sophistication of computations. Simple image
measurements, such as first-order pixel statistics are, in
an intuitive sense, “less complex” than computations
that involve multiple stages of operations, which pool
and select information across the image in conditional
or nonlinear ways to determine distal surface properties
from the image. This usage is also related to stimulus
complexity, as complex stimuli tend to require more
sophisticated computations. Again, the term is used
loosely to indicate an intuitive sense of the degree of
sophistication, such as the number of layers in a CNN
and the number of nonlinearities in a network required
to achieve a given response.

In a second approach we also used deep
convolutional generative adversarial networks
(DCGANs) (Goodfellow et al., 2014; Radford, Metz, &
Chintala, 2015) to generate new images with ambiguous
material appearance after training them on our high-
or low-gloss image dataset. DCGANs consist of two
networks—a generator and a discriminator—that are
trained by working against each other. Specifically, the
generator network synthesizes “fake” images, which the
discriminator learns to distinguish from “authentic”
training images (in our case, example renderings from
the training set). The goal of the generator is to create
images that the discriminator cannot identify as fakes.
Both networks are trained simultaneously to improve
at their respective tasks, causing the generator to create
images that become progressively more difficult for the
discriminator to distinguish from the training images.
During training, the generator learns to synthesize
images using new and different features, while the
discriminator learns to identify these features to decide
whether the image is generated or part of the training
set. Again, we sought to identify at which network
depths these images included features that humans can
use to identify high- or low-gloss materials. We trained
DCGANs of different network depths and showed the
generated images to human observers to see at which
depths observers can accurately distinguish recreations
of high-gloss images from recreations of low-gloss
images. Again, if human gloss classification is driven by
simple, low-level image statistics, then relatively shallow
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DCGANs should be sufficient to evoke compelling
gloss percepts in humans. In contrast, deeper DCGANs
can reproduce more sophisticated image structures,
yielding impressions of bounded objects with internally
coherent surface and image structure. If humans
require such cues, then the deeper DCGANs would be
necessary to yield reliable gloss judgments.

Methods

Stimuli

To train our classifiers and test our observers we
used 128 × 128-pixel computer renderings created
with Radiance (Ward, 1994). We gathered a database
of 1834 3D object meshes that included natural
objects and manmade artifacts, as well as a set of 214
high-dynamic-range illumination maps (light probes).
The light probes came from various sources, among
them two scientific databases (Debevec et al., 1998;
Adams et al., 2016; see the appendix for a list of all
sources). We rendered random combinations of objects
and illuminations, picking random viewing angles from
a hemisphere above the object, with the object centered
in the image. We rendered the object in a completely
specular and a completely diffuse material for each
scene and used a linear combination of these two to
create different levels of gloss. For all experiments
reported here, we only used two levels of gloss—high
gloss (specular component × 0.98 + diffuse component
× 0.02) and low gloss (specular component × 0.02
+ diffuse component × 0.98). Because images of
completely smooth diffuse materials could be easily
distinguished from images of specular materials based
on trivial cues such as overall brightness and contrast,
we added textures to the diffuse component. The
textures were created by mapping marbled distortions
of randomly selected illumination maps onto the
surface of the object. They were multiplied with the
diffuse component. The overall formula for combining
the components of our images was as follows:

specular image × specular weight
+ diffuse image× texture image× (1-specular weight)
+ (1-alpha map) × background

We discarded any images where the object covered
less than 20% or more than 90% of the image. The total
number of images was 149,922 (74,961 high gloss and
74,961 low gloss).

To train the DCGANs, we created another dataset
with the same procedure and based on the same object
meshes and illumination maps. The only difference
was an increased viewing distance to ensure that the

bounding box of the objects was completely contained
in the viewing window. Initial tests showed that
DCGANs produced images more resembling objects
on a background rather than patches of material
interspersed with patches of background when the
objects in the training images were completely within
the image boundaries. Again, we discarded images
where less than 20% or more than 90% of pixels were
covered by the object. This image set contained 187,630
images (93,815 high- and low-gloss images each).

Experiments with human observers
For all lab experiments with human observers, we

presented 128 × 128-pixel images from our set of
renderings on a black background. Participants were
shown the images for as long as they took to respond.
Before each experiment, participants saw 12 example
stimuli at a resolution of 512 × 512 pixels (six low-gloss
and six high-gloss images). These were not included as
stimuli in the experiment. All observers had normal or
corrected to normal vision and signed a consent form
in accordance with the tenets of the Declaration of
Helsinki (6th revision).

Random images experiment
Ten observers (all female; mean age ± SD, 26.1 ±

4.04 years) were shown 150 randomly selected images
from each ground-truth material, one at a time. They
were asked to classify the images as either high gloss or
low gloss by pressing one of two different keys. There
were four repetitions of the image set, each time in a
different random order. Every 100 trials, participants
were asked to take a short break. The experiment lasted
between 1 and 1.5 hours.

Selecting a diagnostic image set
Responses to a randomly chosen image set are not

well suited to assessing the similarity of a model to
human observers. Because we expect both humans and
at least some models to solve the task well, there will
be a misleadingly high similarity in their responses
to randomly chosen images. This similarity would be
due to both sets of responses being similar to ground
truth. Any model that solves the task better would
therefore seem to be more similar to humans when
it is actually only more similar to ground truth. We
therefore selected a diagnostic set of images, in which
human responses were decorrelated from ground truth.
This diagnostic image set was selected in two steps. We
first performed two series of prescreening experiments
in the lab where observers would categorize images as
either high- or low-gloss images. This resulted in 500
candidate images. The second step was an online crowd
souring experiment in which participants judged the
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preselected images on a five-point rating scale from low
to high gloss. Based on these responses we selected the
final diagnostic set comprised of 60 images—30 from
each ground-truth material—in which images from
both materials were evenly distributed across three bins
of perceived gloss.

