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Abstract

Background: NF-kB/p65 has been reported to be involved in regulation of chondrogenic differentiation. However, its
function in relation to key chondrogenic factor Sox9 and onset of chondrogenesis during endochondral ossification is
poorly understood. We hypothesized that the early onset of chondrogenic differentiation is initiated by transient NF-kB/p65
signaling.

Methodology/Principal Findings: The role of NF-kB/p65 in early chondrogenesis was investigated in different in vitro, ex
vivo and in vivo endochondral models: ATDC5 cells, hBMSCs, chicken periosteal explants and growth plates of 6 weeks old
mice. NF-kB/p65 activation was manipulated using pharmacological inhibitors, RNAi and activating agents. Gene expression
and protein expression analysis, and (immuno)histochemical stainings were employed to determine the role of NF-kB/p65
in the chondrogenic phase of endochondral development. Our data show that chondrogenic differentiation is facilitated by
early transient activation of NF-kB/p65. NF-kB/p65-mediated signaling determines early expression of Sox9 and facilitates
the subsequent chondrogenic differentiation programming by signaling through key chondrogenic pathways.

Conclusions/Significance: The presented data demonstrate that NF-kB/p65 signaling, as well as its intensity and timing,
represents one of the transcriptional regulatory mechanisms of the chondrogenic developmental program of
chondroprogenitor cells during endochondral ossification. Importantly, these results provide novel possibilities to improve
the success of cartilage and bone regenerative techniques.
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Introduction

Chondrogenic differentiation encompasses the commitment and

differentiation of chondro-progenitor cells to chondrocytes. In

addition to providing articulating joint surfaces with functional

cartilage and maintaining cartilage integrity, chondrogenic differ-

entiation plays an essential role during endochondral ossification.

Skeletal growth and bone fracture healing depend on endochondral

ossification; growth plate chondrocytes or fracture callus chondro-

cytes originating from mesenchymal progenitors gradually differ-

entiate into mineralized hypertrophic chondrocytes and finally die

by apoptosis. The remaining mineralized extracellular matrix

provides a molecular scaffold for infiltrating osteoblasts and

osteoclasts to adhere to and remodel, setting the stage for de novo

bone deposition [1,2,3].

Transcriptional targets of NF-kB (nuclear factor kappa-light-

chain-enhancer of activated B cells) have been recognized as key

developmental signaling mediators that regulate endochondral

ossification. Early bone fracture healing by endochondral ossifica-

tion depends on a haematoma-induced inflammatory environment

[4] and several NF-kB-target genes (e.g. interleukin (IL)-6, tumor

necrosis factor alpha (TNFa), cyclooxygenase (COX)2 and

inducible nitric oxide synthase (iNOS)) are involved in bone

fracture repair [5,6]. Besides its functions in transcriptional

regulation of general catabolic inflammatory processes, NF-kB

has been linked to skeletal development [7]. Double KO of NF-kB

subunits p50 and p52 shows abnormal skeletal development in

mice, which was attributed to impaired growth plate function [8].

Recently, NF-kB subunit RelA (p65) was reported to be activated by

Nkx3.2 (Bapx1) to control chondrocyte viability [9]. Moreover,

RelA was identified as a transcription factor for bone morphogenic

protein (BMP)2 [8,10] and Sox9 (SRY (sex determining region Y)-

box 9) in mature chondrocytes during endochondral ossification

[11]. Sox9 is expressed by chondroprogenitor cells and is

indispensable for chondrogenic differentiation [12,13,14]. Sox9

drives the expression of cartilage matrix genes Collagen type II

(Col2A1) and Aggrecan cooperatively with L-Sox5 and Sox6

[15,16,17] and as such maintains chondrocyte phenotype. The

involvement NF-kB/p65 as indispensable factor during chondro-

genic development has been studied in the context of mature
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chondrocytes. However, the mechanisms by which NF-kB/p65

signaling influences early differentiation of chondroprogenitors

remains elusive. We hypothesized that the initiation of chondro-

genic differentiation is regulated by transient NFkB/p65 signaling.

Our data show that during the very first hours of chondroprogenitor

differentiation a transient activation of NF-kB/p65 occurs which, in

part, regulates the transient expression of key chondrogenic

controller Sox9 at the early phase of chondrogenesis. This early

transient Sox9 induction precedes the induction of Sox9 that is

described to be related to late cartilage matrix synthesis [15,16],

revealing a novel bi-phasic induction for Sox9 during chondrogenic

differentiation. We found indications that through the early Sox9

induction the transient NF-kB/p65 activation determines, at least in

part, the late stage fate of the chondrogenic differentiation process.

Inhibition of NF-kB/p65 mediated signaling is accompanied by

inhibition of early Sox9 expression and subsequent inhibition of late

stage chondrogenesis. In line with these findings, brief early NF-kB

stimulation using different NF-kB activating molecules (LPS, TNFa
or BMP2), enhanced chondrogenesis in our in vitro and ex vivo

endochondral models. Our findings demonstrate that NF-kB/p65

signaling, as well as its intensity and timing, is an important factor in

the transcriptional regulation of the early chondrogenic develop-

mental program of chondroprogenitor cells and thereby in part

determines endochondral ossification.

Results

Early ATDC5 differentiation is accompanied by a transient
activation of NF-kB/p65 and expression of Sox9

As a model for endochondral ossification, the murine

chondroprogenitor ATDC5 cell line was used [18,19]. Early

involvement of NF-kB/p65 signaling was assessed by examining

subcellular localization of the NF-kB subunit p65 [20] (Figure 1A).

In proliferating cells (t = 0) p65 was not detectable in the nucleus.

However, upon initiation of chondrogenesis a fraction of

cytoplasmically localized p65 translocated to the nucleus, which

was readily detectable at 30 minutes post-induction of differenti-

ation. The nuclear occupation of p65 peaked between 0.5 and

4 hours and was not detectable anymore after 8 hours (Figure S1).

