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Abstract

Motivation: Learning associations of traits with the microbial composition of a set of samples is a

fundamental goal in microbiome studies. Recently, machine learning methods have been explored

for this goal, with some promise. However, in comparison to other fields, microbiome data are

high-dimensional and not abundant; leading to a high-dimensional low-sample-size under-

determined system. Moreover, microbiome data are often unbalanced and biased. Given such

training data, machine learning methods often fail to perform a classification task with sufficient ac-

curacy. Lack of signal is especially problematic when classes are represented in an unbalanced

way in the training data; with some classes under-represented. The presence of inter-correlations

among subsets of observations further compounds these issues. As a result, machine learning

methods have had only limited success in predicting many traits from microbiome. Data augmen-

tation consists of building synthetic samples and adding them to the training data and is a tech-

nique that has proved helpful for many machine learning tasks.

Results: In this paper, we propose a new data augmentation technique for classifying phenotypes

based on the microbiome. Our algorithm, called TADA, uses available data and a statistical genera-

tive model to create new samples augmenting existing ones, addressing issues of low-sample-

size. In generating new samples, TADA takes into account phylogenetic relationships between mi-

crobial species. On two real datasets, we show that adding these synthetic samples to the training

set improves the accuracy of downstream classification, especially when the training data have an

unbalanced representation of classes.

Availability and implementation: TADA is available at https://github.com/tada-alg/TADA.

Contact: smirarabbaygi@eng.ucsd.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Understanding the impact of the composition of the microbiome on

clinically-relevant traits is a major promise of microbiome profiling

National Research Council (US) Committee on Metagenomics:

Challenges and Functional Applications, 2007] using both 16S (Gill

et al., 2006) and metagenomic sampling (Venter et al., 2004). The

goal is to understand how the composition of species, or genes, in a

microbial community such as human gut impacts phenotypes of

interest such as obesity (e.g. Turnbaugh et al., 2007). The relation-

ship between microbial composition and traits, however, is complex

and hugely variable, from person to person (Dave et al., 2012) and

from one time to another (Caporaso et al., 2011; Flores et al.,

2014). As a result, microbial communities have been hard to model

(Waldor et al., 2015) using traditional sample differentiation meth-

ods (Langille et al., 2013; Paulson et al., 2013).

Machine learning (ML) methods have proved capable of captur-

ing complex relationships in many fields, such as vision and speech

recognition. As a result, researchers have pointed out the potential

of ML models to capture complexities of the microbiome (Knights

et al., 2011). Many researchers (e.g. Saulnier et al., 2011; Statnikov

et al., 2013) have formulated understanding microbiome as a classi-

fication task: given is a set of samples, each consisting of a set of

sequences from various microorganisms, and each sample is labeled

by a trait of interest (e.g. lean or obese); a model is learned to predict

these labels and classify unlabeled (new) samples. Some studies have
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shown promise in achieving an accurate classification of clinically-

relevant traits using microbiome (e.g. Aagaard et al., 2012; Beck

and Foster, 2014; Feng et al., 2015).

The number of samples available for training an ML algorithm

has tremendous effects on the accuracy of the model. Tuning a large

number of parameters of a classifier or regression method using a

small dataset can lead to overfitting and poor generalization to new

samples. Impacts of overfitting are particularly severe when we have

an unbalanced distribution of class labels or hidden confounding

factors in training datasets (e.g. Chawla et al., 2002, 2010; Kubat

and Matwin, 1997).

The number of microbiome samples, compared to applications

like vision and speech recognition, is relatively small. For example,

ImageNet Large-Scale Visual Recognition Challenge (ILSVRC-2010)

involved the classification of 1.2 million high-resolution images into

1000 different classes (Russakovsky et al., 2015), whereas, one of

the largest microbiome datasets, the American Gut Project (AGP)

(McDonald et al., 2018), includes 14 794 samples, has only self-

reported labels, and is heterogeneous (e.g. only 1942 samples are

omnivores of age between 20 and 80 with no self-reported disease or

antibiotic usage). For classifying specific traits, AGP has even fewer

samples [e.g. only 262 samples report having inflammatory bowel

disease (IBD)]. Moreover, the representation of traits of interest is

often not balanced, and the distribution of the labels often is not

even close to the larger population (e.g. targeted datasets are often

over-represented in the diseased state and short on healthy samples).

Biases are further compounded by the natural variability of micro-

biome and auto-correlation between labels due to hidden or nuisance

variables, which abound. These difficulties have led to diminished

hope for the generalization of methods (Sze and Schloss, 2016).

Perhaps the ultimate goal should be gathering more (and less

biased) labeled samples for training, a task that will progress only

slowly, especially given difficulties of combining datasets gathered

with various lab protocols (Leek et al., 2010; Weiss et al., 2014). An

alternative that has been explored extensively in recent years by

the ML community is data augmentation. The idea is to create artifi-

cial labeled samples algorithmically and add them to the training

data. For example, two widely-used methods, SMOTE (Chawla et al.,

2002) and ADASYN (He et al., 2008) seek to reduce biases intro-

duced by unbalanced distributions of labels using a k-NN clustering

of samples and combining points in the same cluster. Beyond these

generic methods, which do not seek to capture domain knowledge,

augmentation has the potential to combine the power of black-box

ML models and biologically-motivated generative statistical models.