Image prescreening for crowd sourcing
Over the course of five experiments, we used

subject responses to select a set of 500 candidate
images starting from 31,500 randomly selected images.
Participants were shown images one at a time and
were asked to classify them as high gloss or low
gloss by pressing one of two keys. In addition, they
could flag an image using the space bar if they found
there was no recognizable object in the image. Every
participant saw 1500 images. In the first round, we
showed 15,000 images selected randomly from the
overall set, divided among 10 subjects (eight female,
two male; mean age ± SD, 24.8 ± 4.8 years), so each
subject saw 1500 images (750 from each ground-truth
material), and each image was judged by one subject.
For the second round, we removed all images that
were flagged as unrecognizable. We selected all of the
remaining images that were classified incorrectly (587
low-gloss and 1817 high-gloss images) plus correctly
judged images to total 2250 images from each ground
truth category (1663 and 433 correctly judged low- and
high-gloss images, respectively). These were judged by
15 participants (12 female, three male; mean age ± SD,
23.7 ± 3.8 years). Again, every participant saw 750
images from each ground-truth material, resulting in
five judgments per image. These results were combined
with the classifications of these images from the first
round. From these results—six binary judgments on
each image—we divided the images from each ground
truth into seven bins according to the mean responses.
For ground-truth high-gloss images, we picked 750
images—107 from each bin and 108 from the most
incorrectly judged bin. For ground-truth low-gloss
images there were not enough images in each bin to pick
the same amount. Where this was the case, we picked all
images from that bin and added the difference between
the actual bin size and the target number of images
to the target number for the next bin. We performed
this procedure starting with the bin of most incorrectly
judged images. The resulting set of 1500 images was
then judged again by four participants (three female,
one male; mean age ± SD, 22.5 ± 2.1 years), which
resulted in 10 classifications per image after combining
these results with those of the first two rounds.

Because the number of incorrectly perceived
high-gloss images was much larger than that of
low-gloss images, we repeated the search progress. This
time we tested in two stages. In the first stage, we showed
16,500 images (12,000 high gloss and 4500 low gloss)

to 16 subjects (14 female, two male; mean age ± SD,
23.8 ± 3.2 years)—1500 images each (750 low gloss and
750 high gloss), resulting in one classification response
per low-gloss image. High-gloss images were included
to balance the stimulus set, but the data were not used
to identify candidate images. These were shown to
several subjects, whereas low-gloss images were seen by
only one subject each. For the second stage, we again
removed all images that were flagged as unrecognizable
and from the remainder took 750 low-gloss and 750
high-gloss images (favoring incorrectly judged low-gloss
images) and tested nine more subjects (six female,
three male; mean age ± SD, 23.9 ± 2.9 years) on these
1500 images, resulting in 10 binary judgments for each
low-gloss image. We did not use the high-gloss images
from this experiment because we already had enough to
fill our diagnostic set from the first set of experiments.

The images from the final stage of the first set of
experiments and the low-gloss images from the final
stage of the second set of experiments were combined
and divided into five bins ranging from “seen as low
gloss” to “seen as high gloss.” We picked 50 images
from each ground-truth material per bin, except for the
most “seen as high gloss” bin, where there was only one
ground-truth low-gloss image. We filled this bin up with
ground-truth high-gloss images. These 500 candidate
images were the set we used in the crowd sourcing
experiment. These images and the images of the same
scenes from the other material category were withheld
from training the classifiers, leaving 148,922 images for
training and validation.

Online crowd sourcing experiment
For our crowd sourcing experiment, we recruited

participants through an online platform, Clickworker.
Instructions were shown in German and English
at the same time, and participants were recruited
to be between 18 and 60 years old. Ninety-nine
people participated and judged the 500 images that
resulted from our image prescreening experiments.
Each participant was shown the same high-resolution
example images we used in our lab experiments and
then judged each image from our test set on a five-point
rating scale from low gloss to high gloss. We included
two photographs—one of a sandcastle and one of
a silver teapot—as catch trials at the end of the
experiment. Participant data were excluded if their
datasets included too many or too few trials (resulting
from using the back and forward buttons on their web
browser) or if they failed to judge the teapot in either
of the two highest gloss categories or the sandcastle
in either of the two lowest gloss categories. Response
data from 35 participants was excluded based on these
criteria, leaving 64 participant responses. We divided the
500 candidate images into five bins based on mean gloss
ratings of the 64 subjects. The diagnostic set had to be
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Figure 1. (a) Example images from the diagnostic image set. Images are sorted in columns according to increasing perceived gloss
from left to right. Images in the top two rows were rendered in a high-gloss material, and images in the bottom two rows were
rendered in a low-gloss textured material. (b) Classification accuracy of read-out networks from AlexNet and VGG16 (percent correct).
For every read-out network, we trained five instances from random initialization. (c) Correlation of read-out networks to humans on
the diagnostic image set (r). The dotted line shows the mean of correlation between individual human observers and the mean of the
remaining observers. The blue areas show the first and second standard deviations.

balanced across these bins and was therefore limited by
the number of low-gloss images in the highest gloss bin
(0) and in the second highest gloss bin (10). We chose
10 images from the three central bins for both materials
(randomly for bins that contained more than 10 images)
to make up the diagnostic image set. Example images
are shown in Figure 1a.

Classifiers

Experiments with diagnostic image set
As an initial test of CNN performance on our task

and similarity of responses to humans, we applied
readout training to the AlexNet (Krizhevsky, Sutskever,
& Hinton, 2012) and VGG16 (Simonyan & Zisserman,
2015) networks. These networks were pretrained on
the ImageNet object recognition task. We took the
networks up to a certain layer and added a linear
output layer (or dense layer), which we trained to
perform our classification task, leaving the rest of the
network unchanged. We did this for each convolutional
and dense layer in each of the architectures, taking

the readout after the subsequent pooling and rectified
linear unit layers (or just before the next convolutional
or dense layers). For each network and each readout
layer, we trained five instances of the classifier, each
time with a random initialization of the final dense
layer. Models were trained on 90% of our images
(134,030), and 10% of our images (14,892, balanced for
both materials) were randomly picked and withheld
as a validation set. Loss on the validation set was
calculated every 100 training steps. Training would
stop if there was no improvement for five consecutive
validation steps. We chose this criterion rather than a
fixed training duration to balance training for different
architectures with different numbers of parameters.