To further verify overall activation of NF-kB/p65, expression of

NF-kB-target genes was measured (Figure 1B). Induction of COX-

2, iNOS, Il-6 and TNFa mRNAs was detectable between 1 and

4 hours in differentiation and returned to baseline levels around

8 hours. COX-2 and iNOS proteins showed a similar transient

expression (Figure 1C). To verify potential cross-talk between the

differentiation program and the early NF-kB/p65 response,

expression of Sox9 was determined. During ATDC5 differentia-

tion Sox9 expression was transiently induced at 1–4 hours in

differentiation and steadily increased again from day 7 in

differentiation (Figure 1C). Remarkably, these data imply that

the expression of Sox9 during chondrogenic differentiation in

ATDC5 is bi-phasic. Confirming completion of the chondrogenic

differentiation program in the ATDC5 cells chondrogenic markers

Col2A1, Col10A1, and RunX2 increased in expression from day 7

in differentiation (Figure 1D).

Previously it was reported that an NF-kB/p65 transcription

factor binding site is located in the Sox9 gene [11]. In silico

screening of Sox9 promoter regions detected two other putative

evolutionary conserved NF-kB/p65 transcription factor binding

sites in various mammals (Figure S2).

Post-natal growth plates contain a pool of dedicated chondro-

progenitor cells in the so-called resting zone. During growth plate

development, these resting zone cells differentiate into proliferat-

ing chondrocytes and are thus responsible for cartilage generation

in the growth plate [21]. To verify whether activation of NF-kB/

p65 can also be detected in early chondrogenesis during

endochondral ossification in vivo, the resting- and proliferative

zones of 6 week old mice growth plates were analyzed for

expression of Sox9, p65 and NF-kB/p65-target genes (COX-2

and iNOS) (Figure 1E). As described previously [22], Sox9

expression was detected in the resting zone (RZ) cells as well as in

proliferative zone chondrocytes (PZ). Interestingly, Sox9 seems to

be more abundantly expressed in the resting zone. Expression of

p65 was found in the cytoplasm of RZ cells and was not detectable

in the PZ. Also, p65 was found to be localized in the nuclei of

several RZ cells. Both the expression of the NF-kB/p65-target

genes COX-2 and iNOS was found in the RZ.

Overall, these results indicate that an NF-kB/p65 signaling

response occurs very early in chondrogenic differentiation and

correlates with a thusfar unknown early transient induction of

Sox9 in ATDC5 cells.

Inhibition of early NF-kB/p65 activation leads to impaired
chondrogenic differentiation

To functionally determine the role of the early NF-kB/p65

activation in relation to initiation of chondrogenic differentiation,

nuclear translocation of NF-kB was inhibited by TLCK or

Parthenolide. Dose-response experiments (data not shown)

revealed optimal inhibitor concentrations: 100 mM TLCK or

10 mM Parthenolide efficiently inhibited NF-kB nuclear translo-

cation during early ATDC5 chondrogenesis (Figure 2A). In

agreement with efficient NF-kB inhibition, both TLCK and

Parthenolide inhibited COX-2, iNOS and Il-6 mRNA expression

at 2 hours in differentiation (Figure 2B). We next tested the

functional relationship between the early NF-kB/p65 response

and chondrogenic differentiation. Early Sox9 levels were reduced

by both TLCK and Parthenolide (Figure 2B and Figure S3A).

Inhibition of NF-kB activation by TLCK or Parthenolide resulted

in a similar dose-dependent inhibition of late phase (day 14)

Col2A1, Col10A1, RunX2 and Sox9 protein expression

(Figure 2C). Results were confirmed using the clinically used

NF-kB inhibitor Sulfasalazine (Figure 2C). To independently

verify the effect of pharmacological NF-kB/p65 inhibition on

Sox9 expression during early chondrogenic differentiation, we

genetically targeted NF-kB/p65 by RNAi. Transient transfection

of a p65 siRNA duplex in ATDC5 reduced p65 mRNA and

protein expression at 2 hours in differentiation by ,50%

(Figure 2D, upper left set). Expression of COX-2, iNOS and Il-6

were also reduced as compared to Mock transfection (data not

shown). In good agreement with the results described above, early

expression of Sox9 mRNA and protein was significantly reduced

by p65 knock-down (Figure 2D, upper right set). To further

validate how p65 knock-down affects long term chondrogenic

differentiation, p65 mRNA expression was targeted for a longer

timeframe by re-transfection of the siRNA duplex. We confirmed

efficient knock-down of p65 mRNA at 10 days in differentiation

(Figure 2D, upper left and lower left sets). Functionally the p65

knock-down resulted in impaired chondrogenic differentiation

(Figure 2D, lower left and lower right). Finally, to test whether the

early transient Sox9 induction influences late chondrogenic

differentiation we targeted the expression of Sox9 only in the

early phase of differentiation by one single Sox9 siRNA

transfection, followed by 7 days of differentiation follow-up under

normal differentiation conditions. Efficient knock-down of Sox9

mRNA was confirmed at the start of differentiation. At 2 hours in

differentiation the early induction of Sox9 was almost completely

abolished (Figure 2E, upper panel). At day 4, Sox9 siRNA

treatment was not effective anymore, as no difference in Sox9
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expression was detectable between conditions. To verify the

consequence of this early Sox9 knock-down, the expression of

Col2A1 was determined (Figure 2E, lower panel). Col2A1

expression was detectable from day 4 on. At day 4 a significant

difference was found between control and the early Sox9 knock-

down. This difference was even bigger at day 7, where early Sox9

knock-down lead to an almost abolished expression of Col2A1.

Taken together, these results indicate that inhibition of NF-kB/

p65 nuclear translocation suppresses the initiation of chondrogenic

differentiation, by inhibiting early Sox9 induction and subsequent

expression of late chondrogenic markers. This indicates that late

phase chondrogenic development and endochondral ossification

are, at least in part, regulated by early NF-kB/p65 and Sox9

signaling events.