In this paper, we propose a new data augmentation technique

for microbiome data, called Tree-based Associative Data

Augmentation (TADA). The main ideas behind TADA are 2-fold. (i)

Each observed sample captures the underlying microbiome only im-

perfectly, and hence, a variation of the sample could have easily

been observed, (ii) such variations are constrained by the phylogen-

etic relationships between species (Matsen, 2015), which underlie

the sequence similarity and microbial diversity (O’Dwyer et al.,

2012; von Mering et al., 2007). Thus, TADA generates new samples

while considering the evolutionary relationships between organisms.

Furthermore, we do not stop at just increasing the number of sam-

ples. As we will show, it is crucial to deal with unbalances and biases

in the training data. In deciding what samples to add, TADA can

also remove unbalances in the data with respect to both observed

and hidden variables (which we seek to approximate using cluster-

ing). We test TADA on two datasets with various biases added to

the training dataset. We show that two leading ML models (random

forests and neural networks) fail to perform well on unbalanced and

biased samples. We also show that data augmentation improves the

accuracy, marginally but meaningfully for balanced datasets and

dramatically in the presence of unbalanced training sets.

2 The TADA method

2.1 Background and notations
The training data used in microbiome classification is an

operational-taxonomic-unit (OTU) table X. The rows of the table

correspond to a set of m samples, often one per individual, S ¼
fs1; s2; . . . ; smg and the columns correspond to features. Features

can be defined in various ways, but for simplicity, we focus on a spe-

cific form. Our features are a set of n OTUs (e.g. representing spe-

cies) fo1; o2; . . . ; ong. Each cell of the matrix gives the number of

times an OTU is observed in a sample. The counts in each row can

also be normalized so that they add up to one. In addition to the

OTU table, we need a class label yi for each sample si. The class

labels correspond to phenotypes (e.g. healthy versus diseased or lean

versus obese) that we seek to classify using the microbiome.

The OTUs have a corresponding sequence, for example from the

marker genes like 16S rRNA. These sequences may be obtained using

a number of approaches, including the traditional OTU picking

methods (Edgar, 2010; Schloss and Handelsman, 2005) or sub-

operational-taxonomic-unit methods (Amir et al., 2017; Callahan

et al., 2016; Edgar, 2016). Depending on the method, the exact

meaning of OTUs changes; however, they always correspond (at least

in approximation) to microorganisms that constitute the sample.

2.2 Generative model used in TADA
Data augmentation seeks to add to the training set new samples that

could have been seen but are not seen. TADA achieves this using a

generative model to create synthetic samples distributed around

existing samples. TADA models two types of variations.

• True variation (TV). From one individual to another, even

among those with the same phenotype, the true proportions of

different OTUs in the microbiome change. These variations may

be due to confounding factors (i.e. hidden variables) or natural

biological variation among people. Moreover, the microbial

composition for each person may also change through time.

Thus, samples have true biological variation.
• Sampling variation (SV). Environmental sequencing takes a ran-

dom (but not necessarily uniformly random) subsample of the

true diversity, creating additional variation around the true pro-

portions. Moreover, sequencing adds errors and ambiguity that

further increase variation.

Of the two forms of variation, true variation is much harder to

model statistically. Confounding factors are mostly unknown as are

the source of natural or temporal variations. However, a major

source of inter-correlation, the phylogenetic structure, can be

inferred and modeled.

Phylogenetic structure. Microorganisms that make up a sample

are all descendants from a common ancestor, as captured by their

phylogenetic tree. The shared evolutionary history creates a depend-

ence between OTUs, and a phylogenetic tree can represent the rela-

tionships (in its topology) as well as the distance between the

species. Close phylogenetic relationships between OTUs corre-

sponds to closeness in the sequence space and perhaps also in func-

tional roles. Both forms of variation are likely influenced by the

phylogeny. True variation can be phylogenetic because phylogenet-

ically similar organisms may interchange easily, though we note that
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this is far from a universal rule; strain-variation may have a large im-

pact on the function. Sampling variation is impacted because algo-

rithms for creating OTU tables are prone to merge or confuse OTUs

that are close phylogenetically.

TADA uses an inferred binary phylogenetic tree (details are given

in Section 3.4), called T , with leaves labeled by OTUs o1 . . . on

(Fig. 1a). We index internal nodes of T from 1 (for the root) to n�1

and refer to the length of the edge above node u by tu. Using a simple

O(n) algorithm (Supplementary Algorithm S1), we compute du: the

average length of the path from each leaf under the left child of u to

each leaf under the right child of u.