To investigate how well a CNN trained from random
initial weights could model human gloss perception,
we wanted to train and test networks that span a large
space of possible hyperparameter values. To train and
test such a large number of networks we decided on a
general architecture, as shown in Figure 2a. We also
picked a number of hyperparameters to optimize.
These were parameters of both the architecture (size
and number of filters in each convolutional layer) and
the training (learning rate, learning momentum, L2



Journal of Vision (2021) 21(12):14, 1–20 Prokott, Tamura, & Fleming 7

Figure 2. (a) General architecture of the CNNs in our Bayesian search. (b) Overview of the performance of linear classifiers and CNNs
from the Bayesian search. Performance is plotted in terms of correlation to human observers on the diagnostic image set (r). For
every linear classifier, we trained 20 instances. For every CNN depth, we trained 300 networks using a Bayesian search algorithm to
optimize training parameters, as well as the number and size of convolutional filters within each layer. (c) Accuracy of each network
plotted against correlation to humans on the diagnostic set for each depth of CNN. Gray points show all networks, and colored points
show one network depth each. Correlation coefficients are shown. Bottom right shows the proportion of different CNN depths in the
10% of CNNs that correlated highest with humans. (d) Correlation coefficients from (c) plotted against network depth, showing a
trend from positive correlations for shallow networks to negative correlations for deep networks.

regularization). For networks up to six convolutional
layers, we included a max-pooling layer with a stride of
two after each convolutional layer. For more than six
layers, the image size became too small, so we added any
further layers without subsequent pooling. In addition,
we defined hyperparameters that allowed the search
algorithm to change the position of these convolutional
layers without pooling within the network.

We varied the hyperparameters by letting a
Bayesian search algorithm search for those parameters
which—after training—would result in a network
with a high correlation with human observers on our

diagnostic image set. Networks were trained on 90%
of our images (134,030). Again, the training progress
was monitored by calculating the accuracy and loss
on a validation set every 100 training iterations. The
validation set consisted of 10% of the rendered images
(14,892) that were picked at random, balanced for both
materials, and withheld from training. If there was
no improvement in validation loss for five consecutive
validation steps, the training would stop. The trained
network was then tested on the diagnostic image set
and its responses correlated with the mean judgments
of human observers. The Bayesian search program
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used this correlation as the objective to be maximized.
A Bayesian search approach to hyperparameter
optimization has been shown to be effective in finding
hyperparameter settings that yield a well-performing
network (Snoek, Larochelle, & Adams, 2012). Here
we use an optimization approach to look for those
combinations of hyperparameters that cause a network
after training to correlate highly with human observers.

In addition to these CNNs, we trained two
linear models using hand-engineered features: SVM
using pixel statistics and logistic regression using
dimensionally reduced Portilla–Simoncelli color
texture statistics (Portilla & Simoncelli, 2000). The pixel
statistics we used were themean, variance, skewness, and
kurtosis of pixel luminance and saturation histograms.
To the Portilla–Simoncelli statistics we applied principal
component analysis to reduce the dimensionality from
3381 to 817 dimensions, which explained over 99%
of the variance in our images captured by the 3381
parameters. Fifty-eight images were excluded from the
training data (29 high-gloss images and renderings
of the same scenes with the low-gloss material) for
causing errors in the Portilla–Simoncelli color texture
analysis, leaving 148,864 images. These classifiers were
each trained 20 times by splitting our image set in half,
training one network on one half and testing it on the
other, and vice versa. This resulted in 10 predictions for
each image from these classifiers.

Experiments with manipulated specular components
To test the reactions of our CNN models to factors

that have been shown to influence human gloss
perception (Anderson & Kim, 2009; Marlow et al.,
2012) we prepared a test set of images for which we
manipulated the specular component. See Figure 3a
for examples. Specifically, we manipulated the contrast
of highlights by changing the relative weight of the
specular component (the levels we used were 0.01,
0.02, 0.05, 0.1, 0.2, 0.5, and 1.0), the size of highlights
by applying erosion and dilation to the specular
component (with radii from 2 to 5 pixels each), and
the orientation of highlights by rotating the specular
component of the images in steps of 10° up to 90° in
both directions. For size and orientation manipulations,
we chose an intermediate specular weight of 0.1. The
training set contained images with specular weights of
0.02 and 0.98. We chose an intermediate level for these
manipulated images, expecting intermediate responses
for the unmanipulated images, so there would be no
ceiling effects limiting network responses in either
direction. For the orientation manipulations, we used
an alpha channel to limit the specular component
to the area that overlapped with the diffuse-textured
component. To control for this reduced area of the
specular component, we rendered parallel images to go
with each rotated image, containing reflections at the

correct orientation but cut to the same shape as was
caused by the rotation. We applied all manipulations to
120 images, which were generated according to the same
principles as the original training set but not included
in the training or test image sets.

DCGAN architecture

As a starting point for our DCGAN architecture,
we used the architecture described in Radford et al.
(2015). We added a fifth convolutional layer, because
the original DCGAN was designed to generate 64 ×
64-pixel images. From there we created architectures for
shallower networks based on the following principles:

• Image resolution doubles between deconvolutional
layers in the generator network and is halved
between convolutional layers in the discriminator.
• Processing depth (number of filters) decreases by
half for later deconvolutional layers and doubles
for later convolutional layers.
• For shallower networks, we would skip processing
at lower resolution. For a five-layer generator
network, deconvolutional processing starts on a 4
× 4-pixel representation, for a four-layer generator
at 8 × 8 pixels, for a three-layer generator at 16 ×
16 pixels, etc.
• The latent space was the same for all network
depths (100 × 1).

An overview of the resulting architectures can be
seen in Supplementary Figure S2. We trained two
instances of each architecture—one on low-gloss
renderings and one on high-gloss renderings. DCGANs
were trained using the MatConvNet toolbox for
MATLAB (MathWorks, Natick, MA) (Vedaldi & Lenc,
2015). Because DCGANs have no objective function
that captures model performance and image quality
(Salimans, Goodfellow, Zaremba, Cheung, Radford,
& Chen, 2016), we included an assessment of image
realism in our experiment with human observers (see
below).

Human responses to DCGAN images

We selected 75 images generated from each of our 10
DCGANs, resulting in 150 images from each network
architecture, half of which were based on low-gloss and
half on high-gloss renderings. In addition, we added 75
randomly picked low-gloss and 75 high-gloss images
to the stimulus set, making a total of 900 images.
See Figure 4a for example images.