Figure 1. Early chondrogenic differentiation is accompanied by NF-kB/p65 activation and transient Sox9 expression. A: Nuclear
translocation of the NF-kB subunit p65. Total extract (T), cytoplasmic (C) and nuclear (N) fractions were isolated at 0, 0.5, 1 and 2 hours in ATDC5
differentiation. Cytoplasmic marker: a-tubulin, nuclear marker: Histone H3. B: COX-2, iNOS, Il-6 and TNFa mRNA expression at 0–24 hours in
differentiation (relative to t = 0 and corrected for b-actin). C: Sox9 mRNA expression during chondrogenic differentiation (left panel). Protein
expression of Sox9, COX-2 and iNOS at 0–24 hours (middle panel) and for Sox9 also at 0, 7, 10 and 14 days in differentiation (right panels). Molecular
weight markers (kDa) are depicted on the left of immunoblots and relative quantifications are depicted on top of immunoblots. * = p,0.05. D: mRNA
and protein expression of Col2A1, Col10A1, RunX2 during ATDC5 differentiation E: Sections from 6 weeks old mouse growth plates (resting (RZ) and
proliferative (PZ) zones) stained for p65, COX-2, iNOS and Sox9. Lower panels show appropriate negative controls. Bars = 50 mm.
doi:10.1371/journal.pone.0033467.g001
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Late phase ATDC5 differentiation is enhanced by
stimulation of early NF-kB/p65 activity

The association between early NF-kB/p65 activation and

initiation of chondrogenic differentiation prompted us to test

whether stimulation of NF-kB/p65 enhances chondrogenic

differentiation. We enforced NF-kB/p65 signaling by supplement-

ing differentiation medium with the NF-kB/p65-activating

molecular tools LPS or TNFa. These activating agents were

Figure 2. Inhibition of early NF-kB/p65-activation leads to impaired ATDC5 differentiation. A: Cells were differentiated in the absence
(control) or presence of TLCK (100 mM) or Parthenolide (10 mM) and total (T) and nuclear (N) fractions were prepared. NF-kB was detected as p65. B:
Expression of COX-2, iNOS, Il-6 and Sox9 mRNAs at 2 hours in differentiation in the presence of TLCK or Parthenolide. Sox9 protein expression was
determined from similar samples (right panel set). C: Protein expression at day 14 in differentiation of Col2A1, Col10A1, Sox9 and RunX2 with TLCK
(left panels), Parthenolide (right panels) or Sulfasalazine (lower left panels). D: Knock-down (KD) of p65 mRNA and protein at 0, 2 hours and 10 days in
differentiation (‘‘Mock’’ below figures indicates scrambled siRNA and ‘‘p65’’ below figures indicates p65 KD). Upper right set: expression of Sox9
mRNA and protein in p65 KD cells at 2 hours in differentiation. Lower sets: messenger RNA expression of Col2A1 and Col10A1 at 10 days in
differentiation of p65 KD cells. * = p,0.05. E: Sox9 mRNA expression at 0, 2 hours and 4 days in differentiation of cells transfected one day prior to
differentiation with scrambled (indicated by ‘‘Mock’’) or Sox9 siRNA (indicated by ‘‘Sox9’’) (upper panel). Col2A1 mRNA expression was determined at
day 4 and 7 in differentiation (lower panel). * = p,0.05.
doi:10.1371/journal.pone.0033467.g002
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added to the differentiating culture during the first 24 hours of

differentiation only (the timeframe in which the early NF-kB/p65

activation takes place). At low LPS concentrations (0.1 ng/ml) and

TNFa (10 ng/ml), NF-kB/p65 nuclear translocation was slightly

enhanced during early chondrogenic differentiation (Figure 3A)

and resulted in increased early expression of COX-2, Il-6 and

iNOS mRNAs (Figure 3B). Interestingly, increasing NF-kB/p65

activity enhanced the magnitude of transient Sox9 (as well as L-

Sox5 and Sox6) expression early in chondrogenic differentiation

(Figure 3B and Figure S3A). Interference with NF-kB-signaling by

siRNA mediated p65 knock-down attenuated the LPS- and

TNFa-induced increased Sox9 expression back to Mock-treated

differentiation levels (Figure 3C). Moreover, increased Col2A1,

Col10A1, Sox9 and RunX2 expression in 24 hour LPS- and

TNFa-exposed cells was detected at day 10 and 14 in

differentiation (Figure 3D and Figure S3B). Data show that early

and short chondrogenic NF-kB/p65-activation positively responds

to environmental stimulation of NF-kB/p65, resulting in overall

increased chondrogenic potential late in differentiation.

Early transient NF-kB/p65 signaling during endochondral
differentiation of primary mesenchymal progenitor cells

To verify the results obtained with the ATDC5 system, similar

endochondral differentiation experiments were performed using

human bone marrow stem cells (hBMSC). In hBMSCs, Col2A1

and Col10A1 mRNA and protein expression was evident from day

7–21 in chondrogenic differentiation (Figure 4C and Figure S4A).

Expression of Col1A1 and PPARc was not upregulated, ruling out

osteogenic or adipogenic differentiation from this multipotent cell

source during chondrogenic induction (data not shown). In

Figure 3. Late phase ATDC5 differentiation is enhanced by stimulation of early NF-kB/p65 activity. A: Cells were differentiated in the
absence (control) or presence of LPS (0.1 ng/ml) or TNFa (10 ng/ml) and total (T) and nuclear (N) fractions were prepared. NF-kB was detected as p65.
B: Expression of COX-2, iNOS, Il-6 and Sox9 mRNAs at 2 hours in differentiation in LPS or TNFa treated cells. Far right panel set: early Sox9 protein
expression in LPS or TNFa treated cells. C: ATDC5 cells were transfected with a p65 siRNA duplex or scrambled (‘‘Mock’’) siRNA duplex and
differentiated in the absence or presence of LPS (0.1 ng/ml) or TNFa (10 ng/ml) for 2 hours. Knock-down of p65 mRNA was confirmed at 0 and
2 hours in differentiation (left panel). Right panel shows Sox9 mRNA expression. D: Protein expression of Col2A1, Col10A1, Sox9 and RunX2 in
differentiated ATDC5 cells (14 days) in the presence of LPS (left panel set) or TNFa (right panel set), only during the first 24 hours of differentiation.
* = p,0.05.
doi:10.1371/journal.pone.0033467.g003
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concordance with ATDC5, p65 translocated to the nucleus at