2.2.1 Generative model: the base model

We design a hierarchical generative model to capture both sources

of variation and the phylogenetic auto-correlation. The model has

three sets of parameters: (i) the phylogeny, T , and its branch lengths

(and, thus, du’s), with the two nodes below each node u arbitrarily

labeled as left (l) and right (r), (ii) a set M¼ fl1 . . . ln�1g;
0 < lu < 1, each corresponding to an internal node of the phylo-

genetic tree, (iii) the total sequence count N. In addition to these

parameters, we define for each node, a value �u ¼ f ðduÞ where f can

be any monotonically increasing function.

Our generative hierarchical model (Fig. 1b) is defined recursively,

starting at the root and traversing the tree top–down. Algorithm 1

shows this model generates q individuals and k new samples for

each individual (k�q in total), each with N sequences. The true

variation is modeled using a Beta distribution and the sample vari-

ation using a Binomial distribution. We use the l,� parameterization

of the Beta distribution (as opposed to the standard a, b parameter-

ization). For each node u, we have the parameter lu, which gives the

population-wide portion of sequences under the node u that fall

under the left subtree of u. A draw from the Beta distribution gives

us pl
u: the true portion of sequences that go to the left subtree in the

underlying microbiome. Then, a draw from the Binomial distribu-

tion gives the actual observed count and models the variation due to

sampling (sequencing) around the true proportion pl
u.

In this model, the true variance is inversely proportional to the

square root of phylogenetic distance. In the parameterization of the

Beta distribution used here, the mean is l and the variance is lð1�lÞ
�þ1 .

By setting the � parameter of Beta to a monotonically increasing

function of du, we make sure that the variance increases closer to the

tips of the tree (where du is small), and decreases toward the root

(where du is high). The choice of the exact function f (see Section

3.4) is arbitrary. However, the fact that variance should be higher

closer to tips has a biological justification. Closer to the leaves of the

tree, microbial organisms become more similar and therefore more

likely to be able to replace each other in an environment or be con-

fused with each other. Conversely, the microbial composition

becomes more stable close to the root of the tree.

2.2.2 Generative model: mixtures

The model described above is limited in a fundamental way: it

assumes all samples are generated from the same underlying distri-

bution. Therefore, it completely ignores the fact that individuals be-

long to several classes (the identification of which is the goal) and

that within each class, confounding factors may create further struc-

ture among samples. For example, we may have healthy and dis-

eased samples for our main classes, and for each of those, samples

may be further differentiated based on age, gender, weight or other

factors (which, may not be known). Thus, the phenotype structure

of samples is not modeled.

To capture the phenotype structure, we use a mixture model.

The population is assumed to be divided into clusters, each with its

own M parameters, but all sharing the same phylogeny. Clusters

(a)

(b)

(c)

Fig. 1. (a) A phylogeny T with branch lengths (tu), OTUs at leaves (oi) and internal node indices. (b) The hierarchical graphical model used to generate new sam-

ples. (c) The augmentation procedure. First, each sample is mapped to the phylogeny, then we estimate parameters of the model for each sample si (or a collec-

tion of samples; see Supplementary Fig. S2), and then generate new samples using the generative model. The augmented samples are concatenated with the

original samples for training the classifier (e.g. RF or NN)
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can correspond to class labels, confounding factors or a mixture of

the two. In the generative process, each sample is first assigned to a

cluster, according to cluster probabilities, and then the procedure

described above is followed.

2.3 Data augmentation procedure
Assuming the training data come from our generative model, we can

design parameter estimators and use the estimated parameters to

generate new data. In fact, a model-based approach (coupled with

the mixture model), in principle can also infer the class labels.

However, on typical microbiome training datasets, the total number

of mixture components is likely large, and the model has a large

number of parameters. Thus, parameter estimation using these com-

plex models will be underpowered. Moreover, despite a large num-

ber of parameters, the model does not come close to capturing all

the biological complexity of microbiome. Thus, instead of using the

generative model for inference, we use it only as a tool for data aug-

mentation for training ML models.

Based on the hierarchical model, we design two versions of

TADA, which vary in their ambition, ranging from capturing only

sampling variation to capturing both sources of variation and con-

founding factors. The more ambitious versions include more param-

eters, and this reliance on more parameters makes them vulnerable

when applied to limited datasets.

TADA-SV. This version only captures sampling variation and

has a single user setting: a number k. For each training sample si, we

first estimate pl
u in our training set independently from other sam-

ples (assuming samples are unlinked). Then, for each sample, k new

samples are generated and added to the training set using the fixed

pl
u following Algorithm 1 (setting q¼1 and starting in line 5). Thus,

this method is only drawing from the Binomial component of our

Hierarchical model and ignores the rest. To estimate pl
u from a sin-

gle sample si, we use the total count of sequences that fall to the left

of the node u in si, normalized by the total count of sequences below

u. As proved in the Supplementary Lemma S1, this estimator gives

the joint ML estimate for all pl
u values (treated as parameters of the

binomial) over the entire tree.