Fifteen subjects (three female, 12 male; mean age ±
SD, 24.2 ± 4.0 years) were shown these images one at a
time and were asked to respond on a triangular rating
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Figure 3. (a) Examples of gloss manipulations. The larger central image shows an image with unmanipulated specular component and
a specular weight of 0.1. The top row shows manipulations of contrast by changing the specular weight. The middle row shows
manipulations of the size of highlights by erosion and dilation. The bottom row shows examples of images with rotated specular
components. (b) Mean responses of networks of different depths to images with different gloss contrasts (specular weights). Shaded
areas show standard deviations. (c) Mean response differences for networks of different depths to images with rotated highlights.
Note that the y-axis shows mean response differences rather than absolute responses, because network responses for each image
are compared to a parallel image with specular components that are not rotated from the original but corrected for coverage
according to the overlap in rotated images (see Methods for details). Shaded areas show standard deviations. (d) Mean responses of
networks of different depths to images with differently sized highlights (through erosion and dilation). Shaded areas show standard
deviations. (e) Mean effect sizes of gloss contrast, erosion, dilation, and rotation for networks of different depths. Shaded areas show
standard deviations per network depth.

field. The triangle corners were labeled “low gloss” and
“high gloss” along the horizontal bottom edge and
“unreal/not an object” on the top corner. Figure 4b
shows the rating scale. Observers moved the position of
the cursor within the rating field with the mouse. The
experiment lasted between 1 and 1.5 hours.

Results and discussion

Human performance on random and diagnostic
images

We created a dataset of 74,961 scenes, showing
a familiar object under image-based illumination.
Each scene was rendered once with the object made

of a mirror-like (high gloss) material and once with
the object made of a near-matte textured (low gloss)
material, yielding a total of 149,922 images.

Human observers were mostly able to discriminate
between our two material categories. We asked 10
participants (all female; mean age ± SD, 26.1 ± 4.0
years) to classify 300 randomly selected images based
on their glossiness. There were 150 images from each
material category, and every observer saw each image
four times. On average, human observers judged 87.6%
of images correctly (SD = 4.6%).

Responses to such a randomly chosen image set
are not a sufficient criterion to evaluate how well a
model replicates human perceptual judgments. It is
not enough for a model to make the same number
of correct or wrong decisions as humans, but rather
a good model should also make correct or wrong
decisions on the same images that humans do. On a
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Figure 4. (a) Example images generated by DCGANs of different depths and renderings in the right-most column. The top two rows
show images from networks that were trained on low-gloss textured images, and the bottom two rows show images by networks
trained on high-gloss images. (b) Mean ratings from 15 human observers. The left-most triangle shows the labels that were displayed
during the experiment. (c) Mean and standard deviation of gloss ratings for each network depth. (d) Mean and standard deviation of
unrealness/not an object ratings per network depth.
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randomly chosen image set, humans perform well above
chance, and their responses are highly correlated with
ground truth. Any model that solves the task well will
therefore also correlate highly with human observers.
Thus, to decorrelate model accuracy from similarity
to humans we assembled a diagnostic set of images
in which mean human judgments were decorrelated
from ground truth. In a series of lab experiments, we
showed a total of 31,500 images to 54 participants (43
female, 11 male; mean age ± SD, 23.9 ± 3.5 years) in
a binary classification task and used their responses to
identify 500 candidate images that frequently yielded
errors. The experiments were conducted in several
rounds, where we used subjects’ responses to narrow
down the set of candidate images for later rounds.
Some images were seen by only one observer, but the
final candidate images were seen by 10 observers (see
Methods and Supplementary Figure S1 for details).
From these candidate images, we selected 500 images
that we showed to 99 participants (20–64 years of age;
no gender information available) in a crowd sourcing
experiment to judge each image on a five-point rating
scale from high to low gloss. We excluded data from 35
participants based on double trials or skipped trials
(resulting from using the back or forward buttons in
their web browsers) or failing at least one of two catch
trials at the end of the experiment (see also Methods).
From the ratings of the remaining 64 participants,
we identified the 60 final images that made up our
diagnostic image set. The diagnostic set contained 30
images from each of the two reflectance categories.
These were selected so that the mean responses across
crowd sourcing participants would classify an equal
number of images wrongly, correctly, and half-way
between high and low gloss. This dataset allowed
us to test to what extent a model makes perceptual
decisions similar to those of humans, independently of
the accuracy of the model. Thus, on this diagnostic
image set, human performance was by definition
chance (53.3% accuracy of mean human responses).
Correlation between mean human response and ground
truth was r = 0.13 and p = 0.32. Example images from
the set are shown in Figure 1a.

Read-out networks

As a pilot experiment to test different model
complexities, we looked at read-out networks of
two well-researched CNN architectures, AlexNet
(Krizhevsky et al., 2012) and VGG16 (Simonyan &
Zisserman, 2015), which had been trained on the
ImageNet object recognition task. At the time this
study was conceived, VGG16 was state of the art
in imitating the architecture of the human ventral
stream. We used two architectures to ensure that
observations we made about readout networks would

generalize between source networks and were not
specific to either one. We trained a linear classifier on
representations at different stages throughout both
networks to perform the high-gloss versus low-gloss
classification task. For each layer from which we took
read-out features, we trained five instances of the
linear classifier. The performance of these networks
in terms of accuracy and their correlation to humans
on the diagnostic image set is shown in Figures 1b
and 1c, respectively. There are two notable trends: The
accuracy improved for read-out networks from later
layers (Pearson correlation between mean accuracy
and readout layer for AlexNet: r = 0.933 and p =
0.002; for VGG16, r = 0.891 and p < 0.001), and
read-out networks based on VGG16 representations
from earlier layers showed more variance in their
correlations to human observers between instances
(Pearson correlation between variance in correlation to
humans and readout layer, r = −0.724 and p = 0.002).
Read-out networks based on AlexNet representations
showed a non-significant correlation in the same
direction (r = –0.593, p = 0.160). Yet, crucially, we also
found that single instances of read-out networks with
the highest correlation to humans for both AlexNet
and VGG16 were trained on representations of early
layers (the maximal correlations for both were achieved
from second layer representations). This led us to
expect that, for CNNs trained from random initial
weights, we can find exemplars of shallow networks
that correlate well with human observers. Early layer
features of object recognition CNNs tend to capture
more localized spatial regularities than later layers and
have been associated with textures (Zhou, Bau, Oliva,
& Torralba, 2018). This could also mean that texture
statistics may already provide a basis for human-like
gloss discrimination—at least for the types of images
in our training and test sets—even if such image
properties are insufficient to account for all phenomena
in gloss perception (Anderson & Kim, 2009; Kim et al.,
2011; Marlow & Anderson, 2015; Marlow et al., 2011;
Marlow et al., 2015).