1 hour in hBMSC differentiation and nuclear p65 levels further

sustained up to 4 hours (Figure 4A). Analyses showed that hBMSC

chondrogenic differentiation of 3 independent isolates is accom-

panied by transient expression of COX-2 and IL-6 early in

differentiation (Figure 4B). Furthermore, as in ATDC5, induction

of Sox9 expression in hBMSC differentiation was also bi-phasic:

from 1–2 hours onward, as well as late (day 14–28) in

differentiation (Figure 4C). In agreement with reduced NF-kB/

p65 activity, COX-2, Sox9 and IL-6 expression levels decreased in

the presence of TLCK (Figure 4D; COX-2 immunoblot; grey bars

in graph and Figure S4B/C). Conversely, brief stimulation of NF-

kB/p65 activity by low LPS concentrations during the first

24 hours only, enhanced NF-kB/p65-target gene expression, as

well as early Sox9 expression (Figure 4D; COX-2 immunoblot;

black bars in graph and Figure S4B/C). Coherent with the murine

model, human chondroprogenitor cells clearly showed increased

expression of Col2A1 at day 21 when exposed to LPS during the

first 24 hours in differentiation (Figure 4E; lanes 2) and lower

Col2A1 levels in the presence of TLCK (Figure 4E; lanes 3).

Taken together, these data show that hBMSC endochondral

differentiation also integrates a transient NF-kB/p65 activation

during the early initiation of differentiation, ultimately contribut-

ing to the outcome of the chondrogenic cell fate.

Figure 4. Transient NF-kB/p65 signaling during early chondrogenic differentiation of human bone marrow stem cells. Human bone
marrow stem cells from three individuals (hBMSC1/2/3) were differentiated into the chondrocyte lineage using monolayer culture. A: Nuclear (N) and
total (T) fractions were isolated from 0, 1, 2, 4 hours samples. NF-kB was detected as p65, cytoplasmic marker: a-tubulin. B: Expression of COX-2 and
IL-6 mRNAs at 0–24 hours in hBMSC differentiation. C: Left; Sox9 mRNA expression during hBMSC differentiation, Sox9 protein expression during 0–
24 hours in hBMSC differentiation (middle) and Col2A1 mRNA expression during hBMSC differentiation (right). D: Left; COX-2 protein expression at 0,
2, 4 hours in differentiation in the presence of LPS (0.1 ng/ml) or TLCK (100 mM). Right; Sox9 mRNA expression at 4 hours in differentiation in the
presence of LPS (black bars) or TLCK (grey bars). E: Col2A1 protein expression in day 21-samples of differentiated hBMSCs. Lanes 1: control condition,
Lanes 2: 0.1 ng/ml LPS (only first 24 hours) and lanes 3: 100 mM TLCK. * = p,0.05.
doi:10.1371/journal.pone.0033467.g004
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NF-kB/p65 signaling induces chondrogenic marker gene
expression in mesenchymal progenitor cells without the
addition of chondrogenic growth factors

The progenitor cell intrinsic NF-kB/p65 activation occurs as a

result of environmental differentiation conditions, but positively

responds to NF-kB stimulating agents (LPS and TNFa) early in

chondrogenic differentiation. We therefore tested whether an NF-

kB/p65-activating stimulus alone would be able to facilitate

chondrogenic signaling in mesenchymal progenitors, without the

addition of other differentiation factors like insulin or TGFb3. To

this end, ATDC5 proliferation medium was supplemented with

only LPS (first 24 hours alone) and subsequently cells were cultured

in proliferation medium for 10 or 14 days. A brief stimulation with

LPS induced NF-kB/p65 activation (data not shown) and, in

contrast to the control condition, resulted in a transient Sox9

expression at 2 hours after LPS exposure (Figure 5A, lower left

panel) and equal Sox9, Col2A1 and Col10A1 mRNA expression

levels (at day 10 and 14) as normal differentiation conditions do in

ATDC5 (Figure 5A). However Col10A1 expression in the

proliferation condition at 14 days appeared unexpectedly high as

compared to the LPS and differentiation conditions. Briefly,

findings were verified in hBMSCs. After 21 days culture in

proliferation medium (without insulin and TGFb3), hBMSCs

expressed Sox9 very lowly and Col2A1 and Col10A1 were not

expressed (Figure 5B), whereas brief stimulation with LPS (0.1 and

0.01 ng/ml) during the first 24 hours only, resulted in robust

expression of Sox9, Col2A1 and Col10A1 protein at 21 days

(Figure 5B). To further establish the relevance of our findings in

tissue involved in endochondral ossification, we adopted an ex vivo

periosteal tissue differentiation model for chondrogenesis using

chicken embryonal periosteum [23]. Importantly, as a source for

mesenchymal progenitor cells, periosteal tissue is directly relevant

for endochondral ossification processes and fracture healing.

Harvested periosteal tissue from the chicken tibia was cultured

between agarose layers (chicken periosteum agarose culture: cPAC).

After 1 week of culturing in proliferation medium chicken periosteal

explants did not acquire any chondrogenic properties (Figure 5C;

black control bars and Figure 5D; left micrographs). In contrast,

supplementation of the culture medium with LPS for the first

48 hours only, resulted in the formation of cartilaginous tissue after

1 week, as determined by upregulation of Col2A1, Col10A1, Sox9

and aggrecan mRNA expression (Figure 5C; second black bars), as

well as positive Safranin O staining, immunohistochemical

detection of Sox9 and Col2A1 as well as typical chondrocyte

morphology (Figure 5D). For comparative purposes, same chon-

drogenic markers were measured in cPACs that were differentiated

in standard differentiation medium (containing insulin and TGFb3)

(Figure 5C; grey bars). These data indicate that in mesenchymal

progenitor cells a short exogenous NF-kB/p65-activating stimulus

may result in cellular signaling through chondrogenic pathways

which can explain the expression of chondrocyte marker molecules.