TADA-TVSV-C. This version captures both sampling and true

variation and optionally also confounding factors. The method has

three user settings: k, q and C. We first cluster samples s1 . . . sm into

C groups per classification label based on the training data X using

any clustering method of choice (see our default choice in Section

3.4). These clusters correspond to components of the mixture model

we described before; note that instead of using a complex

parameter-rich model-based inference of mixture components, we

use a clustering method to approximate the components. The hope

is that the clustering based on X captures the hidden phenotype

structure, at least partially. The choice of C controls the level of

complexity and therefore the number of parameters. For example,

acknowledging the difficulty of finding the phenotype structure, we

explore the extreme setting of C¼m where each sample in our train-

ing set belongs to its cluster and therefore is unlinked from others,

just like SV. We also explore other settings of C, including C¼1.

After clustering, we first estimateM parameters per each cluster

using a method of moments. The estimator, as shown in

Supplementary Lemma S2, simplifies to computing the sum of

counts on the left child of each node u across all samples of the clus-

ter, normalized by the sum of the counts under the node u. Then, for

each cluster, we generate q new individuals and k new samples per

individual (thus, k�q in total). To do so, we follow the generative

procedure given in Algorithm 1.

2.4 Balancing
So far, we have generated a fixed number of new samples per input

training sample. However, by generating a different number of sam-

ples per input sample, we can use augmentation for balancing (or

otherwise adjusting) our input training set in terms of the distribu-

tion of labels. As we will show, the lack of balance between repre-

sentations from different phenotype classes (e.g. the training labels)

can degrade the accuracy of ML methods. TADA, therefore, can

also be run with balancing (Supplementary Fig. S2). In this mode,

training data are first divided into several groups; these groups can

be based on classification labels, the result of clustering training

points or a combination. We then choose the number of extra sam-

ples generated per sample (e.g. k and q) such that all groups have

the same number of samples after augmentation. We will test two

modes.

• TADA-Balance adds exactly as many new samples as necessary

(and not any more) so that all groups have the same total number

of samples.
• TADA-Balanceþþ not only makes all groups balanced in size

but also increases the total number of samples for all groups, so

that the largest group has q times more samples than before

augmentation.

3 Experimental setup

3.1 Datasets
We use two datasets, both based on 16S profiling of gut

microbiome.

Gevers. As our main dataset, we use a dataset by Gevers et al.

(2014) [publicly available on Qiita (Gonzalez et al., 2018); study ID

1939], which the authors put together to study the impact of the

microbiome on the IBD. This study has 1359 samples, has been

gathered in a clinical setting, is carefully curated, and has reliable

class labels. We filtered out samples from people on antibiotics, or

with <10 000 16S sequences. Before running our experiment, we

also removed 9 outliers and any OTUs with total counts across all

samples below 3. This leaves us with 647 diseased samples and 243

healthy samples, gathered using either biopsy or stool. Gevers et al.

(2014) were able to find a clear indication that IBD changes the

microbiome composition, and thus, ML methods should be able to

achieve reasonable classification accuracy on this dataset.

BMI. In addition, we use the AGP (McDonald et al., 2018). This

dataset has only self-reported labels and is gathered by crowdsourc-

ing instead of a clinical setting. Thus, it is less curated than the

Algorithm 1 TADA sample generation procedure

1: for individual 1 � i � q do

2: for node u in preorder traversal of T do

3: Draw pl
u � Betaðlu; �uÞ

4: for 1 � j � k do

5: c1  N % Index 1 refers to the root node

6: for internal node u with children l and r in preorder

traversal do

7: Draw cl � Binomialðpl
u; cuÞ

8: cr  cu � cl

9: Output co1
; . . . ; con

as a new sample and normalize

if needed.
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Gevers dataset, though authors have taken several quality control

steps. With an understanding of the shortcomings, we use the AGP

data to test our method on a phenotype other than IBD. We classi-

fied the self-reported body mass index (BMI) phenotype categorized

into 1360 lean versus 582 overweight samples (cutoff at BMI: 25).

Similar to Gevers dataset, we further filtered this dataset to control

for many factors that might affect microbiome composition. These

factors include diet (we keep omnivore samples), ethnicity

(Caucasian), country (USA), disease (healthy), antibiotics (no anti-

biotic usage in the past year) and age (between 20 and 70). We also

filtered samples with <1000 de-noised reads, one outlier and we

removed OTUs with total counts across all samples below 4.

3.2 Experiments
E1. On both Gevers and AGP datasets, we compare TADA, in its

two settings, against ADASYN and SMOTE, and the baseline ap-

proach where no augmentation is performed. In this experiment, we

use all the data for training and testing in a cross-validation setting

(see Section 3.3) performed using the held-out original samples.