CNNs and linear classifiers

For a detailed sampling of CNN architectures that
had not previously been trained on other data, we
conducted a Bayesian search, training 2700 networks
from random initial weights to identify the ground
truth class (low vs. high gloss) of 134,030 images from
the rendered training set. We used the Bayesian search
algorithm to optimize hyperparameters of the training
procedure and the architecture of networks with 1, 2,
3, 4, 5, 6, 7, 8, and 12 convolutional layers, training 300
models for each network depth. The Bayesian search
optimized model correlation with human responses
on the diagnostic image set. Models were trained
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on 90% of our image set, with 10% (14,892 images)
being selected at random and withheld as a test set.
The images in the diagnostic set were always withheld
from training. For our general model architecture,
see Figure 2a; for details on the training, see Methods.

We also trained two hand-engineered classifier
models. One was a logistic regression trained on features
we derived from a texture model of human mid-level
vision (Portilla & Simoncelli, 2000; see also Methods
for details). Finally, we trained a SVM on eight pixel
statistics (mean, variance, skewness and kurtosis of
the pixel luminance and saturation histograms) to
differentiate high-gloss from low-gloss images. We
expected linear models trained on pixel statistics to
insufficiently model human responses. At the same
time, this is a useful benchmark to test more complex
models against and to ensure that the discrimination
task provided by our stimuli is not trivial. For training
these hand-engineered classifiers, we split our image set
in half, training one classifier on each half and testing
it on the other (twofold cross-validation). We repeated
this 10 times for each model.

An overview of how all of the CNNs and the two
linear classifiers correlated with human observers on
the diagnostic set can be seen in Figure 2b. We excluded
all “dead” networks (i.e., networks that resulted in a
failed training or constant predictions to all stimuli).
These were 61 in total (27, 23, 2, 0, 1, 1, 3, 2, 2 for 1-, 2-,
3-, 4-, 5-, 6-, 7-, 8-, and 12-layer networks, respectively).
We compared these correlations against the distribution
of correlations of individual human observers with the
mean of the remaining 63 human observers. The mean,
as well as the first and second standard deviations of
this distribution, can be seen in the dotted line and
shaded regions in Figure 2b. The SVM on pixel statistics
clearly correlates with humans much less than the other
classifiers. The logistic regression on Portilla–Simoncelli
statistics is close to the mean of human-to-human
correlations. Interestingly, there are examples of CNNs
from all depths that correlate well with humans, and
there is no obvious trend or difference between the
depth groups.

On average, individual human responses to the
diagnostic stimulus set correlated at 0.47 with the
mean of the remaining observers, explaining only 22%
of the variance in the mean responses. This means
that human responses are quite idiosyncratic for the
diagnostic stimulus set. The logistic regression based
on Portilla–Simoncelli statistics reached a similar
correlation to the mean human response vector.
However, the best of the CNN models correlated
to 0.7 with the human mean, explaining 50% of the
variance. The most human-like CNNs therefore explain
more of the central tendency in human responses than
the responses of most individual human observers
do. This could reflect the fact that the human visual
system has internal noise (e.g., Pelli & Farell, 1999),

whereas CNNs do not. This is an interesting topic
for speculation, but the current data do not allow for
strong conclusions about the nature of noise within the
data for individual observers, so further research on the
origins of individual differences in gloss perception is
necessary.

An ANOVA revealed a main effect of network
depths, F(8, 2638) = 34.4, p < 0.001, indicating that,
on average, networks of different depths correlated
differently to human observers. One-layer networks
had the highest mean correlation (mean r = 0.49; for
the other depth groups, mean r ranged from 0.41 to
0.47). However, our Bayesian search algorithm was
not designed to characterize the mean similarity to
humans for an entire hyperparameter space. Rather,
it searched for those settings and individual networks
that correlated highly with humans, choosing new
settings to investigate particularly interesting regions
of the hyperparameter space, rather than sampling
the space in a grid-like fashion. Looking at the top
10% of most human-like classifiers we find CNNs
from all depths (see Figure 2c), indicating that single
exemplars from different network depths may result
in high correlations to humans. The most human-like
of all networks was a one-layer network, and indeed
27% of the top 10% most-human networks were only
one layer deep, followed by a further 18% of two-layer
networks. This suggests that, when using the Bayesian
search approach we applied, it is easier to find relatively
shallow networks that resemble humans than deeper
ones. This may reflect a use of relatively simple cues by
humans, although it may also be related to the much
smaller parameter space to be searched for shallow
networks.

Having decorrelated human responses from ground
truth, it is important to look at the performance
of models as well as their similarity to humans.
We sought to answer whether there is a systematic
relationship between performance on the objective
function the networks are trained on (i.e., accuracy at
gloss classification) and their tendency to reproduce
human patterns of gloss judgments. We therefore
investigated how similarity to human responses and
model performance are connected and whether those
CNNs that responded most like humans are outliers in
terms of their performance or show typical levels of
performance for their network depth. To do this, we
looked at the relationship between network accuracy
(on the randomly picked 10% of images that were kept
from training and used as a validation set) and the
correlation coefficients to humans on the diagnostic set.
Overall, these two factors barely correlate (r = −0.1,
p < 0.001), confirming that, when using the diagnostic
image set, human-specific response characteristics can
be measured independently of overall performance.
Yet, looking at the groups of networks with the same
numbers of layers (see Figure 2c) revealed a clear
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trend: For shallower networks, there is a positive
correlation between accuracy and correlation with
humans, meaning those exemplars that correlate well
with humans are also the ones that perform better
within the range of possible networks. For deeper
networks, there is a negative correlation. In other words,
of the deep networks, the ones that correlate well with
humans performed the task badly relative to other
networks of the same depth. This also indicates that
there is an intermediate range of network depths where
there is little or no correlation between accuracy and
correlation with humans and where a high correlation
with humans is more typical. Figure 2d shows the
correlation coefficients of the plots in Figure 2c as
a function of network depth, showing the trend of
decreasing correlation with network depth. A quadratic
fit to the trend reveals an intersection with zero
correlation at a depth of approximately four or five
convolutional layers. Taken together, these analyses
suggest that relatively shallow networks tend to be those
that, typically and independently of their performance
on the training objective, tend to correlate most closely
with humans.