BMP2 activates NF-kB/p65 in early ATDC5 chondrogenic
differentiation

LPS and TNFa were used as tools to activate NF-kB/p65.

Exceptions left alone (e.g. TNFa in OA and RA), these activators

are not known to be present in the cartilaginous environment. We

therefore asked whether growth factors may support the initiation

of an early NF-kB/p65 activation in the way described herein.

BMP’s are known to play crucial roles in early mesenchymal

condensation by regulating Sox9 expression [24] and contributing

to other phases of the endochondral ossification processes. Also,

BMP2 has been described to be able to activate NF-kB/p65 in

chondrocytes [25]. As shown in Figure 6A, 30 ng/ml BMP2

resulted in increased expression of Col2A1 and Col10A1 in

differentiating ATDC5 cells. To verify whether a similar early NF-

kB/p65 activation might involve this BMP2 action, we analyzed

p65 nuclear translocation. We found that p65 nuclear transloca-

tion at 2 hours in differentiation was more increased in the

presence of BMP2 as compared to control (Figure 6B). Increased

and more prolonged expression of Sox9, COX-2 and iNOS in the

first 24 hours of differentiation confirmed downstream NF-kB/

p65-activated pathways (Figure 6C). To further establish a role for

p65 in this process, ATDC5 cells were transfected with a p65

siRNA duplex or scrambled siRNA duplex and differentiated in

the absence or presence of BMP2 (30 ng/ml) (Figure 6D).

Knockdown of p65 mRNA was confirmed at 0 and 2 hours in

differentiation (left panel). Middle and right panels show Sox9 and

COX-2 mRNA expression, respectively. As described above, Sox9

and COX-2 mRNA expression increased at 2 hours in differen-

tiation and increased further with BMP2 stimulation (see also

Figure 6C). The BMP2-initiated increased Sox9 and COX-2

mRNA upregulation is inhibited to equal levels as the differen-

tiated control p65 knock-down condition without BMP2 supple-

mentation, supporting a role for p65 in this mechanism. Finally we

addressed whether BMP2 might exert its prochondrogenic action

early in differentiation through the NF-kB/p65 induced early

Sox9 expression. The early Sox9 mRNA expression was targeted

by a single Sox9 siRNA transfection (see also Figure 2E) and

differentiation was initiated in the presence of BMP2 (first

24 hours alone). As shown in Figure 6E, in the presence of

BMP2, Sox9 siRNA transfection resulted in an efficient knock-

down of Sox9 mRNA and protein expression at 2 hours in

differentiation. The early knock-down of Sox9 under BMP2

treatment at 2 hours in differentiation resulted in impaired

Col2A1 expression at 7 days into differentiation. Overal, these

results suggest that BMP2 action in the early chondrogenic phase

of endochondral ossification may, in part, be explained via the

herein described early transient NF-kB/p65 activation and Sox9

expression. These findings may provide a possible in vivo context

for the herein described NF-kB/p65 pathway.

Discussion

We here report that chondrogenic differentiation of chondro-

progenitor cells is, at least in part, determined by early activation

of NF-kB/p65 which subsequently contributes to the initiation of

chondrogenic differentiation by regulating the early expression of

key chondrogenic factor Sox9.

Inflammatory mediators play crucial roles in cartilage degener-

ative conditions such as rheumatoid arthritis and osteoarthritis

[26,27,28]. Most, if not all of these inflammatory mediators are

regulated via activated NF-kB pathways. However, recent studies

reported that in chondrocytes NF-kB/p65-target genes are not

exclusively associated with cartilage degenerative conditions [29].