E2. We next test the impact of balancing by generating unbal-

anced training data. We created datasets such that 1/10, 1/5 or 1/3

of both the training and testing data are from healthy/overweight

individuals. We created two versions of this unbalanced dataset. In

the first version (E2-fix), we used a fixed number (243 for IBD and

582 for BMI) training samples for all three ratios to test the impact

of the ratio without changing the training size. Here, the testing sets

are chosen to match the ratio in the training set but have a larger

total sum (the maximum possible in each case). We also created a

version (E2-max) only for the IBD dataset with the maximum pos-

sible training size for each ratio. To do this, we removed the min-

imum possible number of samples from healthy (for 1/10 and 1/5

ratios) or diseased (for 1/3) so that we obtain the desired ratios; this

leaves us with 574 training samples for 1/10, 646 for 1/5 and 587

for 1/3. Once again, the testing sets are chosen to match the training

set in ratio. E2-max enables us to make sure results on E2-fix hold if

training datasets are as large as possible. Here, in addition to no

augmentation, we compare TADA-Balance(þþ) to ADASYN,

SMOTE and a simple balancing strategy that reduces the number of

diseased samples to match the healthy count by random down-

sampling.

E3. While E2 is to test lack of balance, E3 is concerned with

biases in the composition of classification labels in the training data-

set. In E3, we use the 1/5 dataset of E2-fix for training, but for the

testing set, we choose samples such that 1/5, 1/2 or 4/5 are healthy

(achieved by randomly removing diseased cases until the desired

ratio is achieved). Thus, the last two cases have a different compos-

ition of labels between training and testing datasets.

3.3 Evaluation procedure
For measuring classification accuracy, we rely on the area under

curve (AUC) of receiver operating characteristic. The AUC measure

is computed by exploring different cutoffs for the threshold used in-

ternally in each classification method, hence exploring the tradeoff

between precision and recall. AUC is the standard method used for

measuring the accuracy of ML classification because it does not de-

pend on arbitrary sensitivity/specificity tradeoffs.

All of our tests are based on a cross-validation strategy, repeated

several times to get a total of 20 evaluations of AUC. We report the

mean and standard error of AUC across the 20 replicates. In E1 and

E2-max, we use 5-fold cross-validation, repeated four times. In E2-

fix and E3, we use 3-fold validation for the 1/3 setting, 5-fold

validation for 1/5 and 10-fold validation for 1/10, each repeated

enough to get 20 replicates. The augmented samples are only added

to the training data, and testing is done using the held-out samples

from the original datasets.

3.4 Method details
OTU and phylogeny. We use Deblur (Amir et al., 2017) to extract

error-corrected (de-noised) sequences from each sample and take

each resulting sequence as an OTU. We then use SEPP (Janssen

et al., 2018; Mirarab et al., 2012) to insert OTUs onto a backbone

phylogeny of GreenGenes (DeSantis et al., 2006); removing the

backbone sequences and randomly resolving the remaining polyto-

mies gives us a binary tree on the OTUs observed in the samples. We

use this tree as T .

TADA. We implemented TADA in Python using DendroPy

(Sukumaran and Holder, 2010) for manipulating phylogenies,

biom-format (McDonald et al., 2012) for processing OTU tables,

scikit-learn (Pedregosa et al., 2011) for ML methods, and scikit-bio

for computing distances between microbiome samples. In all the

analyses, we use f ðduÞ ¼ 100
ffiffiffiffiffi
du

p
. The choice of the square root is

arbitrary but is motivated by wanting a slower than linear reduction

in variance closer to the tips (where du<1); the constant 100

ensures the variance of Beta is not extremely high and had little im-

pact on results in our initial tests on a different dataset. To cluster

samples, we use the k-means method (Arthur and Vassilvitskii,

2007) applied to the Bray–Curtis (McMurdie and Holmes, 2014)

distances between samples computed from the normalized matrix X.

In all analyses, unless specified, we set k¼5 for TADA-SV and

k¼1, q¼5 for TADA-TVSV-C (our initial experiments showed

marginal improvements with increased k or q; see Supplementary

Fig. S3). For TADA-Balanceþþ, we set k¼50 for TADA-SV and

k¼1 and q¼50 for TADA-TVSV-C. For TVSV, we will explore

five settings of C, the number of clusters: 1, 4, 8, 40 and m. In order

to avoid zero counts, we add the pseudocount 5/n to the count of all

OTUs for all samples (n�104 for IBD and � 2�104 for BMI).

ADASYN/SMOTE. We use ADASYN and SMOTE implemented

in the imbalanced-learn package (ver. 0.4.3) (Lemaı̂tre et al., 2017).

We use the normalized counts of OTUs (so that values in each row

of X add up to 1) as inputs. We use k¼5 (default value) for the k-

nearest neighbor clustering step of these methods. Both methods

allow us to set the number of samples we want to generate from

each class.

ML. We use two ML methods: random forests (RF) (Breiman,

2001) and neural networks (NN), both as implemented in the

scikit-learn package (Pedregosa et al., 2011) (ver. 0.20). We use RF

because of its superior performance on previous studies of micro-

biome (e.g. Statnikov et al., 2013). We set the number of trees for

RF to 2000 and use default options otherwise. For NN, we use

Multi-layer Perceptron classifier (MLPC). Our MLPC had two

layers with dimensions 2000 and 1000, respectively, with an early

stopping rule. For the other parameters of MLPC, we used the de-

fault options. We use the normalized counts of OTUs as input

features.