Our results suggest that the task of distinguishing
high-gloss from low-gloss textured materials in a
similar way to humans does not require the complexity
of very deep convolutional networks. Indeed, even
a linear classifier using texture statistics can match
human perceptual judgments on the task at the level
of human-to-human mean correlations. However,
CNNs are able to explain mean human responses
even better. There is no improvement of deeper
networks over shallower ones, despite their increased
objective accuracy at the task. Analysis suggests
that networks with approximately four or five
convolutional layers tend to typically correlate well with
humans.

To further investigate similarities in network
responses to human observers, we rendered a set of
images with manipulations to the specular component
that have been shown to influence human gloss
perception (Anderson & Kim, 2009; Marlow et al.,
2012); see also Methods for a detailed description
and Figure 3a for examples. These manipulations
were changing the contrast of specular reflections
by changing the specular weight, changing the size
of highlights by eroding or dilating the specular
component, and rotating the specular component.
The mean responses from networks in each depth
group for 120 images with these manipulations are
shown in Figures 3b to 3d. Networks appear to be
very sensitive to specular contrast, predicting images
with higher contrast reflections to be glossier. This
is not surprising, as specular weight was the primary
manipulation in the training data. Networks also
react to highlight size, predicting images with eroded
highlights to be less glossy and images with dilated

highlights to be glossier. Rotations of highlights
appeared to have little influence on network responses.
On average, networks predicted images with rotated
highlights to be less glossy than images with correctly
oriented highlights. This effect did not appear to
increase with the angle of rotation.

To compare the effects these manipulations had on
network responses, we calculated an effect size for each
manipulation and compared this among networks.
For the contrast manipulation, we took as an effect
size the differences in responses between the highest
and lowest specular weight conditions we tested (1.0
and 0.01). For size manipulations, we calculated two
separate effect sizes for erosion and dilation. For each,
we took the differences in responses between images
containing unmanipulated highlights and images with
the most dilated or most eroded highlights we tested
(both with a radius of 5 pixels). For highlight rotations,
we took the difference in responses between images with
rotated reflections and parallel images with non-rotated
reflections for the orientation with the largest effect per
depth group. Figure 3e shows these effect sizes for each
depth group of networks. For all four manipulations,
the effect was smaller for very shallow networks,
increasing with network depth but also reaching a
maximum. This maximum appeared to be reached after
network depths of three to six layers.

Our CNNs showed different degrees of sensitivity
to different manipulations to the specular components
of images. It is not surprising that networks reacted
strongly to changing levels of specular contrast or
specular weight. This is the primary difference between
the two material classes in the training set. It is, however,
interesting to see that intermediate specular weights
also caused intermediate responses and that on average
responses ordinally matched specular weights. Size of
highlights also changed network responses, with more
eroded highlights causing lower gloss predictions and
more dilated highlights causing higher gloss predictions
on average. Rotations of the specular component
appear on average to have caused networks to judge
images as less glossy. This effect was very small,
however. A possible explanation lies in the training data
and task. The training data contains only high-gloss
mirror-like material or low-gloss material showing
shading and texture and some specular highlights.
Although congruence between shading and highlight
components is a part of the typical appearance of the
low-gloss material, learning this aspect of appearance
is of little consequence for the network to improve at
achieving the objective. Images containing both shading
and specular highlights (and texture) are already at the
low end of the learned gloss scale.

The effect sizes of highlight manipulations changed
with network depth. All effects were smaller for
very shallow networks and increased with network
depth until they appeared to reach a maximum after



Journal of Vision (2021) 21(12):14, 1–20 Prokott, Tamura, & Fleming 14

about three to six layers. The directions of these
effects are in line with what we would expect from
human observers—higher specular contrast, larger
highlights, and correct orientation all lead to higher
gloss judgments on average. However, we cannot draw
any conclusions about the absolute size of these effects.
It seems likely that our training data and objective,
representing only a limited part of gloss appearance
and perception, provided only limited opportunity
for learning some aspects of gloss perception. The
leveling out of effect sizes with increasing network
depth however seems to imply that, in so far as these
features can be learned by networks in our training,
they are maximally learned after about three to six
layers. Deeper networks may learn more complex
features, but they do not appear to be more sensitive to
these manipulations. This is in line with our previous
observation that it is more typical for networks of
intermediate depths to correlate highly with humans
and that further increased network complexity does
not necessarily increase network similarity to human
observers.

Generative models

One limitation with using renderings to evaluate
human gloss perception is that ambiguous stimuli are
relatively rare. To increase the number of stimuli that
could be diagnostic of human perception, in a second
experiment we turned to DCGANs (Goodfellow et
al., 2014; Radford et al., 2015) to generate images that
share certain high-order statistical characteristics with
renderings but which elicit a less distinctive surface
appearance. This also allowed us to compare the
necessary ingredients for networks to create images
that appear glossy to humans with those required
by classifier networks to match human judgments.
Whereas in the previous experiments we searched
for architectures of networks that classify low- and
high-gloss images in a similar way that humans do, in
this experiment we looked at different architectures of
networks that generate images of low- and high-gloss
materials that are distinguishable to human observers.
For this purpose, we trained five DCGAN architectures
to replicate low- and high-gloss images ranging from
one to five convolutional layers. Of each architecture we
trained two exemplars—one on high-gloss renderings
and one on low-gloss renderings. By training the
DCGANs separately on each class of images, we have
ground-truth labels for which material is being recreated
in each image.

From each DCGAN, we generated 75 images. In
addition, we randomly picked 75 high-gloss and 75
low-gloss renderings from the image set we used for
training the DCGANs. Overall, this gave us a set of
900 images (5 architectures × 2 image classes × 75

generated images + 75 × 2 renderings). We showed
these to participants one image at a time in random
order and asked them to rate the images within a
triangular rating area. The labels of the three corners
were “high gloss” and “low gloss” (along the horizontal
axis) and “unreal/not an object” on the top corner.
See Figure 4a for example stimuli.