TNFa was recently described to regulate expression of BMP2 via an

NF-kB/p65 dependent mechanism [8,30,31]. Involvement of NF-

kB was reported during development of the growth plate [8,10], as

well as in preventing apoptosis of maturating chondrocytes via

interaction with Nkx3.2 [9]. NF-kB/p65 has been reported to

function as a transcription factor for Sox9 in mature chondrocytes

[11] and finally, Aung and colleagues provided evidence that OA

chondrocytes excrete soluble factors that initiate chondrogenic

differentiation of human mesenchymal stem cells [32]. Except for

the last study, most of these previous investigations were limited by

the use of maturated chondrocytes, thereby leaving the question at

which chondrogenic stage an imperative nuclear NF-kB/p65
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Figure 5. NF-kB/p65 activation induces chondrocyte marker gene expression without the addition of chondrogenic growth factors.
A: Col2A1, Col10A1 and Sox9 mRNA expression at 2 hours (Sox9 only), 10 and 14 days in ATDC5 cells, cultured in proliferation medium in the
absence (‘‘control’’) or presence (first 24 hours) of LPS (black bars). Col2A1, Col10A1 and Sox9 mRNA expression of standard differentiated ATDC5 is
shown for comparative purposes (grey bars; ‘‘differentiation control’’). B: Sox9, Col2A1 and Col10A1 protein expression in a representative hBMSC
sample cultured for 21 days in proliferation medium with 0.1 or 0.01 ng/ml LPS (first 24 hours). C: Col2A1, Col10A1, Sox9 and aggrecan mRNA
expression in cPACs (chicken Periosteum Agarose Culture) cultured in proliferation medium for 7 days in the absence or presence of LPS during the
first 48 hours (black bars). Col2A1, Col10A1, Sox9 and aggrecan mRNA expression of cPACs differentiated in standard differentiation medium
(containing TGFb3 and insulin, see also Materials and Methods) is shown for comparative purposes (grey bars). * = p,0.05. D: In similar samples from
(C) sections (5 mm) from cPACs were stained by Safranin O/Fast green (upper set), for Col2A1 (middle set) and Sox9 (lower set). For Safranin O and
Col2A1 stainings: bars = 200 mm for first and third column micrographs and 100 mm for second and fourth column of micrographs. For Sox9 staining,
bars = 150 mm for first and third column of micrographs and 100 mm for second and fourth column of micrographs.
doi:10.1371/journal.pone.0033467.g005
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Figure 6. BMP2 activates NF-kB/p65 in early ATDC5 chondrogenic differentiation. A: ATDC5 was differentiated for 14 days in the absence
or presence of BMP2 (30 ng/ml). Relative mRNA expression of Col2A1 and Col10A1 was determined. B: Cells were differentiated in the absence
(control) or presence of BMP2 (30 ng/ml) and total (T) and nuclear (N) fractions were prepared at 2 hours in differentiation. NF-kB was detected as
p65. C: Cells were differentiated for 0–24 hours in the absence or presence of BMP2 and expression of Sox9 (left) and NF-kB-targets COX-2 (middle)
and iNOS (right) was determined. D: ATDC5 cells were transfected with a p65 siRNA duplex or Mock siRNA duplex and differentiated in the absence
or presence of BMP2 for 2 hours. Knock-down of p65 mRNA was confirmed at 0 and 2 hours in differentiation (left). Middle and right graphs show
Sox9 and COX-2 mRNA expression, respectively. E: Left panel set: Sox9 KD at mRNA and protein level at 2 hours in differentiation in cells transfected
with scrambled (indicated as ‘‘Mock’’) siRNAs, scrambled siRNAs in the presence of BMP2, or Sox9 siRNAs (indicated as ‘‘Sox9’’) in the presence of
BMP2. Transfection was done the day prior to differentiation and BMP2 treatment was for the first 24 hours only. Right panel: Col2A1 mRNA
expression was determined in same experiment at day 7 in differentiation. * = p,0.05.
doi:10.1371/journal.pone.0033467.g006
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presence would be required for differentiation. As we made use of

cellular differentiation models that initiate chondrogenic differen-

tiation from a progenitor stage onward, our experiments provided

the possibility to address the role of NF-kB/p65 activity in a specific

chondrogenic phase, while at the same time determining the

consequences of NF-kB/p65 activity during subsequent later

chondrogenic phases. We found that Sox9 induction during

chondrogenic differentiation of chondroprogenitor cells is bi-phasic

and is evident during the first hours of differentiation and induced

for a second time later on in differentiation. The late Sox9 induction

follows chondrocyte matrix expression and is thereby expected to

transcriptionally regulate the induction of cartilage matrix genes

such as Col2A1 and aggrecan [15,16]. In addition to late Sox9

expression, upon early chondrogenic differentiation NF-kB/p65

transiently translocates to the nucleus, thereby enabling NF-kB/

p65-driven early Sox9 transcription. Although the function of the

novel short Sox9 pulse during the early start of chondrogenesis

remains to be elucidated, our data indicate that it might function in

the context of the Sox-trio [13,17] and is important in determining

the chondrogenic outcome, possibly by priming the early

differentiating cell for chondrogenic commitment by yet unknown

(epigenetic) mechanisms.

Next to transcriptional induction of Sox9, the early chondrogen-

esis-associated NF-kB/p65 activation results in additional transient

expression of inflammatory target genes, such as COX-2, iNOS, Il-6

and TNFa. Expression of these inflammatory NF-kB/p65 target

genes may be an aspecific result of the transient activation of NF-kB/

p65. However ample experimental evidence supports a critical role

for these inflammatory mediators in cellular fate determination in

the context of the endochondral ossification during fracture healing,

as the respective knock-out mice display a severely impaired fracture

healing capacity [6,33,34,35,36,37,38,39,40,41,42]. Human MSCs

have been reported to excrete several chondrogenic growth factors

(e.g. IGF1 and FGF2) upon inflammatory LPS or TNFa stimulation

[43,44] and our data (Figure S5) show that treatment of

differentiating ATDC5 cells with TNFa, for the first 24 hours only,

also resulted in significantly higher expression of chondrogenic

growth factors (IGF1, TGFb1, FGF3, BMP2, BMP4) from 7 days on

in differentiation. It is therefore tempting to speculate that the

expression of NF-kB/p65-targets during the onset of chondrogenic

differentiation may have an additional function in the paracrine

signaling for later stages during endochondral ossification. Also,

despite the degenerative environment, the endochondral formation

of cartilaginous osteophytes is a hall mark of OA [45]. An aspect of

their formation may also be found in NF-kB/p65-driven chondro-

genic differentiation of synovial or periosteal progenitors, initiated

from the degenerating OA cartilage. As OA-like conditions are

absent in the developing growth plate, expression of NF-kB/p65-

targets and growth factors by differentiating growth plate chondro-

cytes may maintain growth plate chondrogenic differentiation of

local resting zone progenitor cells in a similar paracrine fashion.