4 Results

4.1 E1: complete datasets
We start with the E1 experiment where all the data are used (Fig. 2).

On the Gevers IBD dataset, the accuracy of ML methods, as

measured by AUC, is reasonably high (mean AUC>0.8, both for

NN and RF) even without augmentation. Nevertheless, TADA is
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able to increase the mean accuracy for both NN and RF. For ex-

ample, for RF, the AUC improves from 0.857 to 0.890 with TADA-

TVSV-m (q¼50) and the difference is statistically significant

according to a paired t-test (P� 10�5). This improvement, while

not large in magnitude, corresponds to a 23% reduction in the gap

compared to the ideal AUC¼1 and therefore is substantial. In con-

trast, ADASYN and SMOTE result in much smaller improvements

(mean AUC<0.87); these improvements are not statistically signifi-

cant for ADASYN (P¼0.15) but are significant for SMOTE

(P¼0.0003).

For BMI classification using the AGP dataset, the AUC was gen-

erally low in the absence of augmentation (mean <0.72 for both

methods), perhaps reflecting the heterogeneous nature of the AGP

dataset or the difficulty of classifying BMI into two categories based

on the microbiome. Data augmentation using TADA-TVSV

increases the accuracy for RF; for example, the AUC is increased to

0.73 using TADA-TVSV-m, and this improvement is statistically sig-

nificant (P � 10�5). Here, ADASYN reduces accuracy while

SMOTE helps accuracy insignificantly (P¼0.18) and not as much

as TADA. Unlike RF, NN is not helped by TADA-SV, and TADA-

TVSV-m gives only a statistically insignificant improvement

(P¼0.35). Both ADASYN and SMOTE reduce the accuracy.

Comparing different numbers of clusters (C) for TVSV-C, we ob-

serve an interesting pattern. Increasing the number of clusters

improves AUC consistently, and the trend is especially apparent for

RF. The highest accuracy is obtained by either TVSV-40 or TVSV-m

where a single sample (for m) or a handful of samples (for 40) con-

stitute a cluster. Based on these results, we focus only on TVSV-m

for E2 and E3. Interestingly, the accuracy of the simpler model, SV,

is very close to TVSV, except perhaps on the BMI dataset with NN.

Finally, increasing k or q and also using k¼q¼5 tends to improve

accuracy, albeit marginally (Supplementary Fig. S3).

4.2 E2: unbalanced class labels
The power of TADA becomes evident when the classes have an

unbalanced representation (Fig. 3). By making the representation of

the two labels unbalanced, we observe that the accuracy of ML

methods degrades quickly. In E2-fix, we see a sharp drop in AUC of

both ML methods as the level of unbalance increases (Fig. 3). For

example, on the IBD dataset, RF with no augmentation goes from

AUC¼0.8 with 1/3 healthy samples to AUC¼0.7 when 1/10 are

healthy. Similarly, on BMI, AUC goes down from 0.66 in the 1/3

case to AUC¼0.54 when 1/10 are overweight. Simply down-

sampling the number of over-represented class to match the other

label by random removals increases AUC despite training from a

smaller dataset. This improved accuracy further underscores the det-

rimental impact of a lack of balance.

Large improvements in AUC are obtained when we use TADA

to balance the representation from the two groups. For example, on

the IBD dataset, the AUC of RF with TADA-SV-Balance is >0.8

even when the original training data (i.e. before augmentation) has

only 1/10 healthy individuals. Similar levels of improvement are

observed for BMI. Across both datasets, improvements in accuracy

can be as large as 0.11 points for RF and 0.29 points for NN. Thus,

TADA-Balance can largely erase the negative impacts of unbalance

in the original training dataset. Like E1, here, TADA-SV and TVSV-

m perform similarly.

More interestingly, using TADA-Balanceþþ results in additional

improvements beyond TADA-Balance. For example, for IBD, the

AUC in the 1/5 healthy case goes from 0.81 with TADA-SV-Balance

to 0.83 with TADA-SV-Balanceþþ with RF (statistically significant:

P¼0.00004). The improvements of Balanceþþ over Balance are

consistent with improvements of TADA over no augmentation

observed in E1.

The two standard methods, SMOTE and ADASYN, have mixed

performance. We start with RF on the IBD dataset. With the

Balance version, both methods improve AUC substantially only for

the 1/10 healthy case but they fail to outperform down-sampling. In

the 1/5 healthy case, they result in small improvements and in the

1/3 healthy case they reduce AUC compared to no augmentation.

The Balanceþþ versions of both methods, however, consistently im-

prove AUC. Nevertheless, with 1/10 or 1/5 healthy, TADA-SV out-

performs both methods (P<0.007 in all four comparisons) whereas

with 1/3, TADA-SV and both methods are statistically indistinguish-

able (P>0.16 in both comparisons). Similar patterns are observed

for BMI with RF. With NN (which has much lower AUC than RF)

SMOTE, ADASYN and TADA have similar accuracy in all

conditions.