Fifteen subjects (three female, 12 male; mean
age ± SD, 24.2 ± 4.0 years) participated in this
experiment. Their results are shown in Figures
4b to 4d. We separated subject responses into
glossiness and realness—the horizontal and vertical
components of their responses within the area of
the triangle, respectively. We conducted a two-way
repeated-measures ANOVA of glossiness responses.
Mauchly’s test indicated that the sphericity assumption
was violated, χ2(65) = 218.4 and p < 0.001. Because
Greenhouse–Geisser ε = 0.246, we report p corrected
according to Greenhouse–Geisser. The ANOVA
revealed two within-subject main effects: the image
generation method, F(5, 70) = 8.2 and p = 0.003, and
the image ground truth, F(1, 14) = 97.9 and p < 0.001.
These imply that images from different generation
methods (networks of different depths or renderings)
are perceived differently in terms of their glossiness.
Similarly, overall, observers could tell the low-gloss
images and high-gloss images apart. The ANOVA
also revealed an interaction term, F(5, 70) = 40.0
and p < 0.001, meaning that the difference between
high- and low-gloss images changed between different
image generation methods. To better understand this
interaction, we conducted a series of comparisons
of estimated marginal means of glossiness ratings of
low- and high-gloss images for each image generation
method separately. These comparisons revealed
significant differences in glossiness ratings between low-
and high-gloss images for all image generation methods
except one-layer networks, t(14) = 0.93 and p = 0.368;
for all others, t(14) = 5.61 or larger and all p < 0.001.

To quantify the difference between low- and
high-gloss images from different generation methods,
we looked at the classification accuracy. We define
accuracy as the proportion of images rated on the
correct half of the glossiness scale. These are shown
in Figure 4b. In terms of accuracy, images from
two-layer networks could already be discriminated as
well as those from five-layer networks (76% vs. 77%).
However, the main effect of image generation method
on glossiness ratings indicates that the mean ratings
across low- and high-gloss images differed among
network depths, making the 50% criterion questionable.
Visual inspection of Figure 4b shows that for networks
of three to five layers the image ratings shifted overall
toward the low-gloss end of the axis. As a measure
of how well the glossiness ratings of the low- and
high-gloss images were discriminable independent of a
threshold criterion, we calculated a sensitivity index,
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d′, for each network depth. These were d′ = 0.17, 1.1,
2.3, 1.4, 1.4, and 2.2 for one- to five-layer DCGAN
images and renderings, respectively. According to
these values, images from two-layer networks were
less discriminable than those from four- or five-layer
networks. However, images from three-layer networks
showed the same discriminability as renderings. An
interesting observation is that, by visual inspection
of Figures 4b and 4c, it appears that the perception of
high-gloss images shifted for deeper DCGANs, whereas
low-gloss images (red dots in the figure) remained
mostly in the same position. This could indicate
that high-gloss perception is more specific and that
perception of low-gloss material can be achieved by a
wider range of image quality and features.

We also performed a two-way repeated-measures
ANOVA of “realness” responses. Mauchly’s test again
indicated violation of the sphericity assumption, χ2(65)
= 276.6 and p < 0.001. We report p corrected according
to Greenhouse–Geisser, as Greenhouse–Geisser’s ε =
0.205. The ANOVA of realness responses revealed a
within-subject main effect of image generation method,
F(5, 70) = 34.1 and p < 0.001. A main effect of image
ground truth was not significant, F(1, 14) = 0.1 and
p = 0.808, indicating that low- and high-gloss images
were not, overall, judged differently in their realism.
An interaction was also significant, F(5, 70) = 4.9
and p = 0.022), meaning that for the different image
generation methods realness differences between low-
and high-gloss images varied. A series of comparisons
of estimated marginal means of low- and high-gloss
image realness for each image generation method
separately revealed a difference only for images from
two-layer networks, t(14) = 3.66 and p = 0.003. This
indicates that, for all network architectures except
two-layer networks, the quality of low- and high-gloss
images in terms of realism was not perceived differently
by observers. Together, these findings suggest that the
lowest level texture-like statistical image structures
that can be reproduced by one-layer DCGANs are
insufficient to create distinct and realistic impressions
of low- and high-gloss materials. Increasing depth
led to more realistic and more distinct impressions,
confirming that mid-level image organization factors
play an important role in the perception of surfaces and
their reflectance properties.

General discussion

There has been a long-running debate about which
level of processing or type of information observers
rely on to identify surface gloss—relatively low-level
image statistics (Boyadzhiev et al., 2015; Motoyoshi
et al., 2007; Sawayama & Nishida, 2018) or more
sophisticated mid-level representations that capture

relationships between image features and 3D surface
structure (Anderson & Kim, 2009; Kim et al., 2011;
Marlow & Anderson, 2015; Marlow et al., 2011;
Marlow et al., 2015). Yet, the classes of information
relevant for gloss judgments could plausibly vary
depending on the task. Here, we focused on one of the
most basic gloss perception tasks: classifying a whole
image as either high or low gloss. We asked observers
to classify a diverse set of low-resolution renderings of
textured low-gloss and untextured high-gloss surfaces.
To our knowledge, this is one of the largest scale gloss
perception experiments performed to date, spanning
tens of thousands of images.

Overall, we found that observers were good but far
from perfect at distinguishing them—providing ample
possibilities to identify the human-specific patterns
of responses. To gain insights into the kinds of cues
and computations observers used, we identified a set
of diagnostic images in which human responses were
systematically decoupled from ground truth, which
we then compared against a variety of models, based
on different types of computation. While we could
rule out simple intensity and saturation statistics,
features from a well-known texture analysis/synthesis
algorithm (Portilla & Simoncelli, 2000) could predict
mean human judgments roughly as well as individual
observers could, and a range of CNNs even better.
Together, these findings hint that, although extremely
simple image statistics cannot account for human gloss
categorization, relatively straightforward mid-level
image statistics, without any explicit representation
of 3D structure, might be sufficient to account for
human performance in this simple task. This raises
the intriguing possibility that there might be a typical
overall “look” of matte and glossy surfaces that can be
captured by texture-like image statistics and which is
sufficient for matte versus glossy decisions.

By systematically varying CNN architectures and
hyperparameters, we sought to identify certain CNNs
that more closely resembled human performance than
others. However, we found that the extent to which
the CNNs correlated with human judgments varied
surprisingly little across changes in network depth.
Although an ANOVA revealed a main effect of network
depth, with one-layer networks correlating highest
with humans on average, there are several points to be
made against considering only the mean correlation
to humans per network depth. The first is that the
Bayesian search algorithm is not intended to investigate
the mean correlation to humans. Rather, it searches the
hyperparameter space for settings or a range of settings
that maximize correlation to humans, as opposed to an
evenly spaced grid search. Our data show that there are
human-like networks for every depth we investigated.