Although in early chondrogenic differentiation NF-kB/p65 is

clearly activated during the first hours in the differentiation

process, we do not yet fully understand how the chondrogenic

culture environment triggers this inflammatory response. Several

chondrogenic growth factors are associated with NF-kB/p65

signaling. It is known that TGFb-receptor (TGFR) and IGF-

receptor (IGFR) signaling activate NF-kB and expression of

chondrogenic markers in chondrocytes [46,47]. Key extracellular

signaling molecules triggering chondrogenesis in vitro are insulin

and TGFb. Hence, insulin/IGFR- and TGFb/TGFR-activation

likely initiate signaling through NF-kB/p65, resulting in initiation

of early transient Sox9 induction. Our observation that stimulation

of NF-kB activity by LPS or TNFa under chondrogenic conditions

or even under proliferation conditions (in the absence of standard

chondrogenic stimuli) enhances or triggers Sox9 expression and

eventually contributes to the chondrogenic potential, is well in line

with this notion. Although mesenchymal progenitor cells express

TNFR and TLR2/4 [48,49], the use of LPS and TNFa to activate

NF-kB might be contradictory in the context of chondrogenic

differentiation. However, these agents were solely used as NF-kB-

activating tools in the herein described work. More relevant to the

in vivo context of early chondrogenic differentiation and endo-

chondral ossification BMP2 has previously been described to be

able to translocate NF-kB/p65 to the nucleus [25] and to be

involved in Sox9 regulation during early mesenchymal condensa-

tion [24]. These previous findings may provide an in vivo context in

which the herein described BMP2 mediated NF-kB/p65 driven

early Sox9 expression may function. In addition, other studies

[8,10] have shown that BMP2 expression itself can be regulated by

NF-kB/p65 during late chondrogenesis in maturated chondro-

cytes, thereby contributing to longitudinal bone growth and

preventing apoptosis of these chondrocytes. Therefore, our and

previous findings indicate that BMP2 action and regulation might

depend on the chondrogenic differentiation status [30].

In conclusion, our data indicate that initiation of chondrogenic

differentiation during endochondral development, at least in part,

depends on an early activation of NF-kB/p65. The early NF-kB/

p65 activation evokes a novel early and transient expression of

Sox9, which, together with a late Sox9 induction, contributes to

the outcome of the chondrogenic differentiation program of

mesenchymal progenitor cells. Our findings complement previ-

ously reported NF-kB/p65 involvement in chondrogenic differ-

entiation and provide novel insight into the origin, timing and

dynamics of NF-kB/p65-induced gene expression in early

chondrogenic differentiation. These data add to an emerging

and growing concept [7] where differentiating chondrocytes and

endochondral development are regulated by NF-kB/p65-mediat-

ed processes and may be used as new leads to modulate

chondrogenic differentiation in cartilage and bone regenerative

medicine approaches such as the ACI technique [50] and the in

vivo bioreactor technique [51,52].

Materials and Methods

ATDC5 cell culture
ATDC5 cells [18] were cultured in proliferation medium

(DMEM/F12 (Invitrogen), 5% FCS (PAA), 1% antibiotic/antimy-

cotic (Invitrogen) and 1% NEAA (Invitrogen)). Differentiation

medium comprised proliferation medium supplemented with

10 mg/ml insulin (Sigma, St. Louis, MO, USA), 10 mg/ml

transferrin (Roche Applied Science) and 30 nM sodium selenite

(Sigma). Cells were plated at 6,400 cells/cm2 and the following day

chondrogenesis was initiated by changing the proliferation medium

to differentiation medium (or proliferation medium in case of data

presented in Figure 5). Medium was changed every 2 days and every

day from day 10 onwards. To inhibit NF-kB, TLCK (Acros),

Parthenolide (Sigma) and Sulfasalazine (Sigma) were used. LPS

(Sigma) or TNFa (R&D) were used as NF-kB/p65 activators.

BMP2 was used at 30 ng/ml (Sigma). For RNAi-experiments a p65

siRNAduplex (sense: 59-AGAGGACAUUGAGGUGUAUTT-39,

anti-sense: 59-AUACACCUCAAUGUCCUCUTT-39), a Sox9

siRNA duplex (sense: 59- GACUCACAUCUCUCCUAAUTT-

39, anti-sense: 59- AUUAGGAGAGAUGUGAGUCTT-39) and a

scrambled siRNA-duplex (indicated by ‘‘Mock’’) were used

(Eurogentec). ATDC5 cells were seeded at 25,000 cells/cm2 and

transfection with siRNAs (100 nM for p65 and 50 nM for Sox9) was

performed using ICAfectin 442 (Eurogentec) according to manu-

NF-kB/p65 Activity Facilitates Chondrogenesis

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e33467



facturers’ protocol. Cells were cultured for 2 days before

chondrogenesis was initiated.

hBMSC isolation and culture
Human bone marrow stem cells (hBMSCs) were obtained from

residual iliac crest bone marrow aspirate from young, genetically

healthy individuals undergoing spinal surgery. The Maastricht

University Medical Centre institutional policy on the use of

residual human surgical material specifically states that no

informed consent is needed in the case of residual surgical

material. However an approval from the institutional Medical

Ethical Committee (MEC) for the use of this material is required.

The MEC approved this study and assigned approval ID: MEC

08-4-056. Human BMSCs were isolated from the aspirate using

Ficoll Paque (Amersham). Proliferation medium consisted of

DMEM high-glucose (Invitrogen,), 10% FCS (ES-grade), 1%

antibiotic/antimycotic and 1% NEAA. Passage 5 cells were plated

at 30,000 cells/cm2 and chondrogenesis was initiated the next day

by changing to differentiation medium (proliferation medium

supplemented with 1% ITS (Invitrogen), 50 mg/ml L-ascorbic

acid-2-phosphate (Sigma) and 1 ng/ml TGFb3 (R&D)) [53]. In

experiments for Figure 5B the proliferation medium was changed

with proliferation medium. Medium was changed every 2 days.

TLCK (Acros) was used to inhibit NF-kB/p65 activation and LPS

(Sigma) was used as NF-kB/p65 activator.

Chicken periosteum agarose culture (cPAC)
Fertilized eggs of Dekalb white chickens (’t Anker, Ochten, the

Netherlands) were placed in a polyhatch incubator (Brisnea) at

39.2uC and at relative humidity of 40%. At embryonic day 16,

embryos were removed and sacrificed by rapid decapitation.

Incubation period corresponded to embyos at Hamburger and

Hamilton stage 42. Periosteum was dissected from tibiae using

aseptic techniques. Periostea were embedded in 1% low-melting

agarose/0.9% NaCl using procedures described before [23,54].

Proliferation medium (DMEM/F12, 10% FCS, 1% antibiotic/

antimycotic, 1% NEAA) was added and incubated overnight at

37uC/5% CO2. The next day, medium was changed with

proliferation medium supplemented with or without LPS (Sigma).