The positive impact of balancing on E2-fix is not merely due to

its small training set. On E2-max, which has roughly double the

training set size of E2-fix, TADA continues to improve accuracy

over no augmentation and other methods, especially for 1/10 and

1/5 levels of unbalance (Fig. 4). Compared to E2-fix, AUC is

improved for all methods in E2-max, as expected due to the larger

training set. Here, down-sampling and SMOTE/ADASYN-Balance

stop increasing accuracy for RF.

Note that before augmentation, the composition of class labels

in the testing set matches that of the training set. Thus, the reduc-

tions in accuracy for unbalanced data without augmentation are not

Fig. 2. Results on E1. Area under curve (AUC) is shown for both neural net-

works (NN) and random forest (RF) classifiers and on both Gevers IBD dataset

and AGP BMI dataset. We compare training on original dataset with no aug-

mentation, SMOTE, ADASYN and using both SV and TVSV versions of TADA.

For TVSV-C, we set the number of clusters, C, to 1, 4, 8, 40 or m (number of

samples). We used ADASYN and SMOTE with their default settings. We

show mean (dots) and standard error over 20 replicates. For TADA-SV, we

show both k¼ 5 and k¼50, and for TADA-TVSV-m, we show both q¼ 5 and

q¼50 with k¼1; see Supplementary Figure S3 for other q and k
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due to a biased distribution of labels in the training set. In fact, after

balancing using TADA, the distribution of labels between training

and testing data will not match, making the high accuracy of bal-

anced results even more noteworthy.

4.3 E3: biased class labels
Focusing on the IBD data, we next test the impact of not just unbal-

anced but also biased sampling by fixing training set to have 1/5

healthy (for IBD) but changing the relative representation in testing

data. Interestingly, including bias does not further reduce the accur-

acy in substantial ways (Fig. 5). However, in the biased scenario, we

continue to see dramatic improvements obtained by TADA

compared to no augmentation, down-sampling, and to less extent,

SMOTE and ADASYN. Thus, for unbalanced training data, aug-

mentation can improve the accuracy regardless of whether the test-

ing data have the same label distribution.

5 Discussions and conclusions

We described a new data augmentation method to generate artificial

samples for augmenting the training set of ML methods for pheno-

type classification from microbiome samples. Our method, TADA,

combines the power of statistical generative models that incorporate

phylogenetic knowledge with the flexibility of black-box ML meth-

ods. We tested our method for two phenotypes (IBD and BMI) and

using one type of microbiome data, namely 16S. Our results showed

that TADA improved the classification accuracy and the improve-

ments were dramatic when the samples were unbalanced in terms of

the distribution of class labels.

We emphasize that the unbalance in training data is not a corner

case; in microbiome data, unbalance is the rule, not the exception.

Often, microbiome datasets gathered in clinical settings are short on

control (i.e. healthy) cases, especially when compared to the larger

population. Our results clearly demonstrate that ML methods fail to

train well on unbalanced data. While we focused on AUC, it is in-

structive also to examine the percentage of times a method makes

the correct classification call. With 1/10 or 1/5 unbalance levels, the

trained ML model is mostly useless because it classifies all testing

samples as diseased, achieving artificially high levels of correct clas-

sification (Fig. 6) despite low AUC (Fig. 3); i.e. here, ML models just

match a no-skill classifier and are, thus, grossly overfit. Balancing

augmentation helps to alleviate this issue, as evident in increased

AUC values. Nevertheless, balancing changes the prevalence of

labels and needs to be done with care. Overall, our results provide a

cautionary note on applying ML methods for unbalanced labels and

are a reminder that clinical applications of ML to microbiome are

(a) (b)

Fig. 3. Results on the E2-fix dataset. Training dataset is randomly subsampled to create unbalance: healthy (for IBD) and overweight (for BMI) samples constitute

1/10 (10-versus-90), 1/5 (20-versus-80) or 1/3 (33-versus-66) of the samples for both the training and testing sets. We compare AUC on the original training set (no

augmentation); the over-represented class down-sampled to match the number of under-represented class (down-sampling); and, augmentation using SMOTE,

ADASYN and TADA. Methods are run in two ways: TADA-Balance just adds samples to the healthy class to balance labels; TADA-Balanceþþ adds both healthy

and unhealthy samples to make them balanced and to increase the total number of samples by 50�

Fig. 4. Results on the E2-max dataset. Settings similar to Figure 3
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fraught with dangers and can benefit from further improvements in

the methodology.

Our results did not show a consistent difference between SV and

TVSV generative models across all dataset. The more complex

model, TVSV, was slightly more accurate on the BMI dataset but

did not manage to outperform SV on IBD. TVSV seeks to capture

variability due to biological sources and adds more variance than

SV. The failure of TVSV to provide a substantial improvement over

SV only on the IBD dataset may indicate that for some datasets (per-

haps more carefully curated) the biological variance is already suffi-

ciently captured. But it could also indicate that the variance

generated using our hierarchical Beta model, fails to emulate bio-

logical variance in a meaningful way. Beta is a powerful model to

capture the distribution of proportions, especially when distributed

around a center (or the two extremes) but biological distributions

may not fit Beta. Moreover, we make conditional independence

assumptions on the phylogenetic tree, which may not match the

biology (e.g. due to horizontal gene transfer).