Another point to be made about the mean
correlations of depth groups is that we cannot
discriminate between variance in model performance
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due to random initialization and variance due to
changing hyperparameters. It is possible that random
initialization causes more variance than changes
in particular hyperparameters for our training set,
objective function, and network architectures. We
have also seen effects of this in our read-out networks,
where the random initialization of only a final
linear layer led to a wide range of correlations with
humans.

We therefore use the analysis of network performance
typicality shown in Figures 2c and 2d as summary
statistics. We found that very deep networks that
correlate highly with humans tended to perform
relatively poorly in terms of classification accuracy.
Shallow networks that responded in a very human-like
way tended to perform relatively well. Networks of
intermediate depths (four or five layers) typically
showed human-like responses, independent of their
accuracy. Although the most human-like single network
we observed was a one-layer network, we suggest that
the networks of intermediate depths are of particular
interest in modeling human gloss perception, because
they more typically respond similarly to humans, not
just in outlier exemplars. It is also worth noting that
the high prevalence of shallow networks in the top
10% most human-like networks may also be related
to the size of the search space. Deeper networks have
more hyperparameters and thus may require additional
optimization to identify human-like exemplars.
Taken together, the analyses suggest that very deep
representations are not required to predict human-like
gloss categorizations.

These results are supported by the responses by
the CNNs to images with manipulated highlights.
We showed images with changes in specular contrast,
highlight size, and highlight orientation to all CNNs
from our Bayesian search. Humans have been shown
to be sensitive to similar manipulations (Anderson
& Kim, 2009; Marlow et al., 2012). The results
(Figure 3) show that networks are sensitive to these
manipulations to different degrees. Although we
cannot compare the magnitude of the effects among
manipulation conditions, we can compare them among
networks. On average, network responses shifted, as
we would expect from human observers. Effect sizes
in responses to all manipulations increased for very
shallow networks and reached a maximum after a
network depth of about three to six layers. Deeper
networks showed no further increased sensitivity to
these manipulations, indicating that intermediate
networks learned these features as much as can be
learned from our training data and task. This broadly
agrees with our previous observation that intermediate
CNN depths are sufficient to model human gloss
perception.

Our experiment with DCGAN images showed that
human observers were able to discriminate high-gloss

from low-gloss images generated by two-layer networks.
Three-layer networks were able to generate images that
were essentially as discriminable as renderings to human
observers. Although four- and five-layer DCGANs
showed a decrease in discriminability, this cannot be
easily explained by image quality as quantified by
subjects’ judgments of image realism. Possibly the
complex features enabled by the increased depth of
the models do not contribute to gloss perception. The
generator learns features (up to a certain limit) in order
to replicate the image as well as the discriminator can
identify, whereas the discriminator learns to identify
features that the generator has not yet learned in order
to discriminate generated images from training images.
We found that, starting in two-layer networks and
very much so in three-layer networks, the replicated
features included at least some that human observers
perceive as belonging to high- or low-gloss materials.
Although this on its own does not tell us exactly
which features are necessary and sufficient, it provides
converging evidence that very shallow representations
are insufficient to capture the structures on which
humans rely, and very deep representations are not
necessary.

Another interesting observation is that subjects
can distinguish the glossiness of images even when
they do not report perceiving an object in the image.
This again hints that perception of gloss—at least at
the level of simple binary classification—might be
possible without perception of a coherent 3D surface.
To fully evaluate this, it would be necessary to test
shape perception for the DCGAN stimuli, which is an
interesting avenue for future studies offered by these
intriguingly ambiguous stimuli. Due to the processing
differences between shallow and deeper networks, it
could also mean that more local cues are sufficient to
perceive glossiness than are necessary to perceive an
object. This is also in line with the observation from
our results with read-out networks, that those single
instances of classifiers that best predicted human
gloss responses were trained on features from early
intermediate layers. AlexNet and VGG16, from which
the features for our read-out networks were taken,
were trained to recognize objects. Yet, the features that
yielded the single most human-like read-out networks
for the gloss perception task were also from an earlier
stage of processing than those necessary for image
recognition, suggesting again that gloss perception does
not require object perception. Taken in sum, we believe
our analyses provide convergent evidence that relatively
low- to mid-level statistical image representations
might be sufficient to account for human visual
low-gloss versus high-gloss category decisions. Taking
into consideration work on cortical representations
(Freeman & Simoncelli, 2011; Hiramatsu, Goda, &
Komatsu, 2011; Komatsu & Goda, 2018; Nishio, Goda,
& Komatsu, 2012; Okazawa, Goda, & Komatsu, 2012;
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Sun, di Luca, Ban, Muryy, Fleming, & Welchman,
2016; Wada, Sakano, & Ando, 2014), it is interesting
to speculate that ventral stream areas spanning
V1 to V4 might be those most important for such
judgments.

Conclusions

Our work has narrowed down and identified some
architectural conditions under which CNNs (as
classifiers or as DCGANs) learn features that cause
similar responses to humans or that allow humans to
perceive generated images as high or low gloss. There
is convergent evidence from our experiments that
relatively shallow architectures are sufficient to model
human gloss perception with a CNN. This is supported
by results of read-out networks based on AlexNet and
VGG16 representations, in which single instances of
linear classifiers trained on representations at early
stages of these networks showed the highest correlations
to human observers. Correlating the accuracies of our
CNNs to their correlation coefficients with human
observers showed that CNNs of approximately four
or five layers more typically correlated well with
humans on our task than deeper networks. We also
found that networks of about three to six layers
reached a maximum mean sensitivity to manipulations
of highlight contrast, size, and orientation. These
intermediate network depths might be good candidates
for further studies on modeling human gloss perception
with supervised networks. Human ratings on images
generated by different DCGAN architectures showed
that generative networks with two convolutional layers
were enough to recreate high- and low-gloss materials in
a way that humans could tell them apart, whereas three
convolutional layers were enough for human observers
to distinguish as well as renderings. Linear classifiers
using pixel intensity and saturation statistics were not
enough to imitate human observers, and, although the
correlation to humans of logistic regressions trained on
texture statistics came close to mean human-to-human
correlations, they were surpassed by CNNs. Overall,
these results support the view of gloss classification as a
computation of low- to mid-level vision.

Keywords: neural networks, gloss perception, material
perception
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