For the differentiation control, medium was changed to differen-

tiation medium (proliferation medium supplemented with 1%

ITS, 50 mg/ml L-ascorbic acid-2-phosphate, 10 ng/ml TGFb3)

with or without TLCK (Acros). Medium was changed every 2

days. Ethical approval by the institutional animal ethical

committee was waived for these experiments as institutional

regulations state that no approval from an animal ethical

committee is needed to perform embryonic chicken experiments.

Mouse growth plates
The growth plates were isolated from tibias of 6 weeks old

C57BL/6 mice. These were surplus wildtype mice from another

unrelated experiment. This experiment was approved by the

Maastricht University animal ethical committee (DEC) and

assigned approval ID: DEC 2008-042. The tibia’s were isolated

and fixated in formalin. The growth plates were separated from

the rest of the tibia and decalcified in 0.5 M EDTA pH 7.8 for 2

weeks. EDTA was refreshed every 2 days. Growth plates were

dehydrated and embedded in paraffin. Five micrometer sections

were cut and positioned on Superfrost Plus slides for IHC.

RT-qPCR
Total RNA was extracted with TRIzol (Invitrogen). Quantity

and purity of extracted RNA were determined by UV-spectrom-

etry (Nanodrop, Thermo Scientific). DNA-free total RNA was

reverse transcribed to cDNA using standard procedures and

random hexamer priming.

Real time quantitative PCR (RT-qPCR) was performed using

Mesagreen qPCR mastermix plus for SYBR Green (Eurogentec)

and an Applied Biosystems ABI PRISM 7300 Sequence Detection

System for amplification with the following profile: initial

denaturation 10 minutes at 95uC, followed by 40 cycles of

amplification (15 seconds at 95uC and 1 minute at 60uC), followed

by a dissociation curve. Data were analyzed using the standard

curve method and relative quantification of mRNA expression was

normalized to a housekeeping mRNA. Primer sequences are

depicted in Table S1.

Immunoblotting
Cells were lysed in RIPA buffer (150 mM NaCl, 1% NP-40,

0.5% Sodium deoxycholate, 0.1% SDS, 50 mM Tris pH 8.0,

5.0 mM EDTA pH 8.0, 0.5 mM dithiothreitol and 1 mM

phenylmethylsulfonylfluoride). Nuclear extracts were prepared by

lysing cells in a buffer containing 20 mM HEPES (pH 7.8),

20 mM KCl, 4 mM MgCl2, 0.2 mM EDTA (pH 8.0), 1 mM

dithiotreitol, 0.2 mM sodiumvanadate, 0.4 mM phenylmethylsul-

fonylfluoride, 0.3 mg/ml leupeptin and 0.2 mM sodiumfluoride).

Nuclei were separated from cytoplasm by centrifugation (16.1006
g) and the nuclear pellet was lysed in RIPA buffer. Extracts were

sonicated and protein concentrations were determined using the

BCA method (Sigma). Polypeptides were separated by SDS-PAGE

and transferred to nitrocellulose membranes by electroblotting.

Primary antibodies for immunodetection were anti-Col2A1

(Southern Biotech), anti-Col10A1 (Calbiochem), anti-Sox9 (Ab-

cam), anti-COX-2 (Cayman), anti-iNOS (Abcam), anti-p65 (Santa

Cruz Biotechnologies), anti-RunX2 (MBL) and anti-a-Tubulin

(Sigma). Bound primary antibodies were detected with immuno-

globulins conjugated with HRP (DakoCytomation) and visualized

by ECL. ECL signals were quantified using Biorad Quantity One

4.6.7 software and relative differences, corrected for background

and housekeeper, were determined as compared to control

conditions or t = 0.

(Immuno)histochemistry
Chicken PAC samples were dehydrated following standard

procedures and embedded in paraffin. Tissue sections were cut at

5 mm, deparaffinized and rehydrated using standard protocols.

Proteoglycans were stained with Safranin-O (0.1%) and counter-

stained with Fast Green (0.1%). Stained sections were dehydrated

and mounted in Histomount (Thermo Shandon). For Sox9, p65,

iNOS and COX-2 expression in 6-weeks old mouse growth plate

and cPAC, sections were deparaffinized and antigen retrieval was

performed by incubation in boiling citrate buffer (1.8 mM citric

acid and 8.2 mM tri-sodium citrate) for 30 minutes. For Col2A1

detection in cPAC, sections were digested with 0.4% hyaluroni-

dase (Sigma) for 30 minutes at 37uC. Endogenous peroxidase

activity was inactivated and sections were blocked with 10%

normal sheep serum. Primary antibodies were: anti-Sox9 (sc-

166505; Santa Cruz Biotechnology), anti-p65 (sc-372; Santa Cruz

Biotechnology), anti-COX-2 (610203; BD Transduction Labora-

tories), anti-iNOS (ab3523; Abcam) and anti-Col2A1 (II-II6B3;

Developmental Studies Hybridoma Bank). Similar antibody

concentrations were used for negative controls; mouse IgG1

(Dako) for COX-2 and Col2A1, mouse IgG2a (Dako) for Sox9,

normal rabbit serum for iNOS and anti-p65 blocking peptide (sc-

372P; Santa Cruz Biotechnologies) for p65. After washing in PBS-

T, bound antibodies were detected with HRP-labelled secondary

antibodies (Dako, EnVision+ System-HRP labelled Polymer). For
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visualisation, DAB substrate (Dako) was used. Stained sections

were counterstained with Mayer’s Hematoxylin (Dako), dehydrat-

ed and mounted in Histomount as described above.

Statistics
In the Figures, bars represent average value of 3 individual

experiments (performed in triplicate; 363 samples) and error bars

represent mean 6 SEM. Statistical significance (p,0.05) was

determined by unpaired two-tailed student t-tests using Graphpad

PRISM 5.0.
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