Our results indicated that clustering samples and using the mix-

ture model could reduce accuracy if the clusters are big and is neu-

tral or only slightly beneficial when clusters are small (Fig. 2). Thus,

sample augmentation was most effective when applied to individual

samples or small clusters. It may be that with the small sample sizes

that we have and large numbers of confounding factors, samples are

so varied that only one or a handful of data points are available per

component of the mixture model. Thus, it is possible that as the size

of the training datasets increase, the mixture model starts to outper-

form the TVSV-m consistently. Thus, for existing small datasets,

using TVSV-m is a safe choice, but in the future, as more data be-

come available, this question needs to be revisited.

The framework we described for combining generative models

and ML methods can be extended beyond the exact generative mod-

els we used. Our specific generative model combines a Binomial and

a Beta distribution, with one learned parameter (l) and one param-

eter fixed based on the phylogeny (�). The method we used to

choose the fixed � (inversely related to the variance) relies on the

phylogenetic knowledge, incorporated as the mean divergence

below each node (similar to the FST measure). We selected a particu-

lar function f, but note that our choice is without strong theoretical

underpinnings. Future work should explore more principled choices,

deriving the function f as a result of a dispersion process running

along the branches of the phylogeny (e.g. a Poisson model). These

future attempts could also explore the Balding and Nichols (1995)

model, which also is based on a similar Beta model and the FST

measure.

A natural extension of our generative model is to let � be learned

from the data instead of using the phylogeny. In fact, we have

derived the necessary parameter estimators for such a model using

the method of moments (see Appendix A.2). However, using this

model will double the number of parameters and will rely less on the

known phylogenetic knowledge. Our initial tests (Supplementary

Fig. S4) indicate this more parameter-rich model fails to perform

well on our two test datasets. However, if substantially larger train-

ing sets are available in the future, this method should be revisited.

Another natural extension is to use DirichletþMultinomial instead

of BetaþBinomial to allow multifurcating trees. Finally, instead of

assuming all lu and �u parameters are separate parameters, they can

be considered random variables drawn from another distribution

with appropriate hyperparameters.

We observed that RF had somewhat higher accuracy than NN in

our experiments. This observation is in line with some previous

studies (e.g. Statnikov et al., 2013), which have demonstrated simi-

lar results. However, we note that with augmentation, NN comes

much closer to the accuracy of RF. We also note that we have not

fine-tuned the NN models. Thus, it is possible that NN, perhaps in

the form of smaller networks or conversely deeper networks along

with regularization techniques could outperform RF. In particular,

deep learning requires large training samples. It is conceivable that

deep learning methods paired with augmented data can in the future

outperform ensemble methods such as NN in the future.

Other steps of TADA could also be changed. For example, for

the phylogenetic inference, instead of placement on a common back-

bone tree, a de novo inference may be feasible using scalable phylo-

genetic inference methods. Clustering of samples can also be done

using more complex methods designed for microbiome, such as

phylogeny-based methods like weighted/unweighted Unifrac distan-

ces (Lozupone et al., 2007; Lozupone and Knight, 2005) and com-

positional methods like Aitchison’s distance (Aitchison, 1982;

Aitchison et al., 2000). Finally, as features for the ML training, we

used OTUs as obtained using the Deblur algorithm (i.e. de-noised

sequences). However, extracting features can also follow more

Fig. 6. Percentage of correct classification on the E2-fix IBD dataset. Figure

settings are similar to Figure 3 but we show percentage of correct classifica-

tions instead of AUC. Red line shows the accuracy achieved by simply guess-

ing the healthy label each time

Fig. 5. Results for E3. The training set includes 1/5 healthy out of a total of 243

samples. The testing set has 1/5 (20-versus-80), 1/2 (50-versus-50) or 4/5 (80-

versus-20) of samples coming from healthy individuals on the IBD dataset.

Methods labeled identically to Figure 3
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complex methods, perhaps using those that include the phylogenetic

knowledge (e.g. Albanese et al., 2015; Morton et al., 2017).

Our studies show potential for improving the generalization of

ML methods. We tested only two datasets, each with only two cate-

gories. Future work should explore applications of TADA to more

phenotypes, including multi-labeled ones. Also, nothing in the

method limits it to gut or human microbiome; the same method

should be explored on other types of environments. Future experi-

ments should also explore training models on a dataset and testing

on a separate dataset produced by a different lab; perhaps augmen-

tation can also help reduce batch effects, which are notoriously diffi-

cult to deal with in microbiome modeling. Finally, we focused on

16S profiling. However, phylogenetic placement methods for shot-

gun metagenomic samples also exist [e.g. TIPP (Nguyen et al.,

2014)]; future work should explore the application of TADA to

metagenomic data.
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